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A B S T R A C T   

The role of prosumers who are consumers who produce, store, and consume energy is vital to the uptake of 
renewable energies in Local Energy Communities (LEC). However, the integration of prosumers in the smart grid 
to facilitate bidirectional flows of energy and information depends on intelligent operations of energy systems 
and flexible structures of the existing energy markets. But existing energy trading mechanisms are faced with 
issues of trust, privacy, security, and energy pricing determination. Also, there are fewer studies based on a 
citizen-centric prosumer approach. Thus, there is need to provide reliable solutions that addresses the afore-
mentioned challenges faced by prosumers in LEC. Advancements in disruptive technologies, such as Distributed 
Ledger Technologies (DLT), Artificial Intelligence (AI), and the Internet of Things (IoT) have transformed a broad 
spectrum of intelligent systems in smart cities. Therefore, this study examines the integration of AI and IoT as 
AIoT and DLT towards a citizen-centric prosumer approach for decentralized energy markets trading. Addi-
tionally, this article develops an architectural model for energy prosumption in LEC using design science 
approach based on a user-centred design method that shows a possible implementation concept to support en-
ergy sharing and trading in LEC. The architectural model supports trust, data privacy, security, and energy 
pricing determination using AI and smart contracts to provides real-time energy trading monitoring, easy access, 
control, and immutable logs to unearth underlying energy demand and supply patterns thereby supporting 
citizen-centric prosumer approach. Finally, a use case scenario of DLT and AIoT for prosumption operations is 
presented.   

1. Introduction 

Governments around the world aims at achieving a net zero emission 
by increasing the production and consumption of renewable energy 
sources in addition to changing the behaviors of citizens to foster the 
cost-effective balancing of energy supply and demand (Hoppe et al., 
2015; Parag & Sovacool, 2016). These goals can be achieved with the 
advancement of information and control infrastructures of the smart 
grids which supports interoperability among different stakeholders in 
Local Energy Communities (LEC) such as prosumers (Bhat et al., 2022; 
Hua et al., 2022). Nowadays, the use of Information and Communication 
Technologies (ICT) to foster the production and consumption of 
Renewable Energy Sources (RESs) is transforming the energy industry 
across the world (Zhang et al., 2021). Moreover, energy prosumption is 
becoming popular because electricity is produced from RESs from the 
consumers' side (referred to as prosumers) (Anthony et al., 2019). 
However, due to the irregular nature of RESs, some prosumers are 

incapable of satisfying their energy demands while some have surplus 
energy. Energy prosumption enables small-scale energy producers to 
generate, store, share energy via a decentralized approach using an 
energy trading mechanism (Anthony et al., 2019; Samuel et al., 2022). A 
typical energy prosumption and trading mechanism offers a platform 
where supply and demand of energy are possible by decreasing high 
production costs of prosumers and organizations. Presently, decentral-
ized approach such as peer-to-peer (P2P) energy sharing is being 
adopted to share energy among peers residing in the same neighborhood 
(Kyriakou & Kanellos, 2023). 

But existing energy prosumption and trading mechanisms are faced 
with issues of trust, privacy, security, and energy pricing determination. 
Therefore, there is need to provide efficient and effective solutions that 
addresses data security, privacy, resource management and price 
determination challenges faced by prosumers in LEC (Parag & Sovacool, 
2016; Samuel et al., 2022). Nowadays disruptive technologies such as 
DLT, AI and IoT are being adopted in the energy sector. In the energy 
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sector the convergence of these technologies can drive the advancement 
of autonomous business models to foster energy sharing and trading in 
local energy communities. For example, DLT can extract information 
from volumes of data generated by IoT devices such as energy meters 
and smart sensors. Presently, the interconnectedness between these 
technologies is often overlooked, and these technologies are separately 
adopted (Burkhardt et al., 2019). However, the convergence of AI, IoT, 
and DLT can improve future energy systems in LEC. For instance, by 
using IoT devices such as smart sensors and energy meters deployed by 
citizens data can be produced and collected, whereas DLT sets up the 
rules and provides peer-to-peer infrastructure needed to support energy 
trading and of engagement, while AI optimizes energy demand and 
supply by predicting the production and consumption of flexibilities 
(Sandner et al., 2020). Moreover, DLT supports a trustful, governed asset 
exchange between trustless entities, whereas AI enables decision making 
in an autonomous, yet artificial manner DLT employs smart contracts to 
communicate with smart IoT devices and sensors without having any 
central authority. These technologies can be exploited to achieve their 
full potential when combined (Ahmed et al., 2022). 

The integration of AI with IoT is termed as AIoT (Gulati et al., 2020). 
The convergence of AIoT and DLT can improve energy prosumption 
services in LEC. As DLT makes AIoT more autonomous and trustworthy, 
and AIoT can guide DLT towards intelligence (Hua et al., 2022). Inte-
grating DLT and AI synergistically improves the potentials of both 
technologies to create innovative solutions to promote sustainable en-
ergy systems in LEC. AIoT and DLT are one of the key technologies 
enabling the next wave of the digitalization in the society (Sandner 
et al., 2020). While prior studies have examined different use cases for 
integrating DLT, AI, and IoT, the convergence of these technologies to 
support intelligent energy management in LEC has only been addressed 
in the conceptual level. It's still unclear how the integration of these 
technologies could be deployed in a robust way for citizen-centric pro-
sumer approach. Thus, this article aims to examine the following 
research questions.  

• What is the significance of integrating AI, IoT and DLT to improve 
prosumption services in local energy communities? 

• How can the convergence of AIoT and DLT support trust, data se-
curity, privacy, and price determination in local energy 
communities?  

• How to support a citizen-centric prosumption operations in local 
energy communities? 

Accordingly, the objective of this article is to investigate how to 
incorporate AIoT and DLT in LEC for supporting prosumers to partici-
pate in decentralized power markets. This study aims to explore how the 
deployment of AIoT and DLT in energy prosumption can help in man-
aging complexity, enabling automation, and scalability, by leveraging 
data produced from distributed energy infrastructure in real time. 
Additionally, this article develops an architectural model for energy 
prosumption in LEC to support optimal energy management, and control 
of energy systems in LEC thereby supporting citizen-centric presumption 
grounded on design science approach based on a user-centred design 
method. The architectural model was developed based on the smart grid 
reference architecture developed by CEN-CENELEC-ETSI (2012) and the 
architecture for interoperability context setting framework (GWAC, 
2008). The architecture utilizes AI to analyze, process, and generate 
insights from data generated from smart IoT devices and sensors. It also 
uses DLT to support the monitoring and tracking of the devices con-
nected to the internet via different communication protocols. More 
importantly, the architectural model uses AIoT to unearth underlying 
energy demand and supply patterns thereby providing useful informa-
tion for effective decision making for prosumers in LEC. Evidence from 
this study depicts how the combination of AIoT and DLT can improves 
the explainability and certifiability needed for commercial realization of 
energy trading in LEC. Further findings also present a use case scenario 

of prosumers that intents to securely share, and trade renewable energy 
enabled by AIoT and DLT technology. The rest of this article is organized 
as follows: Section 2 introduces the literature review; Section 3 is the 
research methodology employed. Section 4 is the findings. Section 5 
draws the discussion and research and practical implication, and lastly 
Section 6 is the conclusion of this article. 

2. Literature review 

This section reviews related works of local energy communities in 
Norway and other regions. Until now, significant work has been done 
related to LEC in Norway and across other regions in the world. One of 
these works is the study conducted by Lindberg and Inderberg (2023) 
explored the existence of energy injustices within the Norwegian solar 
policy mix from the lens of collective prosuming. The authors studied 
the policy mix for rooftop PV solar energy producers in Norway from an 
energy justice lens, based on housing cooperatives and multi-apartment 
buildings likened as citizen energy communities and renewable energy 
communities. Another study by Wethal (2023) investigated power out-
ages or blackouts in rural Norwegian households. The study aimed to use 
the perspectives of households to identify the consequences of power 
blackouts, and show how disruption affects relations between practices, 
infrastructures, providers, and customers. Berg and Löschenbrand 
(2022) presented a data set of an energy community based on a Nor-
wegian context which includes residential energy consumption, data 
produced from smart meter measurements categorized into consumer 
groups, appliance consumption data, wholesale electricity prices, EV 
data on charging patterns, and simulated photovoltaic energy genera-
tion based on irradiance and temperature. 

Additionally, Bhat et al. (2022) explored energy autarky and self- 
consumption in energy communities. The study carried out an evalua-
tion and simulation of scalable ‘energy cells’ in Norway, Austria, and 
Belgium. Also, suggestions for the development of local and renewable 
energy cell infrastructure were provided. Eikeland et al. (2022) exam-
ined contributing factors that leads to interruptions within the energy 
grid based on a case from Northern Norway. The authors collected data 
on the topography of the area, grid topology, the historical energy 
consumption/production data, and the historical meteorological data. 
After which they employed statistical and machine-learning techniques 
to forecast the occurrence of failures. Heilmann et al. (2022) presented a 
trading algorithm to represent bidding conditions in the competitive 
wholesale market of energy communities in Norway and England. The 
study provided a concrete understanding of how energy sharing in local 
electricity markets should be consolidated within a local wholesale 
market or via a centralized sharing. McElhinney et al. (2022) carried out 
a comparative study to fully understand how effectiveness of existing 
models deployed in energy communities and further to identify how 
they operate in Norway and France. The authors aimed to enable energy 
consumers to be empowered by contributing individually or commu-
nally in the energy transition. 

Likewise, Anthony Jnr et al. (2020b) employed Application Pro-
gramming Interface (API) to a design a layered architecture to help 
smart cities achieve a sustainable energy prosumption services. Evi-
dence from the study revealed that developed approach helps for district 
energy management in presenting support decision-making and energy 
information intelligence on energy sustainability in enabling pro-
sumption operations. Backe et al. (2021) carried out a case study to 
examine sector coupling between the central power system and LEC in 
Norway based on heat usage in buildings and charging of Electric Ve-
hicles (EV) within the European power system. The study further 
designed a framework to assess the long-term investments in relation to 
uncertain short-term operations of nation-wide aggregated assets. An-
thony et al. (2019) designed a big data-driven architecture to accelerate 
energy prosumption service within smart community districts. Also, the 
architecture designed can be employed as a guide to help policy makers 
and municipalities in initiating approach for energy data analytics in 
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smart community districts in making decisions for energy prosumption 
planning. Walnum et al. (2019) identified potential gaps between 
practice and vision and further designed a scenario calculator for 
assessing smart energy communities in Norway with link that provides 
detailed measures associated to the overall climate goals. Baer and 
Nielsen (2018) identified the challenges and best practices needed for 
stakeholders' collaboration and planning the actualization of a smart 
energy communities as well as zero emission neighborhoods based on 
evidence from seven Norwegian municipalities. 

Furthermore, considering other regions Bielig et al. (2022) investi-
gated the social impact of energy communities across Europe. The study 
analyzed the theoretical background of the social impact connected to 
energy communities and identified the underlying concepts of energy 
democracy, social capital, community empowerment, and energy jus-
tice. Lode et al. (2022) provided a transition multi-level perspective on 
energy communities and identified the factors for the emergence of 
energy communities. Findings from the study highlighted existing 
research gap and recommended potential pathways for future research 
to accelerate the diffusion of energy communities. Magnusson (2022) 
investigated the development of citizen involvement within community 
energy towards the Swedish energy transition. The author assessed un-
derstanding stakeholder engagement and community acceptance in 
community energy programs to support policy regarding national en-
ergy systems. Cunha et al. (2021) studied the society transitioning to a 
low carbon economy through energy communities based on evidence 
from Brazil and Italy. The study further explored the process required for 
reforming of the legal framework for the electric sector mainly focused 
on energy communities. 

Moreover, Dóci (2017) conducted a comprehensive study of local 
energy initiatives within Germany and the Netherlands towards 
contributing to renewable energy communities. The analysis considered 
communities in terms of their size, locations, institutional background, 
renewable energy technology used and organizational structure. Hoppe 
et al. (2015) investigated how local governments are supporting local 
energy initiatives based on best practices evidence from Germany and 
The Netherlands. Findings from the study suggested three main factors 
from the strategic niche management which comprises of managing 
expectations, building networks, and facilitation of learning as vital in 
local communities. Williams et al. (2015) explored how to support pri-
vate sector investment within microgrid-based rural electrification. The 
authors reviewed and identified barriers to impede private sector 
participation during decentralized electrification initiatives and also 
proposed strategies that have been previously deployed to overcome the 
identified barriers. Evidence from the reviewed studies in this section 
describes works that have been done to promote LEC in Norway and 
similarly across other regions. Irrespective of these contributions there 
are fewer studies that converged disruptive technologies, such as DLT, 
AI, and IoT to improve presumption services in local energy commu-
nities in Norway and also in other regions. This shows a gap in knowl-
edge which is explored in this current study. 

3. Research methodology 

A Design Science Research (DSR) based on a user-centred design 
method is employed in this study. A DSR is referred to as a research 
paradigm in which the researcher answers questions relevant to societal 
problems through the creation of novel artifacts, thus contributing new 
knowledge to the field of study. This methodology employs an iterative 
method, facilitating the freedom to adapt the structure and the evalua-
tion of the designed artifact, until a much valuable solution is developed. 
The DSR approach revolves with the aim of bundling several process, 
sociotechnical artifacts, computer algorithms, spanning software, and 
systems with the goal to enhance and/or solve the challenge being 
investigated (Hevner et al., 2004). A DSR method was employed in this 
study in order to address the practical problem specified within the 
research question 2 and 3 of this paper which includes how the 

convergence of AIoT and DLT can support trust, data security, privacy, 
and price determination in LEC and overall, and how to support a 
citizen-centric prosumption operations in LEC. The DSR method ensures 
that the solution to the challenge accomplishes all requirements and 
needs of researchers, while interpreting new knowledge both for the 
practitioners and the scientific community (Hevner et al., 2004). 

Additionally, DSR was adopted in this study as it is in line with the 
engineering model of research intending at developing an artifact 
(Hevner et al., 2004; Markus et al., 2002; Peffers et al., 2007). The DSR 
involves the development of artifacts which may comprise of constructs, 
models, methods, and instantiations. The designed constructs may 
comprise of symbols and vocabulary, whereas the models can vary from 
representations and abstractions. The methods can be best practices and 
algorithms, and the instantiations can be various types of implementa-
tions and possible prototypes (Burkhardt et al., 2019). In this article the 
DSR is employed based on a user-centred design (UCD) methods to ensure 
the citizen-centric prosumer approach proposed is designed and devel-
oped in a user centric manner. The user-centred design is employed as it 
aims to capture and improve the whole end-user experience with a 
definite understanding of the end-users, environments, and tasks. 
Accordingly, the DSR and UCD process which comprises of an iterative 
process are shown in Fig. 1. 

Fig. 1 depicts the adopted methodology which is a DSR approach 
based on a user-centred design method. The DSR comprises of five 
phases (problem identification, solution suggestion and objective, 
design development, demonstration and evaluation, and conclusion and 
communication), whereas the user-centred design method comprises of 
four steps (understand context of user, specify user requirements, design 
solutions, and evaluate design against requirements), as shown in Fig. 1. 
In the DSR approach the artifact (architectural model), being designed 
and the evaluation phase forms the two connected and iterative phases 
carried out by the researchers to gain relevant knowledge of the domain 
being examined (energy prosumption in local energy communities). 
Accordingly, the design comprises of a sequence of review of literature 
on best practices regarding decentralized AI based energy prosumption 
options in LEC and document review, whereas the evaluation phase 
mainly provides information useful for improving the applicability of 
the architectural model. 

As this article aims to develop an architectural model describing the 
benefits of integrating AI, IoT and DLT to improve prosumption services 
in LEC. Literature inquiry and qualitative data were used as secondary 
data source to provide input for the design of the architectural model 
creation as previously stated. The data collection involves identifying 
sources and evaluating their suitability to answer the research question 
(s) being explored in the study. The sources journal article, conference 
proceedings, technical reports, books, and book chapters published be-
tween the years 2000 and 2024 published in English language. After 
which the collected qualitative data was categorized based on the 
research questions been examined in the study and descriptive analysis 
was employed to present the findings from the analyzed data. 

Overall, the DSR based UCD cycle structure (as shown in Fig. 1), is 
adapted to design, develop, and evaluate the architectural model for 
energy prosumption in LEC with the citizen in mind, while also 
emphasizing on the role of prosumers and other actors involved in the 
energy market, which allows for user-centred development process to 
occur. By incorporating both DSR and UCD perspective, specifically in 
the convergence of AIoT and DLT, the adapted DSR based UCD cycle 
structure allows for an accurate capturing of citizens and prosumers 
needs grounded on a decentralized architecture. Furthermore, the DSR 
based UCD cycle structure ensures that the implemented features of the 
proposed architectural model to be developed (as seen in Fig. 3), is fit for 
the purpose of developing a decentralized AIoT based intelligence for 
sustainable energy prosumption in local energy communities (as seen in 
Fig. 4). Thus, the prosumers and consumers energy needs will be 
assessed during the evaluation stage of the development and due to the 
iterative nature of DSR based UCD, the architectural model will be 
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modified based on feedback from qualitative data until the prosumers/ 
consumers requirements are met. According to Peffers et al. (2007), the 
DSR process shown in Fig. 1 is summarized as seen in Table 1. 

Table 1 provides the activities carried out in the phase elaborated in 
DSR method as presented in Fig. 1. The main focus lies in providing the 
design, development, and evaluation of the architectural model. For the 

evaluation due to the complexity associated with dynamically 
converging AIoT and DLT to support energy prosumption operations in 
LEC, a descriptive evaluation is utilized to present the architectural 
model's usefulness, value, and its correctness to illustrate how the 
convergence of AIoT and DLT support trust, data security, privacy, and 
price determination in local energy communities and how to support a 
citizen-centric prosumption operations in LEC. Therefore, as suggested 
in prior studies this study used literature inquiry and qualitative 
research approach to collect data based on a use case for the design of 
the architectural model and ArchiMate modelling language was 
employed for evaluation of the architectural model to provide evidence 
for theory and practice (as seen in Fig. 4). 

4. Findings 

4.1. Significance of DLT, AI, and IoT in Local Energy Communities 

4.1.1. Importance of distributed ledger technologies in local energy 
communities 

DLT started initially with Bitcoin proposed by Satoshi Nakamoto in 
2008 (Nakamoto, 2008). A DLT is simply a distributed digital record of 
data or transactions (Alruwaili, 2020). A DLT, or generally a distributed 
ledger can store different types of assets analogous to a register. Mostly, 
these data or transactions can be related to funds and identities (Bokolo, 
2022; Sandner et al., 2020). DLT use a decentralized consensus mech-
anism where different node users participate to process transactions and 
data without the involvement of a third trusted party (Anthony Jr, 2023; 
Bosri et al., 2020), in an untrusted distributed system, building trust at a 
reduced cost (Zhang et al., 2021). DLT uses cryptography to ensure data 
credibility and security and also employs a distributed node consensus 
algorithm to verify data transaction which are further synchronize 
across the entire network (Zhang et al., 2021). To guarantee the legality 
of business agreements DLT employs the capabilities of peer-to-peer 
networks and cryptographic algorithms without any involvement of 
any third party or a regulatory authority which increases data security. 
The exclusion of intermediaries makes the processing of data and 
transactions much faster (Anthony Jnr, 2023; Gulati et al., 2020). 

There has been a widespread adoption of DLT in the energy sector 
due to its unique features, such as immutability, privacy, append-only, 
open, and transparent, anonymity, organized, accountability, etc. 
(Bosri et al., 2020; Jnr et al., 2023; Sandner et al., 2020). DLT provide 

Fig. 1. DSR based on a user-centred design cycle structure.  

Table 1 
DSR research process being carried out.  

# DSR Process Research description 

1 Problem identification  

• Issues related to trust, data security, privacy, and 
price determination in LEC.  

• Significance of integrating AI, IoT, and DLT to 
improve energy prosumption.  

• Definition, requirements, and functionalities of 
AIoT and DLT. 

• Challenges of achieving a citizen-centric pro-
sumption operations in LEC. 

2 Solution suggestion and 
objective  

• Deployment of AIoT and DLT as relevant 
components to support energy prosumption 
options in LEC.  

• Identification of relevant capability, 
functionalities, and limitations of converging 
AIoT and DLT in energy in LEC.  

• Definition of how DLT based smart contracts and 
AI based Machine Learning (ML) algorithms can 
synergically improve a citizen-centric pro-
sumption operations in LEC. 

3 Design development  

• An architectural model for energy prosumption 
in LEC that shows a possible implementation 
concept to support energy sharing and trading in 
LEC.  

• A model visualizing the integration of AI, IoT, 
and DLT with relevant interfaces and 
functionalities to promote energy prosumption 
services. 

4 
Demonstration and 
evaluation  

• Demonstration of the architectural model to 
relevant stakeholders.  

• Modelling of a case study scenarios to show how 
the developed architectural model (artifact) 
address the problems defined in step 1. 

5 Conclusion and 
communication  

• Summary and publication of results in a scientific 
peer reviewed journal (cities), to show the 
architectural model's usefulness, value, and its 
correctness to support a citizen-centric pro-
sumption operations in LEC.  
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provenance histories, enables predictive planning, fraud detection, and 
regulatory compliance. DLT can provide easy-to-use configurable 
dashboards, predictive models for energy production, provenance his-
tories of generation and consumption of energy, and compliance 
checking such as GDPR, privacy and data security (Burkhardt et al., 
2019). Prior studies employed DLTs such as blockchain for the man-
agement and monitoring of IoT devices as well as for energy distribution 
and trading in addition to improving the reliability and security of smart 
grid communications (Anthony Jnr, 2024; Khan et al., 2020). Using DLT, 
two parties in LEC can exchange renewable energy without fully 
knowing each other and not involve any third party. 

DLT offer techno-social implications for local energy communities. 
From the techno point of view DLT offers transparency, simplicity, fair-
ness, and helps in regulation of rules while executing transactions (Jnr 
et al., 2023). The data stored or transaction recorded in the distributed 
ledger is immutable, thus improving data integrity, reliable, and 
consistent. From the social perspective, all prosumers get fair incentives 
and are equally treated. Additionally, all energy trading transactions are 
automatically managed by smart contracts to reduce disputes between 
end users (Anthony Jnr et al., 2020b). Every authorized and legitimate 
energy prosumer or consumer has the autonomy of performing energy 
sharing, transactions, and trading with other residents without any 
prejudice. Likewise, the trustless nature of DLT makes it hassle-free and 
suitable for the citizens in LEC. DLT also supports detailed tracing and 
tracking of transactions (Gulati et al., 2020) which is useful for 
achieving energy provenance especially in local energy communities to 
track the source of renewable energy from solar, wind, hydropower, etc. 
DLT is an immutable technology which guarantees data integrity; 
nonetheless, if an incorrect transaction or data is added and the node 
users want to undo their transactions, the executed transactions are 
mostly irreversible. Moreover, DLT is quite complex to be implement for 
some prosumers. Thus, its adaptability is moreover limited. Another 
limitation of DLT relates to how prosumers and consumers can resolve 
dispute between different parties (Samuel et al., 2022). 

4.1.2. Usefulness of artificial intelligence in local energy communities 
AI which is the intelligence of machines has been applied in different 

sectors such as in finance, retail, education, medicine, transportation, 
energy, etc. (Zhang et al., 2021). The concept of AI technology started 
from the Dartmouth Society within 1956. As a branch of computer sci-
ence dedicated to research and development involved with the 

mechanization of intelligent behavior, used to simulate, expand, and 
extend human intelligence. AI is also the ability of machine to carryout 
task and make decisions autonomously without the involvement of 
humans (Gulati et al., 2020). Generally, AI is employed to achieve in-
telligence involving the ability to learn, understand, and make choices 
or have opinions that are based on reasoning (Burkhardt et al., 2019). AI 
enable machines to think much more like humans in order to carryout 
various tasks. Algorithms are written and pre-defined to describe how 
the AI based system will work under different circumstances and how 
what action it should take. The benefits of deploying AI based Machine 
Learning (ML) in energy prosumption operations in LEC is summarized 
in Fig. 2. 

AI is simply a computerized machines executing tasks that are nor-
mally linked with cognitive functions of the human mind. Examples of 
such tasks include knowledge representation, expert systems, robotic, 
translations, computational vision, speech interpretation, reasoning 
technology, problem solving, intelligent adaptive learning, and natural 
language processing (Burkhardt et al., 2019; Ragot et al., 2020; Zhang 
et al., 2021). AI is employed to support autonomous behavior of assets. 
Presently, AI is gaining prominence in businesses and the society at large 
(Ragot et al., 2020). AI improves processes by identifying patterns and 
also optimizing outcomes of industrial processes (Sandner et al., 2020). 
AI can organize complex data to make precise predictions and has had 
prominent successes in facial, voice, and image recognition, in scientific 
fields and diverse industrial (Krittanawong et al., 2020), and is now 
being applied in the energy sector. AI offers the prospect to achieve a 
high level of automation required for optimization of energy system 
performance and managing of the complexity associated with energy 
trading and sharing operations in LEC (Ericsson, 2022). 

Furthermore, AI based ML can be applied to offer new insights to 
enable intelligent operations, control, and to optimize decision making 
leading to decentralized peer-to-peer business models for local energy 
communities (Samuel et al., 2022). The advanced metering in-
frastructures deployed in smart grids generates a substantial volume of 
valuable data (Anthony Jnr et al., 2020a). This data could be used by AI 
based ML models to improve the operability of energy systems and 
situational awareness for prosumers (Heilmann et al., 2022; Lode et al., 
2022). This is specifically useful when small or medium sized prosumers 
contribute to the operations of energy systems and make decisions for 
energy management systems (Hua et al., 2022). Table 2 depicts the 
phase of applicability of how AI can improve prosumer operations in 

Fig. 2. Benefits of deploying AI for energy prosumption adapted from (Hua et al., 2022).  
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LEC. 
Overall, the application of AI in energy systems for management, 

scheduling, predicting, etc. has been well documented in the literature 
(Anthony Jnr, 2021; Samuel et al., 2022). However, the application of AI 
in LEC is faced with some issues such as scenarios when historical data 
needed by ML algorithms are too few to train an accurate ML algorithm, 
how do the system guarantee the models` accuracy. Also, it is still un-
clear in the literature how prosumers and other actors participating 
within LEC can ensures that AI based ML decisions align well with the 
existing physical constraints of the energy power systems (Hua et al., 
2022). Additionally, there are fewer studies that have explored how AI 
based ML has been applied for data-driven operations exploiting his-
torical data to improve the role of actors in the operation of energy 
systems, and also improving the computational efficiency and scalability 
using optimization approaches (Heilmann et al., 2022; Hua et al., 2022). 

4.1.3. Applicability of internet of things in local energy communities 
Internet of Things (IoT) is simply a network of things such as actu-

ators, intelligent devices, smart meters, sensors, wearables etc. that 
share information across the internet (Kumar et al., 2021; Mohanta 
et al., 2020). In the last decade IoT devices are connected via wireless or 
wired communication to process, compute, and monitor different sce-
narios in real-time (Jamil et al., 2021; Sandner et al., 2020). IoT is 
recognized as one of the newest technologies due to its practical appli-
cation in different industries (Sharma et al., 2021). As such, the IoT has 
also drawn great attention from academics, practitioners, and businesses 
due to its innovative capabilities and services across various smart social 
applications (Ahmed et al., 2022). The IoT provides communication 
between device-to-device, human-to-device, and human-to-human. IoT 
enables everything to be connected to the internet allowing the sharing 

of data between electronic devices and humans in an intelligent way 
(Imran et al., 2021). IoT fosters the automatization of industries and has 
evolved as one of the widely deployed technologies in various domains 
(Sandner et al., 2020). IoT has previously been deployed in across the 
society such as in the smart grid system (Mohanta et al., 2020). IoT is 
one of the enabling technologies for actualization of LEC. Thus, IoT can 
be deployed in a different environment such as local energy commu-
nities to capture information, and even trigger some events during 
certain conditions. IoT has changed the way that prosumers interact 
with the energy market. 

With the availability of low-cost electronic circuits and the 
improvement in sensor technology, IoT is developing as a promising 
technology for actualization of communities becoming local energy 
communities. IoT can be applied in real-time applications such as in 
prosumption operations. As it connects intelligent sensors, smart 
metering devices, Radiofrequency Identification (RFID) across the 
Internet to active an intelligent energy management system. The ap-
plications of IoT have made a huge impact in local energy communities 
like energy meters and sensors deployed in residential buildings, orga-
nizational and in industrial facilities to measure energy consumption, 
monitoring energy generation, tracking provenance of renewable en-
ergy sources from the Transmission System Operator (TSO) and Distri-
bution System Operator (DSO). The energy meters and sensors are 
deployed in LEC using IoT infrastructure connected through wirelessly 
or wired across heterogeneous networks (Mohanta et al., 2020). Besides, 
IoT can seamlessly connects heterogeneous energy systems and devices 
or sensors to establish an energy as a service network that enables 
communication, sensing, data generation, processing, and storage 
automatedly and systematically managed, monitored, and regulated 
with less human intervention (Ahmed et al., 2022). 

4.2. Background of decentralized artificial intelligence of things 

AI and DLT have their own benefits as well as corresponding draw-
backs. AI is faces with issues related to explainability, effectiveness and 
interpretability (Zhang et al., 2021). DLT can empowers AI for reliable 
and transparent data sources, privacy protection, efficient autonomy, 
better fairness guarantee, and distributed computing power (Zhang 
et al., 2021). Furthermore, AI depends on three main foundations: data, 
algorithms, and computing power, and DLT can enable interoperable 
access to data and support the running of algorithms, data resources, and 
computing power grounded on its intrinsic features such as immuta-
bility, decentralization, and anonymization. DLT can guarantee the 
provenance (origin), and credibility to confirm the originality of the 
data as well as the traceability and audit credibility of AI algorithms. 
Moreover, DLT can record the decision-making of AI, which supports to 
analyze and understand the behavior of AI and ultimately promotes the 
explainability of AI, making it more trustworthy and transparent (Zhang 
et al., 2021). DLT design and operation involves several parameters as 
well as trade-off of throughput, security, and other parameters. 

DLT has problems regarding energy consumption, efficiency, scal-
ability, privacy, security. Therefore, AI can optimize DLT to achieve 
better governance and performance. Also, AI can also improve the in-
telligence of DLT applications and limit errors possibly caused by human 
influence. AI can optimize the construction of DLT to make it more 
efficient, secure, and energy-saving (Zhang et al., 2021). AI systems are 
typically based on two architectures which comprises of centralized AI 
and decentralized AI. Currently most AI systems are based on the 
centralized AI architecture which typically requires third party 
involvement to carry out a task. This necessitates that the AI systems are 
under the supervision of human intelligence. Thus, humans will be ex-
pected to pre-define what the AI system can do at a specific situation or 
event. In such centralized architecture the data can be easily tempered 
with and also there is limited authenticity. Thus, decentralized AI is 
needed as no party is required to govern, take, or make decisions oc-
casionally for the AI systems. Overall, the combination of AI and DLT 

Table 2 
Applicability of AI to improve prosumer operations in local energy communities.  

Phase of 
applicability 

Description 

Automated phase This phase involved the complete automation AI to support 
prosumer operations in LEC with less or no human 
intervention. Energy related services such as self-health in the 
energy grid, network optimization, wide area control can be 
carried out by AI (Hua et al., 2022; Williams et al., 2015). 
Moreover, this phase entails conventional operations of the 
energy systems in which AI can assists for situational awareness 
across the smart grid, fault detection, and restoration of 
electricity after receiving a procedure call of blackouts or 
outages (Cunha et al., 2021; Hua et al., 2022; Wethal, 2023). 

Prescriptive phase The digitalization of the smart grid and the energy systems has 
enabled the LEC transition towards this phase (Dorahaki et al., 
2023; Hua et al., 2022). This phase involves the use of AI for 
partial automated within the energy system to minimize 
disturbances and outages (Wethal, 2023), using ML based 
optimization models (Hua et al., 2022). 

Predictive phase In this phase AI based decision support modules are deployed to 
forecast real-time renewable energy generation, demand, and 
possible uncertainties (Eikeland et al., 2022; Hua et al., 2022). 
This helps to improve energy system performances for 
resilience, stability, and capacity margin in LEC. Similar to the 
automated and prescriptive phases this phase can be 
automatically executed with the support of AI based ML 
algorithms that can systematically help to minimize the 
disturbances and outages in LEC (Hua et al., 2022). 

Responsive phase This level involves the reaction or response of the energy 
system expected after receiving a notification of an unexpected 
occurrence such as blackouts or outages in LEC (Hua et al., 
2022). In futuristic energy prosumption services operated 
within LEC it is expected that full automation would be 
sustainably attained where the smart grid control, decisions, 
and network optimization could be smartly managed by an AI 
system without the involvement of any system operators, thus 
enabling the entire energy system to maintain situational 
awareness, fault detection self-healing and restoration (Hua 
et al., 2022; Mehta & Tiefenbeck, 2022).  
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together is referred to as decentralized AI. By deploying DLT, AI can 
perform tasks without the involvement of any party. Thus, all the data 
analysis and decision making can be executed on a private and secured 
platform as data tampering is much difficult in a decentralized AI based 
platform (Gulati et al., 2020). 

Decentralized AIoT can also support prosumption services as DLT 
allows safe and secure storage and distribution of data generated from 
IoT devices. While AI can help in detecting patterns, optimize, analyze, 
and generate insights from the data to provide interpretation and visu-
alization that improves renewable energy generation, consumption, and 
storage for prosumers. Since DLT is based on a distributed and tamper- 
proof nature it can handle privacy issues security and protection in IoT 
based applications (Ahmed et al., 2022). Additionally, in a decentralized 
AIoT based energy prosumption environment DLT will store and transfer 
energy related data, and AI can autonomously make decision based on 
the stored data. Also, the stored data can be shared across to different 
actors within the LEC via a reliable and secured DLT infrastructure. By 
converging AIoT with DLT energy data will easily be made available for 
prosumers, and they will be able to see energy related data of the LEC 
(Gulati et al., 2020). Decentralized AIoT can improve the security of DLT 
applications, by adjusting the dynamic parameters to provide effective 
personalization for scalability, and improved governance mechanisms. 
Decentralized AIoT can provide customized data driven services to 
prosumers without violating their personal information by enabling 
prosumers to have control over their personal information (Jeon et al., 
2022). 

4.2.1. Feasibility analysis of integrating AIoT and DLT in local energy 
communities 

As mentioned in the literature AI and IoT have been integrated to 
form a new specification termed as Artificial Intelligence of Things 
(AIoT) (Gulati et al., 2020; Imran et al., 2021) which aims to enhance 
data management, improve human–machine interactions, and imple-
ment complex data analysis (Imran et al., 2021). The integration of AI 
and IoT brings new possibilities, even though the concept of AIoT is new 
(Imran et al., 2021). The use of AI based machine learning techniques 
can discover patterns in data generated from IoT infrastructure deployed 
by prosumers in local energy communities (Imran et al., 2021). With the 
use of intelligent sensors, smart meters, protocols, and network devices 
prosumers transmit energy related information to different stakeholders 
who collaborate in local energy communities. To date studies that 
technologically converge DLT and AIoT simultaneously are limited. 
Though, the true potential of these disruptive technologies can only be 
unlocked if these technologies are combined (Sandner et al., 2020). 

Previously, DLT was mostly discussed in the perspective of pay-
ments, i.e., in the area of Bitcoin and Ether. Over the years, more non- 
financial use cases such as digital identity management, decentralized 
electric mobility sharing, and supply chain management has emerged 
highlighting the potentials of DLT (Jnr, 2024; Sandner et al., 2020). 
While AI can help to limit human errors and lessen repetitive tasks 
carried out by prosumers in LEC. DLT can offer a digital asset to ensure 
reliable, trustworthy, safe, and secured energy trading transaction via 
decentralization (Jeon et al., 2022). Recently, along with AI and IoT, 
DLT has also been identified as a technology that has the potential to 
enhance modern energy systems and generate new business models to 
provide citizen energy communities (Ahmed et al., 2022). DLT, for 
example, can enhance trust, transparency, safety, security, and privacy 
of energy processes by providing a decentralized and distributed energy 
eco-system (Anthony Jnr, 2021). DLT helps to improve interoperability 
among different platforms and systems and limits centralized control 
over prosumers data thereby providing access to prosumers based upon 
request. DLT can support the storage and management of energy related 
data and further improves information management among energy 
community stakeholders. 

As prosumers in LEC require reliable, secure, and decentralized IoT 
devices that support energy trading and sharing between multiple peers. 

DLT can be integrated as a viable alternative to support IoT-enabled 
prosumption operation in LEC (Kumar et al., 2021). Although, find-
ings from the literature highlighted the value of combining DLT such as 
blockchain with other technologies such as IoT and/or AI (Khan et al., 
2020; Sandner et al., 2020). The convergence of DLT applications with 
AI is a still rather new and has just started to get more attention in recent 
years (Brune, 2020). Although prior studies examined prosumption 
services there is a lack of a comprehensive and concrete study on inte-
grating AIoT and DLT for energy prosumption services grounded on a 
citizen-centric prosumer approach in LEC. Moreover, only few studies 
have exploited the deployment of AIoT and DLT to examine how to 
support energy trading, control, and setting policies for energy in LEC. 
Also, studies that provides empirical evidence as related to security, 
privacy, resource management, and price determination are limited and 
the direct applications in LEC is still early in development (Krittanawong 
et al., 2022). 

4.3. Use of DLT to accelerate energy prosumption services within smart 
grids 

The energy sector represents almost 40 % of global carbon emissions 
generated from the combustion of fossil fuels (D'Adamo et al., 2024). In 
an effort to achieve net zero energy systems, policy makers are formu-
lating sustainable measures for enabling the integration of RES and 
fostering behavioral change in the consumption of energy in residential 
areas (Hua et al., 2022). The smart grid is one of the important in-
frastructures needed to actualize a LEC. A smart grid is an intelligent 
energy network which cost-efficiently integrates information and con-
trol infrastructures to improve the efficiency and reliability of energy 
systems operations. From the viewpoint of information system in-
frastructures, the smart grid facilitates bidirectional communications 
between stakeholders across the energy systems such as the consumers, 
prosumers, TSO and DSO, generators, and system operator which en-
ables the active engagement of consumers and the optimal operation of 
generators (Hua et al., 2022; Ringholm, 2022). From the control view-
point, the interoperability of the smart grid fosters the optimal harmo-
nization of several entities such as the generation units or loads to 
cooperatively accomplish the overall benefits of the energy systems. The 
smart grid offers regulatory supports that enable energy to actively 
produce, consume, sell, and store clean energy using storage devices, 
distributed RESs, and smart metering infrastructures (Hua et al., 2022; 
Talandier, 2018). 

Presently, the energy markets are currently transitioning to 
acknowledge and promote the role of energy. Thus, a shift of the energy 
markets towards decentralized generation and consumption is necessary 
for the integration of the emergent role of energy (Parag & Sovacool, 
2016). The current energy market structures that operate within the 
smart grid as mentioned in the literature comprises of peer-to-peer 
trading markets, intermediary-based trading markets, and microgrid- 
based trading markets. These aforementioned energy market struc-
tures are based on the information and control infrastructures of the 
smart grids, and they are categorized based on associated information 
exchange and the functions of control units (Hua et al., 2022). In LEC 
energy can contribute to the energy supply to consumers. Overall, en-
ergy can be small or medium sized energy users, such as residents, 
companies, or industries who also produce renewable energy on-site, 
and seamlessly exchange this energy with other prosumers or the 
smart grid to meet their own demand or make earnings from the energy 
arbitrage. Where the term “energy arbitrage” is a process where energy 
is purchased during off-peak hours (when grid electricity prices are 
cheapest). The purchased energy is then stored and utilized during peak 
hours (when grid energy prices are highest). The emerging role of energy 
is projected to support the Demand Side Management (DSM) and 
consequently decrease the reliance on the fossil-fuel based production 
with the long-distance transmission (Hua et al., 2022). Nonetheless, 
researchers such as Hua et al. (2022) argued that the participation of 
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energy from the perspectives of energy systems and energy markets in 
LEC also some challenges. For example, the current structures of energy 
markets are not mostly appropriate to accommodate the role of energy, 
since energy balancing mechanisms and pricing schemes are indepen-
dent of the state of electricity exchange among energy. 

Moreover, the information infrastructures of existing energy systems 
may not be able to handle the increasing information flows initiated by 
the energy related transactions of huge amounts of distributed energy 
(Addae et al., 2019). Also, given the inadequate budgets for residential 
energy’ control systems, it may be difficult for them to utilize historical 
data for optimally scheduling the production and consumption accord-
ing to their individual energy patterns. Lastly, it is difficult to precisely 
forecast energy prosumption behaviors given uncertainties triggered by 
the intermittency of flexible demand and distributed RESs (Schrage, 
2023). Therefore, to promote energy, there is need for decentralized 
approach that inform the policy design and further supports energy 
prosumption operations in LEC. Research related to decentralized en-
ergy trading have been subject of active research and practical over the 
years. Also, DLT and smart contracts have been previously applied in 
power systems control and (Hua et al., 2022). DLT can prevent the 
double spending attack and replay attack within the energy markets, i.e., 
where the same digital currency is spent twice or the same energy is 
traded twice, using smart contracts for accounting, and managing the 
ownership of energy as an asset. The decentralized feature of DLT en-
ables a distributed ledger to be accessed and verified by all participants 
of the energy market. 

Besides, DLT employs smart contract to reduce the operational and 
maintenance costs of energy to improve and encourage community 
energy participation of market players (Zhang et al., 2021). By 
deploying DLT the trading system is open and accessible for all energy, 
market operators, and system operators. The disintermediating nature of 
DLT changes the role of energy aggregators or suppliers to a neutral 
facilitator for supporting energy’ participation. DLT employs encryption 
that protects energy’ personal information such as transactions, ad-
dresses, and energy profiles. The computational complexity of data 
mining and shared validation for achieving consensus guarantees the 
security of distributed trading networks (Hua et al., 2022). The 
deployment of a DLT based energy prosumption environment can enable 
distributed energy trading and sharing in LEC, which is limited in the 
traditional centralized energy grid systems which cannot facilitate 
distributed energy sharing and trading. Thus, the decentralized feature 
of DLT can effectively help LEC, realize the transformation from 
centralization to distribution. The decentralization of DLT can help to 
breaks data silos and information barriers to realize a secure data 
sharing among multiple participants. 

Thus, the use of DLT based smart contracts for energy trading which 
may involve the supply of energy or other related services such as the 
demand side management, which is monitored and maintained by smart 
meters installed in the residence of energy (Anthony Jnr, 2020). The 
payment of energy is executed by the smart contracts in a self-enforcing 
method, thereby ensuring trustworthiness of the energy trading eco- 
system which is reliant on the trustworthiness of smart meters and the 
smart contracts (Samuel et al., 2022). However, the interoperability 
between the smart meters or controllers and smart contracts requires the 
initiation of interfacing and communication protocols (Hua et al., 2022). 
In addition, DLT can be employed to enhance intelligent operations of 
energy systems and flexible structures of the energy markets which are 
two critical factors in the smart grid. From an energy market perspective 
DLT provides the decentralized trading application and technical sup-
ports for peer-to-peer energy markets which are open and accessible to 
individual energy with the better data privacy, security, and enhanced 
automation (Hua et al., 2022). Also, considering the operational 
perspective the deployment of DLT can supports the control systems in 
strategic decisions towards optimizing system operations to achieve 
societal, economic, and environmental goals. These goals include 
increasing the generation of profits, saving electricity bills, reducing 

carbon emissions, and predicting uncertainties such as power outages or 
shortages in LEC (Hua et al., 2022; McElhinney et al., 2022), and support 
decision making by employing intelligent controlling techniques, such 
as the optimization using historical data from the energy systems (Hua 
et al., 2022). 

Even though DLT can support decentralized energy trading towards 
the integration of prosumers, this transition of energy markets raises a 
series of challenges. For example, when energy feed their distributed 
generation into the smart grid, this results to issues for market opera-
tions, such as negative grid operations and energy prices, harmonic 
distortion, spike in the voltage, and power imbalance definitely chal-
lenges the protocols and control infrastructures of the current energy 
systems (Hua et al., 2022). Furthermore, the operation of the decen-
tralized energy markets without any central authorities results to issues 
related to how to maintain the overall value of the power systems as 
regards to resilience mitigation. This will require the setting of pricing 
schemes, incentive measures, and sophisticated rulesets to align indi-
vidual energy’ behaviors with systems' benefits. Also, the transactional 
costs of most DLTs such as blockchain applications are mostly high in 
comparison to conventional IT based trading platforms. These high 
transaction cost can be a barrier for prosumers who wants to participate 
in the distributed peer-to-peer energy trading (Hua et al., 2022). 

4.4. Developed architectural model for sustainable energy prosumption in 
LEC 

The energy system is presently experiencing a paradigm change, that 
has been influenced by a change from the conventional centralistic and 
top-down electricity production chain. The existing generation to 
transmission and then to distribution and lastly consumption is now 
being changed towards a more sustainable and decentralized system, in 
which different actors such as energy dynamically change their roles and 
interact in an energy cooperative manger as seen in LEC. The framework 
proposed by CEN-CENELEC-ETSI (2012), and its components aimed to 
capture the design of several smart grid use cases such as energy in local 
energy communities within an architectural model to achieve a generic 
and neutral reference architecture. The framework supports the evalu-
ation of different smart grid use cases enabling standardization and 
interoperability. 

Overall, the framework consists of five distinct layers capturing 
business objectives and processes, information exchange and models, 
functions, communication protocols and related components. These five 
layers denote an abstract and integrated version of the interoperability 
classifications introduced in the GWAC Stack methodology (GWAC, 
2008), where three main layer and-layer were presented which com-
prises of Technical (basic connectivity, network interoperability, syntactic 
interoperability), Informational (business context, semantic understanding), 
Organizational (business procedures, business objectives, economic/regula-
tory policy). Each architectural layers proposed covers the smart grid 
level, which is covered by electrical domains and connected information 
management zones as seen in Fig. 3. The objective of the developed 
architectural model as mentioned in the literature (CEN-CENELEC-ETSI, 
2012) is to depict on which zones of information management connec-
tions is carried out between domains where local energy communities 
evolve. 

This enables the presentation of the current state of implementations 
in the smart grid, but also depict the evolution of future smart grid 
scenarios that supports the principles of interoperability, localization, 
universality, flexibility, and consistency. As suggested in the literature 
(CEN-CENELEC-ETSI, 2012; GWAC, 2008) the developed architectural 
model comprises of the architecture layers, domains and zones as seen in 
Fig. 3. In this study an architectural model is developed to show how the 
convergence of AIoT and DLT can support trust, data security, privacy, 
resource management, and price determination in local energy com-
munities grounded on the smart grid reference architecture proposed by 
CEN-CENELEC-ETSI (2012) and the architecture for interoperability 
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context setting framework (GWAC, 2008) as seen in Fig. 3. Accordingly, 
Fig. 3 depicts the developed architectural model which mainly com-
prises of the architectural layers, information management zones, and 
electrical domains. Each of these components are discussed in the sub-
sequent section based on the work by GWAC (2008); CEN-CENELEC- 
ETSI (2012). 

4.4.1. Architectural layers  

a. Business layer 

This layer comprises of the business view on available information 
exchange within the LEC and the smart grids. As recommended in the 
literature this layer can be employed to map economic (market), regu-
latory structures and policies, energy business models, incentivization 
schemes for prosumers, pricing mechanisms for energy trading, and 
business portfolios of products and services for all market parties 
involved in energy prosumption services in LEC. Also, the energy busi-
ness processes, and business capabilities can be represented within this 
layer. Accordingly, this layer supports business managers in decision 
making associated with the use of disruptive technologies such as AI, 
DLT, IoT, etc. to create innovative business models as well as specific 
business use case scenarios in addition to regulators required in defining 
novel market models.  

b. Function layer 

This layer describes energy related services, functions and business 
procedures including capturing the relationships from an architectural 
perspective. The functions are independently characterized from actors 
or stakeholders and physical deployment needed in systems, applica-
tions/digital platforms, and components. Within the architectural model 
the functions are derived by accessing the functionality needed to ach-
ieve energy prosumption operations in LEC.  

c. Information layer 

This layer mainly describes the data and information needed to 
improve the current business context for better semantic understanding. 
It also involves data that is being utilized and exchanged between 
different components, systems, applications, services, and functions. It 
comprises of information objects and the related canonical data models. 

Where a canonical data model enables an organization to create and 
distribute a common description of its whole data unit. These canonical 
data models and information objects represent the common semantics 
for components, systems, applications, services, and functions to enable 
an interoperable information exchange which is achieved through 
communication.  

d. Communication layer 

The communication layer describes the protocols and mechanisms 
required to achieve seamless interoperable exchange of data between 
different actors, digital systems, physical infrastructure, and electrical 
components for prosumption operations in LEC. The communications 
are needed to achieve network interoperability and syntactic interop-
erability towards have a connected services and functions as related to 
data models or information objects.  

e. Component layer 

The component layer comprises of the physical distribution and basic 
connectivity required for all deployed physical soft and hard compo-
nents involved in running of LEC and within the smart grid context. This 
includes applications, system actors, energy system equipment (usually 
located at field and process domains), protection equipment and tele- 
control devices, network infrastructure (wired and wireless communi-
cation connections, switches, routers, servers) and different types of 
computer systems. 

4.4.2. Electrical domains  

a. Bulk generation 

In the context of this study this domain represents the production of 
electrical energy in bulk quantities, from renewable energy sources such 
as large-scale solar power plant (i.e. Photovoltaics (PV), Concentrated 
Solar Power (CSP)), hydro power plants, off-shore wind farms within or 
close to LEC which is typically connected to the transmission system 
connected to the smart grid.  

b. Transmission 

Mainly represents the organization needed and infrastructure 

Fig. 3. Developed architectural model for sustainable energy prosumption in LEC.  
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deployed to transports clean electricity over short and long distances 
across LEC controlled and managed by the Transmission System Oper-
ator (TSO).  

c. Distribution 

Primarily represents the required infrastructure and organization 
which are involved in the distribution of clean electricity to energy 
customers.  

d. Distributed Energy Resources (DER) 

Mainly represents the distributed electrical resources which are 
directly linked to the public distribution grid. The DER also involves 
applying small-scale energy generation technologies normally in the 
range of 3 kW to 10.000 kW. These distributed electrical resources at 
times are directly controlled and managed by Distribution System 
Operator (DSO).  

e. Prosumer premises 

Comprises of the consumers who are the end users of energy, as well 
as the also producers of clean energy. This domain may range from 
commercial, industrial, and home/residential facilities. Also, the pro-
sumer premises comprises of energy generation from PV generation, EV 
storage, stationary batteries, micro turbines, etc. 

4.4.3. Information management zones  

a. Process 

This includes the chemical, physical, or spatial transformations of 
energy (solar, electricity, heat, water, wind, etc.) and the physical 
infrastructure or equipment directly involved. (such as the generators, 
overhead lines, circuit breakers, transformers, cables, electrical loads of 
sensors and actuators which are directly or partly connected to energy 
prosumption operations in LEC.  

b. Field 

Involves physical equipment installed to protect, control, and 
monitor the process of the energy system. It includes the bay controller, 
protection relays, any type of intelligent electronic devices which gets 
and utilize process data from the energy system.  

c. Station 

Mainly represents the spatial aggregation level within the field level. 
The station comprises of data concentration, substation automation, 
functional aggregation, plant supervision, local Supervisory Control and 
Data Acquisition (SCADA) systems, etc.  

d. Operation 

This involves hosting energy system control operation within LEC. In 
the context of prosumption services operation comprise of virtual power 
plant management systems (aggregating several DER), Energy Man-
agement Systems (EMS), microgrid management systems, Distribution 
Management Systems (DMS) in generation and transmission systems, 
charging management systems for EV fleet.  

e. Enterprise 

Includes organizational and commercial processes, infrastructures, 
and services needed for prosumption services on LEC. With organiza-
tional process in LEC comprises of service providers, utilities, energy 

traders and the commercial processes comprises of logistics, staff 
training, asset management, work force management, billing, customer 
relation management, procurement, etc.  

f. Market 

Mostly reflects existing market operations which are possible across 
the energy conversion chain, such as energy trading, retail market, mass 
market, etc. 

4.4.4. Use case of DLT and AIoT for prosumption operations 
In order to depict how the convergence of AIoT and DLT support 

trust, data security, privacy, and price determination in local energy 
communities. ArchiMate modelling language is employed to present a 
use case scenario showing the applicability for evaluation of the devel-
oped architectural model to support prosumption services in LEC as seen 
in Fig. 4. The description of the notations and components used in 
modelling in the ArchiMate tool is out of the scope of this paper and is 
well described in The Open Group (2022). Accordingly, the modelling of 
the application of AIoT and DLT for as enablers for sustainable energy 
prosumption in local energy communities is depicted in Fig. 4. Findings 
from the literature suggest that the convergence of AIoT and DLT can 
unlock new business models for the incentivization of energy (Sandner 
et al., 2020). 

Fig. 4 illustrates a use case scenario of a LEC use case comprises of an 
energy prosumer in a residential area with its own RES generating en-
ergy from solar (or wind, hydropower), who also have its own digital 
identity stored in the DLT system such as Hyperledger Fabric or Ether-
eum which is one of the employed since it is based on a public permis-
sion network enabling an open and accessible energy sharing. Moreover, 
Hyperledger Fabric and Ethereum supports smart contracts, which can 
be used to write contract for energy trading and sharing in the Solidity 
language. Also, the proof of authority consensus mechanisms is pro-
posed, which will enable prosumers who sell renewable energy to 
approved transactions. In this use case the DLT based system and smart 
contracts are integrated with the AIoT module via a REST Application 
Programming Interface (APIs) which connects to smart meters, sensors, 
solar panels, and other physical infrastructures deployed in LEC to re-
cord in kilowatts the amount of energy produced, stored, and traded 
within LEC. 

Therefore, using the unique identity the energy prosumer can share 
and trade energy tokenized as assets using a digital wallet which con-
verts cryptocurrency to local currency such as Euros, US dollars, etc. 
(Anthony Jnr, 2024; Bokolo, 2022). Also, within the distributed ledger 
network orchestrated by the DLT based DApps the energy prosumer gets 
the status of an independent business actor operating autonomously on 
its own. By utilizing smart contracts, micropayments can be directly 
made to the energy prosumer, triggering the sharing and trading of 
energy across the LEC to other consumers. A consumer who needs en-
ergy then access the DLT system and request for energy for a specific 
period of time. An energy consumer can also request to purchase energy 
due to power outages or blackouts. Smart contracts calculate the fee for 
the kilowatt of energy required based on the current spot price from the 
local energy market operator (e.g. Nord pool, European Energy Ex-
change, etc.), for a kilowatt and prompts the consumer for payment. 
Once payment is made by the consumer who request for energy the 
prosumer is notified and the energy supplied to the local community 
grid is shared with the consumer. 

As suggested in the literature (Sandner et al., 2020), a pay-per-use 
payment or incentivization schemes could be deployed. Since the en-
ergy prosumer owns a digital wallet, where payment is transferred to by 
the consumer. The digital wallet is managed by smart contracts con-
nected to the DLT based DApps which stores energy related data. 
Additionally, AI can be employed on the data collected from IoT devices 
(smart meters, sensors, solar panels, and other physical infrastructures) 
to optimize and forecast energy production and consumption within LEC 
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for efficient operation of the prosumption services. The analyzed data 
from AI can be used for predictive and conditional maintenance based 
on the “AI Driven Energy Data Analytics” module to suggest a more 
regular maintenance of physical infrastructures resulting in less down- 
time of the electricity network across LEC (Sandner et al., 2020). 

4.4.5. Implementation, simulation, and experiment 
The implementation of the developed architectural model comprises 

of different components, such as a front-end, the AI based data analytics 
models, IoT devices, IoT server/gateway, and smart contract. Also, a 
decentralized application referred to as (DApp) which is a type of 
distributed, open-source software platform that is based on a peer-to- 
peer distributed ledger network rather than the conventional central-
ized single computer. A flow diagram for the implementation, simula-
tion, and experiment plan is shown in Fig. 5. 

DApp is implemented either as Hyperledger Fabric or Ethereum 
employed as the DLT platform to support optimal energy management, 
and control of energy systems in LEC thereby supporting citizen-centric 
presumption. The implementation modelling and experiments of the 
developed architectural model will be deployed on a minimum eighth- 
generation machine equipped with Intel core i-7 processor with 16 GB 
memory and Ubuntu Linux operating system. Minimum eighth- 
generation machine equipped with Intel core i-7 processor with 16 GB 
memory and Ubuntu Linux operating system For DLT development, the 
docker engine and docker composer will be used which will provide the 

development environment to set up the docker image and container on 
the virtual machine. 

Furthermore, Hyperledger Fabric, an open-source framework that is 
hosted by the Linux Foundation, will be used for client software toolkit. 
Hyperledger Fabric is used as compared to Ethereum as it enables the 
implementation of smart contracts, and also supports existing pro-
gramming languages such as Java, Javascript, Go, and service-based 
architecture (Mohanta et al., 2020). In addition, Hyperledger Fabric 
was chosen due to its ability to execute calls to external endpoints from 
smart contract (Mohanta et al., 2020). Using Hyperledger Fabric AI 
based models can be implemented with oracle services which can be 
integrated into smart contracts to support energy sharing and trading. 
Accordingly, smart contract will be programming in solidity program-
ming language which will be exposed to front-end Graphical User 
Interface (GUI) using different RESTful API. The Message Queuing 
Telemetry Transport (MQTT) communication protocol will be used to 
communicate between the Metering Devices, smart sensors, etc. and the 
IoT server, whereas Hypertext Transfer Protocol (HTTP) is used as one of 
the communication protocols between DLT and IoT server. For the front- 
end of the DApp HyperText Markup Language (HTML), Cascading Style 
Sheet (CSS), and JavaScript can be used. 

Additionally, open-source web development toolkits, such as Boot-
strap and jQuery will be used as suggested in the literature (Jamil et al., 
2021). Also, to implement the AI based data analytic model, PyCharm 
Professional 2020 will be used as an Integrated Development 

Fig. 4. Architectural modelling in ArchiMate to support prosumption services in local energy communities.  
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Environment (IDE) with Python programming language. Real-time data 
from IoT devices such as energy meters and intelligent sensors will be 
used. Deep neural network alongside support vector regressor are sug-
gested to be used to implement the “AI Driven Energy Data Analytics” as 
seen in Fig. 4. Besides, jQuery plug-in Notify.js will be used for gener-
ating a personalized energy prosumption management models and al-
gorithms for providing notification to the prosumers, energy consumers, 
and other actors. That subscribe the decentralized energy trading solu-
tion which is to be submitted as a transaction via a REST API deployed 
using the HTTP communication protocol (Jamil et al., 2021). The data 
are stored with the distributed ledger as asset which can represent any 
digital or physical object. The energy provenance is queries on Hyper-
ledger Fabric employing Fabric which keeps track of all energy trading 
transactions executed as well as the associated transition details (Dil-
lenberger et al., 2019). 

5. Discussion and implications 

5.1. Discussion 

The use of disruptive technologies in businesses fundamentally 
changes how enterprise operations are implemented and also how value- 
added services are delivered to the customers. Digital twins, cloud 
computing, virtual and augmented reality, data analysis, AI, IoT, and 
DLT are some of the disruptive technologies driving transformation 
across the society (Shaker et al., 2021). AI when deployed with IoT is 
referred to as AIoT, which is denoted as the Artificial Intelligence of 
Things (Gulati et al., 2020). Accordingly, this study argued that AI, IoT, 
and DLT are technologies that can be integrated to develop novel busi-
ness models, services products to improve energy prosumption services 
in LEC. The technological convergence of AIoT and DLT will drive the 
development of existing business models and the digitalization of the 
energy sectors to achieve immense efficiency gains. This study examines 
the significance of integrating AI, IoT and DLT to improve prosumption 
services in local energy communities. The findings further demonstrated 
how the convergence of AIoT and DLT support trust, data security, 

privacy, and price determination in local energy communities. Secondly, 
this study discusses on the potential of adopting DLT to improve the 
structures of energy markets and further explores the deployment of 
AIoT for enhancing the optimization, prediction, decision making and 
state monitoring during the operations of prosumption services in LEC. 

In this article, an architectural model for energy prosumption in local 
energy communities is developed to shows a possible implementation 
concept to support energy sharing and trading. The architectural model 
also employs AIoT and DLT to support a citizen-centric prosumption 
operations in local energy communities. Findings from this study ex-
amines energy policies as related to architectural design of citizen- 
centric prosumption services so as to facilitate the integration of en-
ergy with renewable energy sources within LEC. Findings from this 
study discusses issues related to how the applications of decentralized 
AIoT in smart grids could facilitate the integration of energy to decar-
bonize the power systems. Furthermore, this study suggests that the 
operation of energy in LEC is influenced by regulatory perspective, market 
perspective, and operational perspective as reported in the literature (Hua 
et al., 2022). The regulatory viewpoint involves the main issues needed to 
facilitate the engagement of energy which is mainly associated with the 
lack of decentralized and dynamic policy measures. Overcoming this 
challenge necessitate future practical and research based regulatory 
design to identify key assets, responsibilities models, and roles for en-
ergy (Hua et al., 2022). Similarly, from the market viewpoint the main 
challenge involves accommodating the new role of energy by designing 
suitable local market structures that align system benefits with indi-
vidual profits, which necessitates the setting up of pricing mechanisms, 
rulesets, transactions provenance, decentralized trading platforms, and 
automated auction schemes (Hua et al., 2022). 

Additionally, considering the operational perspective, issues related to 
the use of AI based machine learning models fitted with physical oper-
ations and constraints associated with the energy systems (Hua et al., 
2022). This demands the transition towards a more digitalized, con-
nected, and interoperable energy systems which provides seamless in-
teractions between digital systems and physical infrastructure deployed 
in LEC. Evidence from this study explores how to exploit the potential of 

Fig. 5. Flow diagram for implementation, simulation, and experimental plan.  
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AIoT and DLT to support the emerging role of energy in local energy 
communities to be integrated with the smart grids towards the decar-
bonizing of the energy systems. This study provides a comprehensive 
review of the literature from the aspects of the existing energy pro-
sumption operations and local energy communities in Norway and other 
regions. This study specifically focuses on the state-of-the-art research 
and applications of the AIoT and DLT in terms of supporting the 
decentralized intelligence for energy sharing, trading, and decision- 
making support during the energy prosumption operations. 

Therefore, findings from this study concludes that the incorporating 
of AIoT and DLT can support the integration of energy with the functions 
of governance, trading, policy, and control. However, this is attainable 
only if the critical challenges related the regulation, operation, and 
market are overcome (Hua et al., 2022). In this study, the developed 
architectural model enables the securely sharing of information among 
energy prosumer, consumers, and other actors within the LEC. The 
deployment of DLT based DApps, smart contracts, and decentralized 
intelligence enables the architectural model to provide a different level 
of data integrity, data access, privacy, data visibility, authenticity and 
security support to all stakeholders while sharing energy related data via 
a distributed method. Moreover, the architectural model ensures price 
determination to enable the traceability of energy source, energy 
sharing and trading in LEC based on a distributed peer-to-peer frame-
work that provide an efficient and stable data storage. Also, it can foster 
trust between different stakeholders such as the energy consumer, en-
ergy prosumer, local grid company, service provider/utilities, TSO, and 
DSO involved in the decentralized energy marketplace. 

5.2. Research implications 

In the current age of technological advancement, the energy sector is 
implementing disruptive technologies such as AI, IoT, and DLT 
providing automated and autonomous capabilities within LEC. Disrup-
tive technologies such as AI, IoT, and DLT which are showing tremen-
dous development and potential in their respective fields can be utilized 
to support energy prosumption operations towards a modularized and 
flexible energy sharing and trading operations. The use of these 
disruptive technologies opens up a wide range of possibilities such as 
enabling intelligent communication among energy systems with limited 
human involvement by reducing associated complexity faced in LEC. 
Accordingly, findings from this study present an architectural model 
developed based on the smart grid reference architecture developed by 
CEN-CENELEC-ETSI (2012) and the architecture for interoperability 
context setting framework (GWAC, 2008). More importantly, findings 
from this article present a use case scenario of prosumers that intents to 
securely share, and trade renewable energy enabled by AIoT and DLT 
technology. 

The prosumer is connected to the community grid via the DLT based 
platform which ensures that fair pricing via smart contract and data 
security and privacy concerns are re-enforced for safe energy trading 
transaction and incentivization of multiple stakeholders (enabled by 
smart contracts) in LEC. The developed architectural model demon-
strates a novel decentralized network framework that leverages 
advanced technologies to improve energy prosumption service towards 
a citizen-centric prosumer approach. The overall goal of this study is to 
provide a holistic and systematic approach of how to integrate AI and 
IoT as AIoT and DLT to accelerate sustainable energy prosumption in 
LEC. Furthermore, this study contributes to sustainable energy pro-
sumption to enable a reliable, low-cost, and effective energy production, 
consumption, storage, and trading framework. The approach proposed 
in this paper allows energy and consumers to control their usage of 
electricity as well as production based on decision support. This can 
contribute to reducing energy wastage, advancing the effectiveness of 
clean or green energy, and decreasing the consumption of fossil fuels. 

5.3. Practical implications 

In recent years, the convergence of AI and IoT as well as DLT has 
become a promising solution to improve data driven services in energy 
sector. An integration of the key features of these technologies can aid to 
achieve a fault-resilience and tolerant energy system. This is because the 
trustworthy and decentralized nature of DLT makes this technology 
ideal for integration with technologies such as AIoT to revolutionize the 
challenges in energy prosumption operations. The adoption of DLT in 
the energy sector can also help to address interoperability issues faced in 
LEC. The capabilities of decentralized intelligence can lead to smart and 
futuristic energy solutions. Synchronized AIoT and DLT tools can 
improve interoperability between different energy systems (e.g., Energy 
Management Systems (EMS), virtual power plant management systems, 
microgrid management systems, Distribution Management Systems 
(DMS), charging management systems for EV fleet, energy market op-
erations, etc.), incorporating multidimensional data from multiple 
sources (such as Historical Data, Open Data, Third Party Data, etc.). 

To the best of the authors` knowledge there are few research that has 
provided a decentralized citizen-centric prosumer approach that em-
phasizes on the potential implications using converging AIoT and DLT to 
improve the overall sustainable energy prosumption in LEC. The 
learning abilities of AI based ML can be integrated with DLT based 
DApps and smart contracts in order to improve “energy as a service 
business model” capability smarter and more autonomous and resilient 
to systematically help to minimize the disturbances and outages in LEC. 
In addition to this DLT can help to preserve data security, privacy, and 
maintain trust and transparency within the energy sharing network. 
Also, towards enabling the entire energy system to maintain situational 
awareness across the smart grid, fault detection, and restoration of 
electricity after receiving a procedure call of blackouts or outages. 
Whereas AI can create new insights based on the data produced from IoT 
devices for AI driven energy data analytics such as descriptive, diag-
nostic, data management, performance monitoring, prescriptive, pre-
dictive, learning, decision support and recommendation, and 
segmentation & collaborative filtering of information. 

6. Conclusion 

Disruptive technologies such as AI, IoT, and DLT can utterly revo-
lutionize future energy systems (Zhang et al., 2021). DLT and AIoT 
opens up new paradigms for energy as a service ecosystem especially in 
local energy communities. DLT enables the creation of a secured 
distributed ledger of data, where citizens are in control, govern and own 
their data, thereby monitoring access and sovereignty of their data. Most 
importantly, DLT and smart contract allows for the implementation of a 
distributed data-driven energy marketplace, where citizens as pro-
sumers can earn tangible rewards or be incentivized for sharing and 
trading renewable energy in LEC. Therefore, this article provides a 
comprehensive discussion of the significance of integrating AI, IoT and 
DLT to improve prosumption services in LEC In addition, this study 
develops an architectural model for energy prosumption in LEC that 
shows a possible implementation concept to support energy sharing and 
trading in LEC across Norway and beyond using design science approach 
based on a user-centred design method. The architectural model sup-
ports trust, data privacy, security, and energy pricing determination 
using AI and DLT based smart contracts to provides real-time energy 
trading monitoring, easy access, control, and immutable logs to unearth 
underlying energy demand and supply patterns thereby supporting 
citizen-centric prosumer approach. Finally, this study employs Archi-
Mate modelling language to present findings from a use case scenario to 
support a citizen-centric prosumption operations in LEC. 

One of the limitations of this study is that only secondary data was 
used in this research to present the use case scenario. Likewise, primary 
data from case study, survey, interview, etc. was not used. Also, no tool 
was implemented and validated to support sustainable energy 

B. Anthony Jnr                                                                                                                                                                                                                                  



Cities 152 (2024) 105198

14

prosumption in local energy communities. Further work will involve the 
implementation of a DApp either as Hyperledger Fabric or Ethereum 
employed as the DLT platform to support optimal energy management, 
and control of energy systems in LEC in Norway. For simulation, and 
experimentation of the architectural model, including details on the 
testbed setup, datasets, and evaluation metrics a minimum eighth- 
generation machine equipped with Intel core i-7 processor with 16 GB 
memory and Ubuntu Linux operating system. Real-time data from IoT 
devices such as energy meters and intelligent sensors will be used. A 
docker engine and docker composer will be used which will provide the 
development environment to set up the docker image and container on 
the virtual machine. For implementation of the AI based data analytic 
model, PyCharm Professional 2020 will be used as an IDE with Python 
programming language. The performance measures or evaluation met-
rics will include R2 score, mean square error, mean absolute error, and 
the root mean square error. 
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