Vis enkel innførsel

dc.contributor.authorHansen, Elisabeth Lindbo
dc.contributor.authorHemmen, Henrik
dc.contributor.authorFonseca, Davi de Miranda
dc.contributor.authorCoutant, C.
dc.contributor.authorKnudsen, Kenneth
dc.contributor.authorPlivelic, T
dc.contributor.authorBonn, D
dc.contributor.authorFossum, Jon Otto
dc.date.accessioned2015-09-25T12:10:55Z
dc.date.accessioned2015-10-16T10:25:01Z
dc.date.available2015-09-25T12:10:55Z
dc.date.available2015-10-16T10:25:01Z
dc.date.issued2012
dc.identifier.citationScientific Reports 2012, 2(618)nb_NO
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11250/2356320
dc.description-nb_NO
dc.description.abstractClays are of paramount importance for soil stability, but also in applications ranging from oil recovery to composites and hydrogels. Generically, clays are divided into two subclasses: macroscopically swelling, ‘active’ clays that have the capacity for taking up large amounts of water to form stable gels, and ‘passive’ or non-swelling clays; the former stabilize soils whereas the latter are known to lead to landslides. However, it has been unclear so far what mechanisms underlie clay swelling. Here, we report the first observation of a temperature-induced transition from a passive to an active, swelling clay. We propose a simple description of the swelling transition; while net attractive interactions are dominant at low temperatures so that the clay particles remain attached to each other in stacks, at higher temperatures it is energetically favourable for the clay to swell due to the entropy that is gained by counterions which are liberated during swelling.nb_NO
dc.language.isoengnb_NO
dc.titleSwelling transition of a clay induced by heatingnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.date.updated2015-09-25T12:10:55Z
dc.source.journalScientific Reportsnb_NO
dc.identifier.doi10.1038/srep00618
dc.identifier.cristin963588


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel