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Code smells analysis for android 
applications and a solution 
for less battery consumption
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In the digitization era, the battery consumption factor plays a vital role for the devices that operate 
Android software, expecting them to deliver high performance and good maintainability.The study 
aims to analyze the Android-specific code smells, their impact on battery consumption, and the 
formulation of a mathematical model concerning static code metrics hampered by the code smells. 
We studied the impact on battery consumption by three Android-specific code smells, namely: No 
Low Memory Resolver (NLMR), Slow Loop (SL) and Unclosed Closable, considering 4,165 classes of 16 
Android applications. We used a rule-based classification method that aids the refactoring ideology. 
Subsequently, multi-linear regression (MLR) modeling is used to evaluate battery usage against the 
software metrics of smelly code instances. Moreover, it was possible to devise a correlation for the 
software metric influenced by battery consumption and rule-based classifiers. The outcome confirms 
that the refactoring of the considered code smells minimizes the battery consumption levels. The 
refactoring method accounts for an accuracy of 87.47% cumulatively. The applied MLR model has an 
R-square value of 0.76 for NLMR and 0.668 for SL, respectively. This study can guide the developers 
towards a complete package for the focused development life cycle of Android code, helping them 
minimize smartphone battery consumption and use the saved battery lives for other operations, 
contributing to the green energy revolution in mobile devices.

Keywords  Android code smells, Software energy model, Green energy, Refactoring, Machine-learning, 
Robust statistics, Multi-linear regression

Smartphone users usually experience critical situations when their battery level is low. The primary cause of this 
is the mobile hardware, along with the kind and number of applications installed on the phone. So, it is crucial 
for developers to consider the quality of code and battery consumption by software during the software develop-
ment life cycle and software maintenance life cycle. Such shortcomings in software quality may lead to adverse 
effects on the user experience of applications. It is also observed that when mobile applications are erroneously 
programmed, they can quickly drain device resources, such as memory, CPU, and energy, which results in low 
performance and software design defects that might hinder the maintainability of the software20,35.

The usage and consumption of phone batteries nowadays is a problem for people everywhere.7. The use of soft-
ware is growing at the same rate as the global population. As a result of the increased uses of software in mobiles, 
energy consumption has increased considerably2. Every action that goes in creating the software contributes to 
the increase in software cost and carbon emissions. Green software engineering20, as its proponents refer to it, 
is a new paradigm aimed at producing green-enabled software with less negative environmental consequences. 
These software solutions are based on breakthroughs in research corresponding to the software development 
processes and the refactoring techniques.

While inspecting the quality of a software application, the design contributes significantly to software perfor-
mance. Fowler, in 1999, devised the term code smells to indicate possible flaws in code design, violation of the 
design principles and best practices, affecting the maintenance and understanding, inflicting a negative impact 
on software quality5,54. Code smells tend to be the poor implementation of the design, leading to deviations 
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from the expected execution that hampers the quality and maintainability of any software application28. Reiman 
et al.29 defined a set of Android developers’ bad programming practices as Android-specific code smells, which 
may threaten some non-functional attributes of mobile applications like source code quality, security, or data 
integrity. Additionally, he presented some refactoring techniques to eliminate those smells and enhance the code 
quality. In recent years, the number of Android applications has experienced a drastic increase from the user’s 
point of view as the usage of technically advanced Android smartphones grew rapidly. The software has also been 
shown to be the root cause of energy consumption in the latest study64. They limited their work by working in a 
controlled environment and performing refactoring manually.

The problem is especially apparent in the context of mobile phone applications when many users rely on 
smartphones for a range of activities. Recent advancements in this area include determining the influence of 
Android code smells on energy consumption and mobile application performance owing to poor programming 
practices61. However, the proposed tool61 can detect and fix only 5 Android code smells. Studies are conducted 
on the effect of code on energy optimization24. Tarwani et al.75 suggested applying the refactoring technique 
in order to achieve optimum software sustainability. They applied the refactoring techniques on the mobile 
applications. Since refactoring techniques remove bad smells, they help reduce energy consumption. A recently 
published study73 used three different refactoring strategies on source codes for mobile phones and computers 
and established a positive relationship between energy consumption and refactoring techniques. These aspects 
gave impetus for us to provide a mathematical model for analysing battery utilisation using software code met-
rics of smelly code, with the goal of preserving battery energy. The metric distribution that influences battery 
consumption and the metric distribution associated with refactoring rules have been established.

Ensuring the quality and effectiveness of code is crucial in the quickly changing world of Android app devel-
opment. However, the maintainability, performance, and user experience of Android applications can all be 
adversely affected by the existence of code smells. Although code smells are becoming more widely acknowledged 
as a major problem in software development, there is still a dearth of thorough research and comprehension 
of the frequency, consequences, and Android-specific mitigating techniques of these issues.Consequently, this 
problem statement centres on carrying out an organised investigation of code smells unique to Android in order 
to respond to the four significant research questions:

RQ1  “How can the software developers be helped in identifying the code smells as soon as possible?”

RQ2  How much do Android code smells affect the amount of battery consumed by mobile applications?

RQ3  Can a relationship for estimating battery usage through software code metrics of smelly code be derived?

RQ4  How does the Android application’s battery consumption metric correlate with the metric associated with 
refactoring rules?

The RQ4 is to determine a relationship between the metrics that are reflected in the refactoring rules and in 
the mathematical model for evaluating battery usage.

Regarding the solution of these questions various machine learning algorithms with Feature Selector: Gain 
Ratio and Searching Approach: Ranker and statistical analysis like paired T-Test, Shapiro- Wilk a normality Test 
and robust statistics : Tukey Biweigh have been applied. Also, mathematical model have been developed for the 
relationship between battery usage through software code metrics of smelly code.

Due to the diverse field in which the Android operates, this study will be confined to Android-specific Java 
code smells as it is the most preferred language for Android-specific mobile application development38. Most 
of the published11,22 research work is dedicated to Android smells ranging from 2014 to 20199,14. It implies that 
Android smells are still at their emergence stage and need additional contributions to improve results. Subse-
quently, the detection and refactoring of smells in Android have become a budding domain for researchers. This 
work explores the Android-specific code smells and their impact on battery consumption and the subsequent 
performance issues. The code smells were manually refactored and tested along with the smelly code to explore 
various quantitative measures.

The practical implementation of the research work contributes to the following findings:

•	 To analyze the impact of Android code smells on battery consumption to improve energy efficiency.
•	 To quantitatively analyze the difference in metric distribution and the composition of the changes in percent-

age observed before and after refactoring.
•	 To develop a mathematical model for evaluating battery usage through software code metrics of smelly code, 

promoting battery energy preservation.
•	 To devise a correlation between the metric distribution affecting the battery consumption and metric distri-

bution associated with refactoring rules.

As per our knowledge, in the available literature Palomba et al24 research enhanced comprehension of energy 
consumption components of Android application development and provided empirically-supported recommen-
dations for mitigating energy leakage via code refactoring techniques. It is possible that Pereira et al.73 research 
provided important insights into the intricate interactions between variables affecting Android device battery 
life, guiding the creation of more energy-efficient hardware and software solutions and enabling users to take 
control of their device’s battery life. However, the presented study have drafted a mathematical formula linking 
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battery change and static code metrics. Again, none of them has devised a correlation between smelly code and 
refactored software metrics. These results would help developers produce smell-free source code and reduce the 
battery consumption of Android applications, leading to sustainable and maintainable software applications.

Structure of the Paper: The paper is structured as follows: In “Background study” section  presents the study 
of the background and related works. In “Research study and design” section illustrates the research study defini-
tion and design. In “Result and discussion” section discusses the result and implications of the performed work 
and “Threats to validity” section  analyses the threats to validity. Finally, “Conclusion and future scope” section  
presents the conclusions and depicts the future scope of the research.

Background study
This section reviews the literature to analyze the published contributions relevant to code smell detection tech-
niques and the effects of code smell on battery consumption in software applications.

Evolution of code smell and refactoring
Fowler et al. described the concept of code smells as design anomalies24. Code smells appear when the design 
rules of the software vary from the optimal pre-defined conventional design rules. Code smells have been dis-
cussed for languages like Java, C++, Python, Ruby, and Scala21,33. Fowler proposed 22 generic code smells which 
are language-independent. Systematic literature8 already reviewed a list of detection tools such as ’infusion’, 
’JDeodorant’, ’iPlasma’, and ’PMD’. As per our research, the first broad evaluation of several detection tools and 
code smells was published in4. Going further from Fowler’s generic smells, Reimann et al.35 presented a cata-
log of thirty Android-specific code smells relative to both implementation and user interface designs, which 
mainly targeted Android-based mobile applications. Automated Android smell detection also started with two 
tools: ’PAPRIKA’ and ’aDoctor’. PAPRIKA11 identifies Android-specific and object-oriented code smells using 
Android application package (APK) files. The other tool ’aDoctor’, is publicly available for usage and supports 
both command-line interface (CLI) and graphical user interface (GUI) developed by Palomba, which identify 
15 out of 30 Android code smells23,28. The aDoctor tool is based on the class-level granularity, which categorizes 
the smell based on its absence and presence.

The identification of code smells significantly impacts the performance and quality of the software 
application11,16. Tufano et al. stated the reasons for code smells and their survivability36 after studying the devel-
oper’s contributions during the evolution of a software application that favor the inclusion of Android code 
smells10. Apart from the detection techniques, practitioners have implemented many refactoring methodolo-
gies to reduce the risk of performance degradation. One option is automated refactoring tools such as Leafactor 
developed by Cruz et al.46. Another refactoring tool, ’EARMO’ refactors Android-specific code smells in mobile 
applications26,50. Some practitioners prefer to apply manual refactoring techniques depending on time and human 
resources38. Further studies on code refactoring have identified the code patterns involved in massive energy 
consumption and removed them from source code43,52. Verdecchia et al.69 established an organised set of rules 
for developers to follow in order to improve the design of Android apps.

Code smells impact on energy consumption
In terms of energy consumption, one way to reduce smartphone energy consumption is to improve software 
quality. Software should consist of effective, low-resource-consuming, and, in particular, code smell-free 
programming.

Palomba et al.24 discussed the results of a recent empirical investigation that looked at the impact of nine 
Android-specific code smells on mobile app energy consumption. They investigated whether refactoring pro-
cesses could help with energy leakage reduction. However, the work24 highlighted about the 4 Android code 
smells. There is also an absence of an automatic refactoring tool. Kim et al.67 identified energy-consuming 
constructions as suspicious codes that are expected to cost a significant amount of energy and then developed 
strategies to remove them. Carette et al.42 introduced HOT-PEPPER, a tool-based and reproducible approach 
for automatically correcting code smells and assessing their influence on energy consumption. They have not 
considered the pictures’ smell, which are based on samples. Additionally, they have not considered the energy 
mentioned by non-intrusive methods. Anwar et al.65 examined the influence of numerous typical code refactoring 
in Android applications on performance and energy consumption. According to the findings of the experiments, 
various code smell refactoring has a significant impact on the energy consumption of Android apps. They have 
limited their work to only three applications. As a result, there is a lack of generality of the findings. Rodríguez 
et al.68 found that removing bad smells increases battery consumption in mobile apps while ensuring crucial 
features of object-oriented design, such as maintainability and flexibility. Verdecchia et al.60 demonstrated that 
refactoring code smells can result in considerable reductions in software application energy usage.

According to the findings of Hecht et al.,11, fixing Android code smells improved UI and memory perfor-
mance. When the three Android code smells were corrected, there was a 12.4 percent increase in UI metrics 
and a 3.6 percent improvement in memory-related metrics. Dhaka et al.44 empirically investigated the impact of 
eliminating a collection of three prominent code smells, individually and in all six conceivable sequences, on the 
energy consumption behaviour of software systems. Lee et al.66 offered refactoring methods for reducing energy 
consumption and enabling software development and maintenance to meet energy requirements. They’ve also 
defined energy bad smells, such as code patterns that consume a lot of energy and refactoring strategies to get 
rid of them. Refactorings, according to Sahin et al.70, can not only influence energy utilisation but also raise or 
decrease the amount of energy needed by an application. For a group of mobile apps from the Google Play store, 
the Hao et al.71 technique can estimate energy consumption to within 10% of the ground truth. Green Miner 
is the first dedicated hardware mining software repositories test-bed, according to Hindle et al.72. The Green 
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Miner is a gadget that physically detects the energy usage of mobile devices (Android phones) and automates 
application testing and reporting to developers and academicians. Pereira et al.73 presented their research in order 
to better understand how Android apps, operating systems, hardware, and user habits affect battery life. Pinto 
et al.74 discovered a link between design decision options and settings and parallel systems’ energy consumption.

Energy measurement method
According to Saborido et al.,47, the voltmeter used in their experiment to estimate energy consumption operates 
at a frequency of only 10 Hz, which is too low to see actual method usage, potentially leading to erroneous results. 
Invoking methods, accessing fields and modifying the length of arrays were all investigated in a small-scale 
empirical study (four code snippets) by Li et al .48. The findings of this investigation corroborated the predictions, 
suggesting that such strategies can help minimise the amount of energy used by mobile apps. In comparison to 
the original colour palette, Mario Linares et al.49 proposed GEMMA (Gui Energy Multi-objective optimization 
for Android apps), a multi-objective optimization technique for generating colour palettes that produced colour 
solutions that optimised energy consumption and contrast while using consistent colours. GEMMA created 
solutions that reduce energy use while maintaining consumer acceptance.

Morales et al.50 presented EARMO, a refactoring tool that considers energy consumption in addition to code 
quality when addressing code smells in mobile apps. The study’s outcome, on the other hand, is device-specific.

For assessing the energy profile of mobile apps, Nucci et al.51 proposed a software-based tool ‘PETRA’. It was 
put to the test with 54 apps and the estimation error was found to be less than 5% of the real values collected with 
a hardware-based tool. Verdecchia et al.60 demonstrated that refactoring code smells could result in consider-
able reductions in software application energy usage in addition to the existing research on the benefits of code 
maintainability. The expanded version of the ’aDoctor’ tool was presented by Iannone et al.61 to discover and 
refactor five Android-specific energy smells.

Ribeiro et al.62 developed EcoAndroid, an Android Studio plugin that automatically adds energy patterns 
to Java source code. EcoAndroid was able to automatically refactor all the code smells detected. Cruz et al.46 
investigated eight strategies for lowering the amount of energy consumed by Android apps. They discovered that 
adding energy-aware approaches on six popular apps could extend the smartphone’s battery life. Palomba et al.24 
presented the analysis of a recent empirical study on the influence of nine Android-specific code smells on mobile 
app energy usage. They investigated if refactoring operations could support in the reduction of energy leakage.

Code smell analysis through machine learning
The apriori algorithm was used in the study by Palomba25 to generate association rules for co-occurrences of 
code smells. Fu et al.6 used it to study the evolution of different versions of a system. Khomh et al.15 adopted a 
Bayesian approach to study code smells. Gupta et al.9 study focused on detecting Android-specific code smells 
using a machine learning classifier model with detection rules. Gupta et al.77 proposed a code smell prediction 
model using entropy’s concept. An additional aspect studied by the research community has been analyzing 
the impact of code smells on maintenance activities. Lozano et al.18 proposed an approach to change history 
information to better understand the relationship between code smells and the violations of design principles 
to assess the cause of code smells. They have also highlighted the influence these smells have on how developers 
apply the inheritance mechanism. Gupta et al.77 presented a systematic literature review on Java code smells in 
which they listed various code smells with their respective detection machine learning algorithms.

The study80,84 used a hybrid Fuzzy ANP-TOPSIS approach, which gave designers and developers an equitable 
way to improve software security by rating security features and setting priorities for approaches. This article81 
improved the usability of reliability prediction models, assisting developers in lowering failure rates and enhanc-
ing software reliability by examining prior work and making recommendations for enhancements. In this study82 
developed a fuzzy logic and neural networks, the paper tackles the problem of nonlinear parameter estimation 
in software reliability methods. This research showed promising results on large datasets from Apache server 
and MyLyn application software . The study83 presented a hesitant fuzzy set systems to handle uncertainty and 
presents hesitant fuzzy multi-factor decision analysis strategies to choose the best renewable energy sources. 
The results showed that biogas and landfill gases are the best options, outperforming other techniques in terms 
of accuracy. Overall limited work focuses on minimizing the Android code smells in the literature.

The paper85,86 highlighted the growing need for long-lasting security and introduced the importance of 
security in software engineering. In order to improve security attributes like dependability, trustworthiness, and 
human trust, it suggested a prioritising strategy using the Fuzzy Analytic Hierarchy Process (Fuzzy AHP). The 
research87 emphasised the difficulty in choosing appropriate analysis methods as well as the frequency of malware 
in cyber attacks. This study compared various techniques for analysing malware in web applications using Fuzzy 
TOPSIS and Fuzzy AHP, and analyzed that Reverse Engineering is the most efficient method.

In Table1, we have presented the previous studies that have a similar goal. They are likewise examining and 
analysing the effect of Android code smells on battery usage for mobile applications. Our research is a parallel 
exploration from a different perspective. A mathematical model has been proposed in this research study to 
ensure that the results will be more accurate. As a result, it’s conceivable that some code smells affect energy 
consumption in a way that isn’t clear from just one evaluation.

It’s worth mentioning that our study aims to better understand the impact of a variety of Android-specific 
code smells. The identified contributions have tried to understand the effects of Android-specific code smells 
harming the battery life and the role of refactoring in improving the code base. The aim of our work is to sug-
gest a model that increases the efficiency of the applications and focuses on the battery consumption of Android 
applications, resulting in sustainable software development. The goal is to identify a relationship between the 
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code metrics and battery usage, thus enabling a clear understanding of code smells’ implications on power and 
energy. Table 1 shows the methodology, result/implication, and limitations of the related studies.

Research study and design
Methodology
The study’s purpose is to create a mathematical model for measuring battery utilisation using smelly code metrics 
in order to promote battery energy conservation. The goal is to establish a link between the metric distribution 

Table 1.   Related papers which have the keywords: Android code smells+ Energy + Mobile applications.

S.No. Author Title Methodology Results/implications Limitations

1 Palomba et al.
On the impact of code smells on 
the energy consumption of mobile 
applications.

The authors conducted a large-scale 
empirical study on the influence of 9 
Android-specific code smells on the 
energy consumption of 60 Android 
apps. For code smell detection, they 
have used the aDoctor tool and for 
energy estimation, the ’PETRA’ tool 
has been used.

They have concluded that the fol-
lowing are the most frequent smells: 
Leaking Thread, Member Ignoring 
Method, Slow Loop, and Data Trans-
mission Without Compression, and 
also that Refactoring smelly code is 
a crucial task for increasing energy 
efficiency.

Automatic refactoring tool is not 
mentioned. This work conducted a 
empirical study.

2 Carette et al. Investigating the energy impact of 
Android smells.

Two key tools, PAPRIKA and 
NAGA VIPER, complement the 
HOT-PEPPER technique. When 
calculating the energy metrics for 
each APK file, HOT-PEPPER makes 
use of NAGA VIPER and PAPRIKA 
to identify Android code smells. 
The most energy-efficient APK, the 
accompanying source code, and a 
list of refactorings from Paprika’s 
rectification are returned by NAGA 
VIPER after comparing these energy 
measures.

When the three code smells (Internal 
Getter/Setter, Member Ignoring 
Method, and HashMap Usage) are 
fixed, they have observed a world-
wide decrease in energy consump-
tion in one programme by 4.83 %.

They did not consider the pictures’ 
smells which are based on samples. 
Additionally, they did not consider 
energy mentioned by non-intrusive 
methods.

3 Morales et al. Earmo: An energy-aware refactoring 
approach for mobile apps.

They have offered a strategy where 
they have created refactoring 
sequences for EARMO (Energy-
Aware Refactoring Approach for 
Mobile Apps), which is based on a 
search-based method to enhance 
the design of an app. This procedure 
entails analysing a number of itera-
tive refactoring sequences as well as 
the final design in terms of design 
quality and energy usage.

In less than a minute, EARMO can 
produce refactoring suggestions and 
eliminate, on average, 84 percent of 
anti-patterns.

The result of the study is specifically 
device-dependent.

4 Anwar et al.
Evaluating the impact of code smell 
refactoring on the energy consump-
tion of Android applications.

Espresso tool is used to verify the 
accuracy of the refactored code. The 
Monsoon power monitor was then 
used to measure energy usage.

The results showed that the largest 
energy savings for refactoring the 
code smells “Duplicated code” and 
“Type Checking” were 10.8% and 
10.5 percent, respectively.

They have limited their work to only 
3 applications.

5 Hecht et al.
An Empirical Study of the Perfor-
mance Impacts of Android Code 
Smells

An empirical analysis concentrat-
ing on the effects of three Android 
performance code smells on two 
open source projects is presented in 
this paper. The frame time, number 
of delayed frames, memory usage, 
and number of garbage collection 
calls were used to assess the UI (User 
Interface) and memory performance.

The outcomes demonstrate that 
fixing these Android code smells sig-
nificantly enhances UI and memory 
performance. When the Member 
Ignoring Method is corrected, we 
specifically see improvements of up 
to 12.4% in UI metrics and up to 
3.6% in memory-related metrics.

Only one code smell was fixed. The 
majority of the tests they have used 
are non-parametric ones, which do 
not call for assuming anything about 
the distribution of the metrics.

6 Moreira et al. Overviewing the Liveness of Refac-
toring for Energy Efficiency

The available lead factor tool is 
used to examine real-time feedback 
regarding a program’s energy effi-
ciency as it is being programmed.

The code smell ’findviewbyid’ causes 
a 4.5 percent increase in energy 
usage. They found 13 different tools 
and split them into two groups: tools 
to measure energy use and tools to 
improve energy usage.

Leafactor’s liveness rating is barely 3. 
Leafactor only supports the Eclipse 
IDE, which is not the most popular 
for developing Android applications.

7 Ribeiro et al.
EcoAndroid: An Android Studio 
Plugin for Developing Energy-Effi-
cient Java Mobile Applications

The source code was refactored 
with the help of the IntelliJ Program 
Structure Interface (PSI). Its features 
also allow for the discovery of pro-
spective energy improvements.

An Android Studio plugin called 
EcoAndroid is proposed, which 
automatically applies a number of 
energy-saving techniques into Java 
source code.

The proposed EcoAndroid is a com-
plex system, so there could be bugs 
in the implementation.

8 Cruz et al.
Using Automatic Refactoring 
to Improve Energy Efficiency of 
Android Apps

Lefactor tool is applied for code 
smell detection and 140 open source 
Android apps are considered

Five energy code smells are 
identified using Lefactor tool. The 
refactoring changes were successfully 
merged into 40% of the apps.

Only five energy refactorings have 
been taken into account.

9 Şanlıalp
Energy Efficiency Analysis of Code 
Refactoring Techniques for Green 
and Sustainable Software in Portable 
Devices

The energy usage was calculated 
using Trepn Profiler and Intel 
Power Gadget, two software power 
estimators.

The suggested method has been 
successfully applied to 2048 datasets 
for desktop and mobile applications, 
demonstrating its superiority in 
refactoring technique combination 
prediction.

They have dealt with experimenta-
tion in a controlled environment.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17683  | https://doi.org/10.1038/s41598-024-67660-z

www.nature.com/scientificreports/

that affects battery usage and the metric distribution that affects refactoring rules. As a result, we’ve deduced the 
four research questions. The following are the research questions that we are going to investigate:

RQ1  “How can the software developers be helped in identifying the code smells as soon as possible?”

Typically, code smells are discovered during the maintenance phase of the SDLC (Software Development 
Life Cycle), and the refactoring process is used to eliminate them. Since refactoring is a very time-consuming 
process, having software metrics-based rules can help improve software quality. The extracted rules can help the 
developers to enhance the code quality while the software is under development.

Therefore, machine learning algorithms are applied to the metrics, which will compute the human-readable 
rules for identifying the code smells as soon as possible.

RQ2  How much do Android code smells affect the amount of battery consumed by mobile applications?

The RQ2 is formed to understand the relationship between battery consumption and Android code smells 
in mobile applications. We evaluate the smelly mobile software and the refactored software that leads to finding 
the impact of battery usage in the considered smelly applications.

RQ3  Can a relationship for estimating battery usage through software code metrics of smelly code be derived?

RQ3 is for finding a relationship between the battery consumption and the smelly code metrics reflecting 
changes after refactoring. Afterward, a mathematical model is derived for battery consumption.

RQ4  How does the Android application’s battery consumption metric correlate with the metric associated with 
refactoring rules?

The RQ4 is to determine a relationship between the metrics that are reflected in the refactoring rules and in 
the mathematical model for evaluating battery usage.

Thus establishing a correlation between battery usage and software code metrics.
Figure 1 describes the proposed approach for the research study. The preliminary step is the selection of 

Android applications from open-source repositories. The source code files have been analyzed to find Android-
specific code smells23. We manually refactored them to eliminate the code smells in all applications, as the target 
classes with smells were detected by the smell detector. We collected static code metrics (https://​www.​meteo​nic.​
com/​under​stand) for the smelly and the refactoring source code after performing the refactoring process. For 

Figure 1.   Workflow of the research study.

https://www.meteonic.com/understand
https://www.meteonic.com/understand
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the rest of this paper, the refactored code of the applications will be referred to as a refactored version, whereas 
the smelly code will be referred to as a smelly version.

Further, we applied machine learning algorithms, evaluating the best algorithm among all to formulate the 
refactoring rules. A manual analysis of the battery consumption for both smelly and refactored source code using 
the Android debug bridge (ADB)76 was the basis for determining the impact of refactoring over the smelly code. 
The ADB (Android Debug Bridge) is a command-line tool developed by Google to facilitate communication 
between computer systems and Android devices76. ADB helped to reset the battery state using Unix shell com-
mands in Android device and then connecting to RQ2.

We recorded both the code smells hampering the applications’ battery consumption and the metrics involved 
in refactoring replica rules to establish a correlation among them. Eventually, we analyzed the calculated percent-
age of battery consumption for the code smell and the metrics affected by it with a multi-linear regression model.

Context selection
The context of this study is focused on the Android platform, specifically aiming at Java-based Android appli-
cations. This section shows how the application selection, the Android code smell selection, and its detection 
were carried out.

Application selection
We based our study on open-source Android applications with Java programming language extracted from a 
global repository in GitHub. We cloned 16 software systems from the open-source repositories, totaling 4,165 
classes and 12,764 methods. The main criteria for systems selection are its occurrences and reputation on the 
GitHub platform, which is already proved by popular applications. These software are the most popular, most 
used, and most trusted by the user, thus making them a suitable choice for research study. In addition, we pri-
oritized applications exhibiting basic utility-based functionalities to target many Android users and their daily 
mobile software requirements. We prioritized applications exhibiting basic utility-based functionalities to target 
many Android users and their daily mobile software requirements. So, we have mainly considered code smell 
analysis applications such as login systems, sound recording, messaging (SMS), podcasting, planning, and social 
media in this study. The entire dataset of 16 applications contains 730 manually validated smelly instances for 
three considered code smells. Each code smell is operated upon ten applications. This work is developed at the 
class level, and the selected applications are listed in Table 2.

Code smell selection
In the academic literature, the main reference to Android code smells is the catalog of Reimann et al.29 contain-
ing 30 code smells specific to Android, which is mainly performance-oriented and covers various aspects like 
user interface and data. However, this study undertakes three code smells, namely NLMR, SL, and UC, which, 
according to their definition29, might get ignored by the developer, causing degradation in software quality. 
Moreover, these code smells in the analyzed applications play a vital role in the selection criteria. The criteria for 
selecting these three code smells is their frequent occurrences. And hence having a high impact on the applica-
tion’s performance. The selected code smells are investigated at the class level. In this regard, the detection relies 
on the already mentioned aDoctor tool 1.0 (https://​github.​com/​google/​fpalo​mba/​aDoct​or). The tool helps in the 
detection of 15 Reimann-proposed Java-based Android-specific code smells29. The three Android code smells 
considered are defined in the Reimann catalog as follows:

Table 2.   Name and description of the applications considered in this research.

Apps name Description # Classes # Files #Packages

AntennaPod Open-source podcast manager. 908 546 138

AudioRecorder Open-source sound recorder application. 416 71 18

ClipStack A tiny clipboard history manager app 137 23 3

Group05 Route map designer app 35 21 6

LoginDemo login system module app 12 19 3

MinimalTo-Do Open source to-do-list application 151 200 35

AmazeMod Material design file manager for Android 270 300 80

OmniNotes Notes application for Android 783 853 143

ResturantBot Resturant chat bot application 104 209 15

SoundRecorder Sound recorder application for Android 39 52 7

StudentForum Student forum application for blogfeeds 156 121 3

Termux Android terminal, Linux env. based app 110 133 14

Timber Material design music player 728 473 94

To-Do-List To-Do-List application 32 42 3

Ucrop Image cropping library for Android 225 298 33

UKVanhi Social group application 59 62 14

4165 3423 609

https://github.com/google/fpalomba/aDoctor
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•	 NLMR (No Low Memory Resolver): Mobile systems include a limited amount of RAM and less Virtual 
memory usage for space swapping. The ’onLowMemory()’ method in Android applications is used to kill 
processes in order to reclaim the part of memory. The absence of this overridable method terminates the 
processes to rescue any part of the memory in Android apps, and it is an indicator of a bad implementation 
of the design. The mobile properties like memory, efficiency, user experience, and stability are adversely 
impacted by NLMR code smell29.

•	 SL (Slow Loop): The conventional for loop is slow and expensive; hence an advanced version of it, ’Enhanced 
For Loop’, should be preferred in Android applications. It is believed that a hand-written counted loop is 
about 3× faster (with or without JIT) with an array list. However, for other data collections, the enhanced 
for-loop syntax will be exactly equivalent to the explicit iterator usage29.

•	 UC (Unclosed Closable): An object implementing the closable interface, if not closed, results in large memory 
consumption. Missing the close() method on objects implementing the closable interface is a bad practice29.

The detection of Android code smells relies on the ’aDoctor’ tool version 1.0. The indicated tool marks instances 
at the class level with Boolean figures help (0- the absence of code smell;1- the presence of code smell). The tool 
guarantees the developers a 100% precision, a 100% recall, and a 100% F-measure for the detection of considered 
smells by ’aDoctor’29.

Refactoring of smells
Refactoring is the process of improving software’s inherent properties by altering the external structure while 
preserving the internal logic. Martin Fowler19 was the first to write a book on the topic, with 70 refactoring tips 
and tricks. Refactoring contributes to constraining the complexity of source code and reveals a positive impact 
on the software quality18. Frequently refactored code is expected to be understandable, accurate, correct, and 
coherent in new environments. We implemented manual refactoring to eliminate the code smells by building 
and running the code on Android Studio version 3.5.3. The application’s nature confirmed the evaluation of 
successful refactoring through seamless deployment on both emulator and Android smartphones. Once the 
refactored code has been tested on Android studio, we validated again using aDoctor to detect any smell that 
could have been mistakenly left.

Battery analysis
This section explains the different parameters and techniques used to collect and analyze the application data 
and their battery usage.

Pre-requisites Setup We set up the battery analysis environment that required Android Studio with proper 
Androids SDK and JDK versions. It is vital to use the latest SDK versions, so the stable release of Android SDK 
26 following JRE 1.8.0 was preferred. Once the setup was completed, we analyzed all the applications used in 
this project with Android Studio, firstly for the smelly version and then for the refactored versions. After suc-
cessfully building the code without any compile time or run time error, we analyzed the Android Application 
Package (APK) for running phones. We applied the battery consumption analysis on the real-time devices to 
ensure a realistic scenario that the user faces, so the APK was transferred to the phones for testing purposes. 
The phones included different battery functions, which helped in effectively measuring the changes in battery 
load percentage. All the phones showed changes while testing the smelly versus the refactored application. The 
configurations of smartphones were the following ones: 

1.	 Xiaomi Redmi Note 5 Pro (Android 9KQ1.1) – 4000mAh.
2.	 Xiaomi Redmi Note 5 (Android 8.1) – 4000mAh.
3.	 Samsung M30S (Android 9) – 6000mAh.

We have also compared the battery percentage change value for both smelly and refactored versions of each 
application.

Battery usage evaluation
As discussed in the ’pre-requisites setup’ section, we successfully generated the APKs for both versions (smelly 
and refactored). These APKs run for a specific time period. It is worth mentioning that the actions performed 
for both versions of each application were almost the same, ensuring accuracy for the comparison of changes. 
Before battery analysis, it is crucial to install Android Debug Bridge (ADB) to communicate with the device 
through the command shell. However, it is not possible to just run the application and control the battery usage 
because many other applications run simultaneously, making it challenging to analyze the individual impact of 
applications on batteries. The inbuilt software of Batterystats in Android smartphones limits the percentage of 
battery usage to only one decimal unit and sometimes reflects changes for more extended running applications 
only. Therefore, we needed to use a tool named Battery Historian (https://​github.​com/​google/​batte​ry-​histo​rian)40 
to check the battery usage by each version of all the applications for respective smells.

Unlike the previously mentioned research carried out by Palomba (who automated the process and evaluated 
the results at class level23) our next step was evaluating the battery usage at the application level using Battery 
Historian by accepting the bug report text file as input and then converts the report analyzed from Battery stats 
into an HTML visualization, as shown in Fig. 2.

https://github.com/google/battery-historian
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Bug report generation
During manual tests of both versions of applications (smelly and refactored), the battery stats feature of the 
Android operating system keeps track of battery capacity both at the system and application levels. In this 
research, we examined the battery usage for the two versions of each application (smelly and refactored) at 
the package level. The analysis uses ADB commands to reset the battery profile so that the battery stats do not 
consider the system’s prior data and start when the command is executed. The ADB reset command for battery 
profile in battery stats is the following one:

ADB shell dumpsys batterystats –reset
After resetting the battery profile, we initially analyzed the two versions of applications for 5 minutes. The 

process generated bug reports for each version of each application after the successful completion of battery 
computation. This bug report is shaped as a zip file with a bug report text document that contains all the battery 
stats information.

Ethics approval
No ethical approval is required based on: a. This article does not contain any studies with animals performed by 
any of the authors. b. This article does not contain any studies with human participants or animals performed 
by any of the authors.

Result and discussion
As the research progressed, we examined various new findings and relationships for the considered Android 
code smells. The presentation of research results is arranged according to the research questions mentioned in 
section “Methodology” .

RQ1: How can the software developers be helped in identifying the code smells at the earliest?
The software developers can help in identifying the code smells by using the methodology followed by the author. 
The considered code smells, and their respective metrics dataset was extracted and then refactored. Afterward, 
the boolean identification is performed where the refactored class was labeled as “refactored True,” and the non-
smelly class was labeled as “False”. Then, we collected corresponding static software metrics and prepared the 
dataset of refactored true vs non-smelly class. Subsequently, feature selection techniques were used to extract 
the important feature metrics, and the refined dataset was input to the considered algorithms for classification. 
Then, the paired-T test was used to compare different classifiers to extract the best algorithm for rule generation. 
In the last, we have calculated the best algorithm’s performance metrics and generated the software metric-based 
rules that can help the developers for developing efficient source code.

The in-depth process followed to answer this research question is done sequentially, as described below.
We extracted the data from 4,165 classes referred to the three smells (NLMR, SL, UC) using the ’aDoctor’ 

tool. A code walk-through technique was applied to verify the spread of code smells. The smells were removed 
through manual refactoring. This includes refactoring the smelly chunk of code so that internal functionality 
does not get compromised. This also implies that only the external structure gets altered.

We applied Reimann’s refactoring methods to eliminate the smells at the class level. It is relevant to note that 
every smell has been independently refactored. The total number of smelly classes for each smell (NLMR, SL, 
and UC) were 231, 161, and 338, respectively (see Fig. 3).

The next step was the analysis of code using a static code metric analyzer tool to extract the metrics. The 
software metrics are critical for measuring processes and products, such as extensibility, accuracy, flexibility, 

Figure 2.   Graph of device resources’ battery usage.
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complexity, and other features. They are useful for estimating the quality of Android and object-oriented 
applications13,34. We used a static code analyzer tool, sciTools ’Understand (https://​scito​ols.​com/), to extract 
metrics at class and package level for Java programming language. The static metrics act as a source of authentica-
tion for predicting and anticipating the enhancement of source code. We extracted the metrics before and after 
refactoring the code. The classes that were identified as smelly and later refactored were marked with ’refactored 
true’, and others classes were marked as ’False.’ In this way, the labeled dataset has been prepared.

The next step was the machine learning analysis, as explained in the following subsection.

Machine learning approach
Once the labeled data set was ready, the next step was to identify the most significant software metrics from the 
43 metrics obtained for further evaluation. Feature selection techniques minimize the dimension of the data by 
selecting a subset of vital features. The features are chosen to preserve complete information. The feature selection 
techniques used in this work are Feature Selector: Gain Ratio and Searching Approach: Ranker.

We then applied the corrected Paired-T test12 to examine the accuracy for various machine learning rule-
based classifiers (Naive Bayes, JRip, ZeroR, OneR)4 using weka experimenter that is available in weka data-mining 
tool. Table 3 shows the detailed examination of classifiers with their accuracy as used in the study.

According to the outcome, we could observe that the JRip rule-based classifier algorithm achieved the high-
est accuracy score measure. Subsequently, the machine learning rule-based classifier JRip was validated over 
10-fold cross-validation to obtain the rules4. Then, we approximated the JRip algorithm’s effectiveness through 
various performance measures. These performance metrics, as shown in Table 4, help to measure the extent of 
the correctness of the classifiers on the given dataset. The performance metrics listed in the Table 4 will help to 
justify the effectiveness of the classifier model4:

The metric-based rules determined using the JRip algorithm would help the software developers for code 
smell detection. The rules in terms of software metrics for bad smell detection are given below:

•	 NLMR: (MaxInheritanceTree >= 2) and (PercentLackOfCohesion >= 66 ) and CountStmtExe >= 49)
•	 SL: (CountStmtExe >= 84 ) and (CountLine <= 565)
•	 UC: (MaxInheritanceTree >= 2 ) and (CountLineCodeDecl <= 9 ) and (CountStmtDecl >= 3 ) and (Sum-

CyclomaticModified <= 2 ) and (CountStmt >= 17)

Hence, RQ1 acknowledges a method that would help the developers identify the code smells as early as pos-
sible using the software source code metric threshold values, which improves the software quality of code and 
significantly impacts the software development life-cycle.

Figure 3.   Presence of code smells in the Android applications.

Table 3.   Comparison of classifiers through paired-T test.

Paired-T test results

Dataset ZeroR JRip OneR NaiveBayes

NLMR 79.86 81.06 79.56 46.09

SL 88.69 89.09 89.32 79.98

UC 92.41 92.23 92.15 51.88

https://scitools.com/
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RQ2: How much do Android code smells affect the amount of battery consumed by mobile 
applications?
Frequent battery consumption is an unpleasant experience for smartphone users. One of the reasons is the 
existence of code smells. We tried to analyze the change in battery consumption for real-life applications by 
eliminating the code smells to address RQ2.

An environment is set up to evaluate the battery consumption of refactored and smelly applications using 
the Android SDK and its toolsets. Then, we performed the battery consumption test manually (like opening the 
app, swiping left and right, login and logout, scrolling up and down), which included the basic test runs that are 
performed by the users while using an application. The reason to opt for the manual approach is to authenticate 
the results by replicating the human interaction in the real environment. Subsequently, the Shapiro–Wilk test of 
normality was applied to their distribution. Finally, a maximum-likelihood estimation was performed based on 
observed data on battery consumption, and the preserved battery percentage value was recorded.

Bug Report Analysis: The battery analysis for every application before and after refactoring the code smells 
is performed, as explained in section “Methodology”. Afterward, the results reflect the changes between both 
versions of the same application, with similar actions expressed in the form of battery usage percentage. However, 
when analyzing results from the 5-minute analysis, as explained in section “Methodology”, we observed really 
little relevant change between smelly and refactored versions of an application for the three smells. The same 
analysis was again performed for 10 minutes duration instead of 5 minutes.

Test of Normality: Shapiro Wilk Test The records are linked to the package level data for the two versions 
of each application, and the same process was repeated for each smell (NLMR, SL, and UC). However, the data 
obtained includes manual errors, too. We performed a Test of Normality16 with the data obtained from battery 
stats and package level metrics based on the two-tailed Shapiro Wilk Test27.

Shapiro–Wilk Test:- This test assesses the following hypothesis:
Null Hypothesis (H0)—The data sample belongs to a normal distribution.
Alternative Hypothesis (Ha)—The data sample doesn’t belong to a normal distribution.
A significant factor decides whether the applied tests follow the null hypothesis or the alternate hypothesis. 

For S-W tests, p-value > 0.05 follows the null hypothesis, i.e. the data sample belongs to a normal distribution, 
and if p-value < 0.05, it does not follow a normal distribution. To the notice, the obtained value of significance 
came out to be greater than 0.05, i.e., 0.282 (NLMR), 0.33 (SL), and 0.057 (UC). The p-values for every smell 
are stated in Table 5.

Robust statistics
The battery usage evaluation for each version of every application has been carried out as a manual estimation 
and possibly may have outliers. Thus, ’Maximum likelihood Estimation’ (M- M-estimation) was applied to help 
identify outliers or extreme observations and estimate the value of battery consumption based on observed 
data. However, M-estimators appear to dominate the field due to their generality, high breakdown point, and 
efficiency12. The influence function of an M-estimator is proportional to ψ (explained in further section 4.2.2), 
inferring that the properties of such an estimator like rejection point, gross-error sensitivity or local – shift 
sensitivity can be derived12.

Table 4.   Performance measures of JRip algorithm.

Bad smells  TP rate FP rate  Precision Recall  F-Measure Kappa statistics Accuracy

NLMR

0.938 0.615 0.858 0.938 0.896

3[6]*0.3746 3[6]*0.8260.385 0.062 0.61 0.385 0.472

0.827 0.503 0.808 0.827 0.811

SL

0.984 0.839 0.902 0.984 0.941

3[6]*0.2116 3[6]*0.8910.161 0.016 0.565 0.161 0.251

0.891 0.745 0.864 0.891 0.863

UC

0.99 0.858 0.934 0.99 0.961

4[8]*0.1987 4[8]*0.9250.142 0.01 0.533 0.142 0.224

0.925 0.794 0.903 0.925 0.905

Table 5.   Test of normality.

Shapiro–Wilk

Battery change Statistic df Sig.

NLMR 0.910 10 0.282

SL 0.917 10 0.330

UC 0.849 10 0.057
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Choice of ψ:
The choice of the ψ function is not critical to gaining a good robust estimate, and many choices will give similar 
results that offer great improvements, in terms of efficiency and bias, over classical estimates in the presence of 
outliers.

The most used robust estimators are Huber’s M-estimator, Hampel estimator, and Tukey’s biweight estima-
tor. After studying various selection functions, Tukey’s biweight function is selected as a study recommends 
the biweight function with the efficiency at the normal set to 85% theoretically32. The biweight correlation is 
calculated as follows:

The objective function of biweight is:

And ψ - function,

The weighing constant of Tukey Biweight is 4.685. With Tukey’s biweight function, the analysis of data values 
estimated as the change between the smelly and refactored version is taken as the sample set. The maximum 
likelihood value is obtained, and robust statistics is applied to determine the range in which the distribution of 
population lies with a 95% confidence level. The lower bound and the upper bound of the 95% confidence level, 
along with the skewness and kurtosis, is described in Table 6.

Tukey’s biweight16 analysis produced a maximum likelihood value for each smell, which led to a battery per-
centage conservation in each smell after refactoring. This result ensures that, depending on the functionality of 
the application, the refactoring process will undoubtedly reduce battery usage by a specific percentage.

The expected values obtained using M-estimation and the observed values of battery consumption of both 
versions of all the applications have been graphically plotted using the Q–Q plots in Fig. 4 for all the smells.

Here, the Q–Q plot represents a linear relationship between the distribution of expected and observed values 
of battery consumption. Figure 4 shows the Q–Q plots for the expected normal and observed values for NLMR, 
SL, and UC. Figure 5 shows the box plot graphs referring to the battery percentage changes in the respective 
smells-the box plot summarizes numerical data groups through their quarterlies.

This highlights that refactoring code smells in Android helps in energy conservation and motivates us to 
build a battery consumption model. Thus, the effect of refactoring on battery conservation for ten applications 
for each smell by Tukey Biweight M- estimation is answering RQ2. These values are represented as the maximum 
likelihood value, examined independently for each smell. Hence, it can be inferred that, through the analysis of 
10 applications out of 16, some percentage of battery is preserved when a smell is refactored. So, the summary 
for all three code smells is given below:

For NLMR code smell, 38.4 × 10−3% battery is conserved.
For SL code smell, 33.36 × 10−3% is conserved.
For UC code smell, 29.57 × 10−3% is conserved.

RQ3: Can a mathematical model be derived for estimating battery usage through software 
code metrics of smelly code?
RQ3 aims to devise a relationship between the battery data obtained from the manual real-time-based running of 
smelly and refactored applications and the changes in the applications observed through the static code metrics.

Pre‑modelling phase
As discussed in section 4.1, RQ1, a method for refactoring process to reduce the amount of battery consumption 
in real-time scenarios has been discussed. Similarly, we need to scrutinize a static code analyzer tool (Scitools 
Understand, as mentioned in previous sections) to determine whether the source code metrics reflect the changes 
between the refactored code and the smelly code for each smell. The tool analyzed each code, returning up to 

(1)Rij = Sij/(
√

(SiiSjj))

(2)ρ(x) =
1

6
[1− (1− u2)

3
]

(3)ψ(u) = u(1− u2 )
2

Table 6.   Robust statistics data of Tukey biweight function for NLMR, SL, and UC smell.

 Robust Statistics Attributes  NLMR SL UC

(Note: 95% Confidence Level)

 Lower Bound 22.58 × 103 18.05 × 103 20.5 × 103

 Upper Bound 73.42 × 103 51.95 × 103 71.5 × 103

 Mean 48 × 103 35 × 103 46 × 103*

 Standard Dev. 35.528 23.688 35.653

 Skewness 0.967 0.627 1.164

 Kurtosis 0.445 −0.342 0.494
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40 metrics (https://​www.​meteo​nic.​com/​under​stand) for Java files at the class level for all three smells (NLMR, 
SL, UC) individually for the 10 applications out of 16. While investigating the two datasets for each smell, the 
refactoring involves changes in the static code metrics. These changes have been observed for the majority of 
the data at the class level. Table 7 shows the percentage change for metrics inspected for NLMR, SL, and UC 
smells, respectively.

After working with RQ1 and RQ2 as in sections 4.1 and 4.2, respectively, we can state the following two facts.
D1: Refactoring smells caused significant changes in static metrics in a percentage of classes, as shown in 

Table 7. It is worth noticing that NLMR and SL reflected a relevant number of changes; however, UC smell reflects 
only 2% of the total change.

D2: The smelly and the refactored version of each application showed differences in battery usage values 
(tested with the Tukey biweight test) during the 10-minute run. The refactoring process implies a significant 
change in battery consumption, which was statistically altered to minimize the error while estimating the battery 
levels through Batterystats. The maximum likelihood value was 38.4 × 10−3% (NLMR), 33.36 × 10−3% (SL), and 
29.57 × 10−3% (UC) as obtained in RQ2.

Figure 4.   Q–Q plot for the expected normal and observed values for considered code smells.

Figure 5.   Box plot for the battery percentage change for considered code smells.

https://www.meteonic.com/understand
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These two facts suggest that the changes in static code metrics can also impact the battery consumption 
levels of Android smartphones. This motivates us to explore a relationship between the above two facts using a 
multi-linear regression model. Considering the maximum likelihood value, a calculated refactored value was 
obtained to remove the inequality (as discussed in D2) and gain consistency in the results to create the best-fit 
model for predicting the battery usage:

Calculated Refactored Battery Value = Observed Smelly Battery Value − Maximum Likelihood Value

Multi‑linear regression analysis
The independent variables in the multi-linear regression model emerged from the metrics for both the versions 
(smelly and refactored) of all the package-level applications. The dependent variable will be the battery usage of 
the concerned package. As battery historian data are linked to packages, code metrics at the package level are 
considered for the study. Further, multi-linear regression is applied for each code smell, where we have divided 
the dataset of 10 applications into training (70%) and testing (30%).

NLMR regression model: It is preferred as there should be collinearity between the independent and the 
dependent variable for successful regression analysis. However, there should not be multicollinearity between 
the independent variables themselves. There are two independent variables (CountLineCodeExe, CountDe-
clMethodPublic) used for modeling the NLMR smell. A total number of 24 metrics reflected changes after 
refactoring CountLineCodeExe and CountDeclMethodPublic with 7.6 % and 7.0% of changes in metric values 
were selected. This percentage accounts for 87 and 80 classes, respectively. These metrics were not too highly 
correlated with each other. The correlation coefficient was 0.606, and the significance value was 0.005 (Two-tailed 
Pearson significance).

(1)	 Correlation matrix: The correlation coefficients among the independent variables were 0.606, which is 
smaller than 1 (significant) using Pearson bi-variate correlation.

(2)	 Tolerance (T): It regulates one independent variable’s influence on other independent variables. T<0.1 is 
considered almost a perfect linear combination of the independent variables. The tolerance factor was:

	   CountLineCodeExe: 0.632 and CountDecl-MethodPublic: 0.632.
(3)	 Variance Inflation Factor (VIF): It is defined as the reciprocal of the tolerance value. If VIF > 5, it indicates 

the slight presence of multicollinearity, whereas if VIF > 10, 3 multicollinearity certainly exists among 
the variables. The VIF for NLMR modeling is described as CountLineCodeExe: 1.582 and CountDecl-
MethodPublic: 1.582. The information extracted from the NLMR multi-linear regression was employed 
to generate the equation of battery consumption affected by software metrics. The equation obtained from 
the multi-linear regression model for NLMR is:

where

•	 x1 = CountDeclMethodPublic
•	 x2= CountLineCodeExe
•	 β = 107.718
•	 Y = Battery consumption ( 103)

	   By obtaining the significance value for the correlation matrix, tolerance, and the VIF value, the model 
designed gives the following information: R = 0.872, which describes the relationship between the depend-
ent and the independent variable, and R-Square = 0.76, a coefficient of determination of how close the data 
are to the fitted regression line as described in Table 8.

	   All the variables and constants used in the model are significant, as shown in Table 9.

The graphical representation of regression residuals and normal p–p plot of the regression residual is 
described in Fig. 6. The p–p plot compares the expected cumulative distribution function (CDF) of the normal 
distribution to the observed CDF of the standard residual. The standardized regression residuals represent the 
measure of the strength of the difference between observed and expected values.

SL regression model: The same process done for NLMR is repeated for SL smell. A total number of 32 met-
rics reflected changes after refactoring out of which CountLineCode and CountDeclInstanceVariable metrics 
with 10.5% and 7.3% changes respectively were selected. This percentage accounts for 149 and 104 classes, 
respectively. The independent variables i.e., the metrics considered here are CountLineCode (10.5%) and 

(4)Y = 0.893× x1+ (−0.052)× x2+ β

Table 7.   Metric changes quantitative analysis.

Quantitative Analysis Factors for Metric Changes NLMR SL UC

No. of classes compared (Smelly class which were further refactored) 1147 1424 4452

Classes containing mismatches (Classes whose metrics reflect changes before and after refactoring) 108 248 96

% Changes 9.4% 17.4% 2.2%
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CountDeclInstanceVariable (7.3%). They represent a substantial correlation of 0.424. The dependent variable, 
on the other hand, the battery usage data, has a good correlation with the metrics used. The multi-collinearity 
criteria obtained for SL: 

(1)	 Correlation Matrix: Pearson’s Bivariate correlation – 0.424 (two-tailed) .
(2)	 Tolerance (T): CountLineCode:0.357 and CountDeclInstanceVariable:0.357.
(3)	 Variance Inflation Factor (VIF): CountLineCode:2.8 and CountDeclInstanceVariable:2.8.

Table 8.   Proposed model summary for NLMR code smell.

NLMR model summary Values

R 0.872

R-Square 0.76

Adjusted R-square 0.732

Standard error of the estimate 42.2809

R-square change 0.76

F change 26.924

df1 2

df2 17

Sig. F change 0

Table 9.   NLMR code smell coefficient with their statistics.

Independent variables

Unstandardized 
coeff.

Standardized 
coeff.

Beta Std. error Beta t Significance Tolerance VIF

(Constant) 107.718 15.425 6.983 0

CountDeclMethodPublic 0.893 0.123 1.086 7.269 0 0.632 1.582

CountLineCodeExe −0.052 0.01 −0.778 −5.206 0 0.632 1.582

Figure 6.   Normal P–P plot and regression standardized residual plot for NLMR smell.
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The final model obtained from the above analysis is stated below:

where

•	 z1 = CountDeclInstanceVariable
•	 z2= CountLineCode
•	 α = 111.665
•	 Y = Battery consumption ( 103)

By obtaining the significance value for the correlation matrix, tolerance, and the VIF value, the model designed 
gives the following information: R = 0.817 represents the relationship between the independent variable and 
the dependent variable, and R-Square = 0.668, a coefficient of determination of how close the data are to the 
fitted regression line as described in Table 10. All the variables and constants used in the model are significant, 
as depicted in Table 11. The graphical representation of regression residuals and normal p–p plot of regression 
residuals for SL smell are described in Fig. 7.

Unlike NLMR and SL, which reflect notable changes, UC smell reflects only 2% of the total metric composi-
tion change analysis. So, regression modelling has not been performed on UC smell as it is considered irrelevant 
for battery consumption.

Therefore, we have proposed two models for their respective smells, i.e., NLMR and SL, stating that the larger 
the R-square value, the better the regression model fits the predicted value in RQ3.

RQ4: How does the metric distribution affecting the Android application’s battery consump‑
tion correlate to the measured distribution associated with refactoring rules?
The goal linked to RQ4 is to describe the correlation between the metric distribution affecting battery consump-
tion and the metric distribution associated with refactoring rules. As in section 4.3, RQ3, we found a relationship 
between battery consumption and metrics. In RQ1, each smell is tested for refactoring rules from some selected 
metrics; these two statements suggest a strong association between the two types of metric distributions. We 
explored the correlations between the metrics for the 3 smells: SL, NLMR, and UC.

Table 7 shows that there is a small variation between smelly and refactored versions with respect to software 
metrics. Hence, a linear model for UC smell could not be devised.

The observation of the data for metric distribution revealed a monotonic relationship between the metrics 
affecting battery consumption and metrics associated with refactoring rules. We have used Spearman’s correla-
tion to test the degree of a monotonic relationship between the metric distributions. The Spearman rank-order 
correlation coefficient is a non-parametric measure of the direction of the association and the strength that exists 
between two variables measured on at least an ordinal scale. In a sample, it is denoted as follows:

(5)Y = 2.13× z1+ (−0.038)× z2+ α

Table 10.   Summary of proposed model for SL code smell.

SL Model Summary Values

R 0.817

R-square 0.668

Adjusted R-square 0.628

Standard error of the estimate 92.38859

R-square change 0.668

F change 17.067

df1 2

df2 17

Sig. F change 0

Table 11.   SL code smell coefficient with their statistics.

Independent variables

Unstandardized 
coeff.

Standardized 
coeff.

Beta Std. error Beta t Significance Tolerance VIF

(Constant) 111.665 37.439 2.983 0.008

CountLineCode −0.038 0.017 −0.534 −2.28 0.036 0.357 2.8

CountDeclInstanceVariable 2.13 0.422 1.18 5.043 0 0.357 2.8
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It is worth noting that, unlike Pearson’s correlation, there is no requirement for normality of data, and hence, it 
is a non-parametric statistic.

The following formula is used to calculate the Spearman rank correlation:

where

•	 ρ = Spearman rank correlation
•	 di = the difference between the ranks of corresponding variables
•	 n = number of observations

A correlation value that is closer to +1 or −1 depicts a strong positive or a negative relationship, respectively.

A correlation value closer to +1 or −1 depicts a strong positive or negative relationship respectively.
The following results appear from the NLMR dataset’s estimation: CountStmtExe depicts a strong relation 

of 0.857 with CountDeclMethodPublic. Subsequently, PercetLackOfCohesion depicts a strong relation of 0.628 
with CountDeclMethodPublic, as shown in Table 12.

From the estimation of the SL dataset: it shows a strong relation of 0.857 with CountDeclMethodPublic, 
CountLine shows a strong relation of 0.989 with CountLineCode, CountStmtExe shows a strong relation of 0.615 

(6)−1 ≤ ρ ≤ 1

(7)ρ = 1−
6
∑

d2i
n
(

n2 − 1
)

Figure 7.   Normal P–P plot and regression standardized residual plot for SL smell.

Table 12.   Spearsman correlation between replicated rule metric and metric affecting battery for NLMR smell.

Battery model metric (Note: Correlation Coefficient values are calculated at .01 level significance)

Ref.Method Metric CountDeclMethodPublic CountLineCode

MaxInheritanceTree
Correlation Coefficient .532 −.098

Sig. (2-tailed) 0.000 0.001

PercentLackOfCohesion
Correlation Coefficient .621 .526

Sig. (2-tailed) 0.000 0.000

CountStmtExe

Correlation Coefficient .857 .427

Sig. (2-tailed) 0.000 0.000

N 1147 1147
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with CountDeclInstanceVariable as shown in Table 13. The following results appear from the estimation of UC 
dataset: SumCyclomaticModified shows a firm relation of 0.84 with CountStmtExe, and MaxInheritanceTree 
shows a strong relation of 0.722 with CountClassCoupled, as shown in Table 14. Thus, the metric distribution 
affecting the Android application’s battery consumption highly correlates to the metric distribution associated 
with refactoring rules. This infers a strong relationship between the refactoring rules and the battery usage model.

The following results were obtained from the estimation of the SL dataset. shows a strong relationship of 0.857 
with CountDeclMethodPublic CountLine shows a strong relationship of 0.989 with CountLineode CountStmtExe 
shows a strong relationship of 0.615 with CountDeclInstanceVariable

A comparative analysis detailing the key differences between the proposed study and the previously published 
research articles that are closely related can be reviewed in the Table 15. In this table two referenced research 
articles are chosen, highlighting their similarities and differences in terms of research focus and methodology. 
The presented research differs from previous publications mostly due to the significant contributions made to 
the mathematical model and correlation factor between software metrics and battery consumption.

Threats to validity
In the context of this study, code smell analysis is performed using the ’aDoctor’ tool proposed by Palomba 
et al.23. The ’aDoctor’ tool detects the absence or the presence of the smells at the class level but not the amount 
of presence of code smells in a class. Also, we can’t overlook the fact that ’aDoctor’ excludes some smells and 
that other existing tools have different threshold values for bad smells, which could impact the findings on bad 
smells. Only the Android software data set is allowed by the model shown here.

Table 13.   Spearsman correlation between replicated rule metric and metric affecting battery for SL smell.

Ref replica metric

Battery usage metric (Note: Correlation Coefficient values are calculated at .01 level 
significance)

CountLineCode CountDeclInstanceVariable

CountStmtExe
Correlation Coefficient .329 .615

Sig. (2-tailed) 0.000 0.000

CountLine

Correlation Coefficient .989 .461

Sig. (2-tailed) 0.000 0.000

N 1424 1424

Table 14.   Spearsman correlation between replicated rule metric and metric affecting battery for UC smell.

UC ref replica metric

UC ref changed metric (Note: 
Correlation Coefficient values 
are calculated at .01 level 
significance)

MaxNesting CountStmtExe CountClassCoupled

MaxInheritanceTree
Correlation Coefficient .425 .713 .722

Sig. (2-tailed) 0.000 0.000 0.000

CountLineCodeDecl
Correlation Coefficient −0.002 −.215 −.260

Sig. (2-tailed) 0.916 0.000 0.000

CountStmtDecl
Correlation Coefficient 0.001 −.204 −.243

Sig. (2-tailed) 0.921 0.000 0.000

SumCyclomaticModified
Correlation Coefficient .758 .840 .700

Sig. (2-tailed) 0.000 0.000 0.000

CountStmt

Correlation Coefficient .234 .087 0.022

Sig. (2-tailed) 0.000 0.000 0.133

N 4452 4452 4452

Table 15.   A Comparison between closely related existing literature with presented research.

Android Smells observation 
with mobile applications

Energy Consumption of 
mobile apps Maths model

S/W metrics distribution 
changes with Refactoring

Correlation for S/W 
metrics and Battery 
Consumption Apps for Industry

Presented Study Yes Yes Yes Yes Yes Yes

Palomba et al.24 Yes Yes No No No Yes

Pereira et al.73 Yes Yes No No No Yes
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The term “external validity” refers to how generalized a conclusion represents. Only Android software is 
allowed by the model presented here. The model must also be implemented for additional languages in order 
for the results to be generalized.

Although a regression model is proposed for mobile battery usage through software code metrics of smelly 
code, different statistical methodologies can lead in a different direction.

Moreover, NLMR, SL, and UC’s refactoring as a manual process might escalate the code’s complexity. In 
addition, the manual battery analysis might indicate a human error while running the smelly and the refactored 
applications in terms of performed actions.

Furthermore, Battery Historian only provides a rough approximation of the energy consumption and only 
roughly attributes this to the app. Therefore, there is a measurement error introduced by this methodology.

Other real time challenges that we have faced at the time of implementation are resource utilization, CPU 
stress, battery health, mobile use, and the temperature impact on hardware and battery, may impact the battery 
consumption. However, this study focuses on code smells, which is one of the crucial factors in the software 
development process.

Conclusion and future scope
This research aims to analyze the prominent consequences of the Android code smells on the power consump-
tion by Android applications on smartphones. The Android applications have been fixed from code smells 
through refactoring methods. Moreover, it has also been observed that the software metrics of Android applica-
tions play a vital role in inspecting them for refactoring. Furthermore, the difference in battery consumption 
observed between the smelly and the refactored applications verifies the positive impact on energy preservation. 
The conserved energy can enhance the battery life and can be reused for other operations, thus promoting an 
approach to green energy.

This work has also been capable of devising a mathematical model for the three considered smells, which 
might help developers estimate the amount of battery usage before deploying the application. This technique 
would surely help Android Java developers optimize performance at the application level and build efficient, 
time-saving, optimized code even from the initial phases of the development cycle.

This research analyses the impact of three Android-specific code smells, namely NLMR, SL, and UC, which 
the developers may easily ignore and can hamper Android smartphones’ performance. The research involved the 
refactoring of 16 applications containing smells with 4166 classes, which were also manually analyzed for battery 
consumption. We statistically evaluated the percentage composition of battery usage of smells using maximum 
likelihood values, which helped in maintaining the consistency of data for linear regression model prediction. 
The data analysis enabled us to reach the following conclusions:

Conclusion 1: The analysis of software code metrics when refactoring code smells enabled a new approach 
through refactoring rules derived from rule-based machine learning classifiers. This approach reached a promi-
nent precision against the JRip rule-based classifier with values of 80.8%, 86.4%, and 90.3% for NLMR, SL, and 
UC, respectively.

Conclusion 2: The refactoring of considered code smells also ensured a comparative decrease in battery 
consumption when tested at the package level. This was statistically corrected through the maximum likelihood 
value, expressed as the expected refactored battery value. These values represented the battery conservation for 
the considered smells: 38.4 × 10−3% (NLMR), 33.36 × 10−3% (SL), 29.57 × 10−3% (UC). The estimated value of 
battery load and the software metrics of each version of applications at the package level were then tested for 
linear regression modelling and drafted as an equation only for NLMR and SL. However, UC was not considered 
for modelling due to its minor observed significant change between the smelly and the refactored version of all 
the applications. NLMR and SL were modelled at a good significance rate with all the factors (Tolerance and 
Variance Inflation Factor) mentioned in RQ3 (NLMR and SL) modelling. These two models (NLMR and SL) can 
then be used to check the battery estimations and provide the concerned software metric values. The R-Square 
value for the NLMR model accounts for 76% fitness, whereas SL is 66.8%.

Conclusion 3: It was possible to devise a relationship between the metrics impacted by the refactoring rules 
(as proposed in RQ1) and the metric distribution of models (as proposed in RQ3) for each smell using Spearman 
correlation. This leads to the verification of a strong relationship between the proposed refactoring method and 
the battery-metric model that affects the Android applications. The three smells showed a significant correlation 
between the respective metrics of the battery model and the refactored rules, stated in Table 11,12,13.

The above-stated conclusions can be further analyzed in the future for different performance measures with 
different smells impacting them. In accordance with the research that was presented, Android code smells affect 
how long a phone’s battery lasts. Only three smells have been taken into consideration here; other smells can be 
examined for improved battery saving.Also, the battery estimations can be analyzed for various other smells of 
other commonly used languages. Furthermore, this analysis can be carried out on desktop applications to enhance 
the energy performance of personal desktop computers, reduce the battery consumption of portable computers, 
and improve software quality and maintainability. This work can be extended to include the parameters related to 
the battery. We also plan to validate the model on the other applications with different programming languages 
software as well. There is still opportunity to conduct more research on iOS-enabled phones, especially in con-
sideration of the pervasive problem of high battery consumption in modern world.

Data availability
The data is available at* https://​bitbu​cket.​org/​sumit​3sep/​raw_​data/​src/​master/ *Please ensure an underscore 
between raw and data while using this link online. Sometimes, the underscore disappears when clicking the link.

https://bitbucket.org/sumit3sep/raw_data/src/master/
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