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Abstract
Complex plasmawith a variety of continuous and discrete dust grain size distributions are simulated
in 2Dwithmolecular dynamics simulations with radial geometry to determine differences in self-
organizing phenomena tomore realistically represent the actual in situ variations in dust-size. The
standard deviation of particle sizeσ(a) strongly correlates with phase separation and coupling
parameterΓ for all distribution types.We observe local differences in bond order parameters and
Voronoi diagrams for different size distributions, and our results suggest that phase transition is
affected by continuous size distributions, particularly in the binary distribution case. Simulationswith
discrete size result in artifacts and discontinuities that are not found in the continuous distributions.
The use of continuous distributions is observed to be beneficial both formore realistic approximation
of complex plasma experiments and to study systems of strongly coupled particles in general.

1. Introduction

Self organizing phenomena govern the spontaneous global order in chaotic systemswhich determine the nature
of evolving structure, or lack thereof. Phase transitions and phase separation have been studied in coupled
systems of charged particles in the fields of condensedmatter, statisticalmechanics, plasma and complex plasma
physics [1–8]. Strongly coupled systems of charged particles, atoms,molecules and dust operate at different
spatial and time scales, however, the self-organizingmechanisms are the same.Dusty plasma experiments allows
us to study such strongly coupled systems at the scale ofmillimeters and seconds [9], which has significant
practical advantages. This scale-invariance also applies for simulations, which is obvious once units are
normalized, with the benefit of superior diagnostics. Hence, dusty plasma experiments and simulations are a
great tool for studying self-organizing in strongly coupled systems of charged particles acrossmany disciplines
[1, 4, 7, 10–12].

The liquid, crystal and lattice related phases, structures and transitions ofmono-dispersed particles have
been studied and classified in a variety of fields [3, 4, 13–17]. However, extending theory onmono-dispersed
dusty plasma to continuous distributions is challenging due to non-linear effects between particles where
essentially every particle is its own species. Further, phase separation has been studied in binary dusty plasma
[17–22].

A binary dusty plasma consists of neutral gas, electrons, ions and two species of dust with different radii a1
and a2 respectively, which is characterized by the size disparity a a a2 1= - ( ) ¯ where a2> a1. In said studies of
binary dusty plasma, size disparity has shown a linear relationshipwith phase separation in both simulations and
experiments [23, 24]. However, the degree of phase separationwas different for the same particle radii in in situ
experiment and simulation. It is non-trivial to achieve perfect agreementwith experiment and simulation as
simulations inherently rely on assumptions and simplifications. For instance, dust and plasma dynamics exist in
different time-scales and can not be easily simulated at the same time, and as such the simulations in [23] and our
simulations assume a static plasma unaffected by the dust charging. Further, it is convention to assume that the
size distribution is entirely discrete in simulations [23, 25, 26]whereas the dust particles used in the experiment
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has an error of 2% resulting in a continuous size distributionwith 2Gaussian peaks at the species’ respective
mean radii. In this paperwe challenge this convention by investigating the effects of continuous size
distributions.

It is unclear how a discrete versus continuous size distribution affects organizing phenomena in systems of
charged particles. As all real dusty plasma experiments have a continuous size distribution due to particle
fabrication errormargins, it is crucial to understand how this errormargin affects self-organizing phenomena.
This is especially important if the continuous size distributed dusty plasma experiment is used to infer a general
understanding of strongly coupled systems of charged particles with naturally discrete charge,mass and size
(such as an electron).

To study the effect of a continuous size distributionswe simulated discrete binary and various continuous
size distributions for dusty plasmawith a simplified radial 2D geometry with a newly developed code PPDyn.
The set of size distributions can be found in table 1 and visualized infigure 1.

Further, we developed a newway to numerically quantify phase separation for continuous size distributions,
extending themethods for binary species presented in [23]. To compare our results with systems of strongly
coupled charged particles in general, we have used typical diagnostics such as coupling parameter, orientational
bond order, translational bond order, voronoi diagrams as well as a per particle force contribution breakdown.

2. Simulation setup andplasma forces

The dusty plasma is simulated in two steps, where first the plasmawas simulated by [23]without any dust in a
plasma chambermodelling the geometry and conditions of the real experiment in [23, 24]. This simulationwas
donewith the SIGLO code (SIGLO-2D version 1.1, Kinema Software 1996–2003) [27], which adopts a fluid
approach solving the hydrodynamic transport equations for charged particles.

Next, the dust particles are simulated in a static plasma, where the plasma induced forces are collected from
thefirst simulation. Binary dusty plasmas have been simulatedwithmolecular dynamics codes [23, 25, 28, 29].
However, we have developed a new fully parallel andC-compiled Python based code called PPDyn tailored
specifically to the case of dusty plasmas. Specifically, our codes provide easy implementation of different size
distribitions such as:

• Discrete where all the particles are defined exactly by a given set. This is accurate for particles of discrete size
and charge.

• Gaussian distribution about one ormultiplemean radii, which emulatesmanufacturing errors in real dust
experiments such as [6, 23, 24, 27].

• Uniformdistributionwithin a range, which is similar to space plasmas such as Saturns rings [30]

In this investigationwe have simulated 6000 particles for one secondwith 3000 timesteps in 2Dwith particle size
distributions according to table 1. The code uses the velocity Verletmethod [31] tomove the particles. The

Table 1.The set of selected radii for the dust particles for the different
distributions in the 2D runs forDiscrete Binary, Uniform,Gaussian and
BinaryGaussianwith the standard deviationσ as a fraction of themean value
μa for theGaussian distributions. The distributions are centered on amean
μa such thatμa = 3.5μmwhereΔa[μm] refers to the difference between the
twomeans. The variations in column (a) and (d) are typically referred to as
‘min’ and ‘max’ respectively to indicate the degree of the size variation in
figures.

Dist Variation

(a) : min (b) (c) (d) : max

DiscBin Δa[μm] 0.1 0.3 0.7 1

Uni Δa[μm]a 0.1 0.3 0.7 1

Gauss μa[μm] 3.50 3.50 3.50 3.50

σ[μa] 0.02 0.04 0.1 0.2

BinGauss Δa[μm] 0.1 0.3 0.7 1

σ[μa] 0.005 0.02 0.4 0.6

a HereΔa refers to the difference between the largest and smallest particle.
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simulated chamber has a simple radial geometry extending 15mmradially from the center of a circular 2D
chamber. The geometry in the real experiment in [23] has awall at about 18 mm, however the potential well, as
seen infigure 2 prohibits dust particles from exceeding past 12 mm radially. As such, the edge effects at the
physical walls of the chamber are neglected, as theDebye length is 300μm. The dominating forces considered in
the simulations are the ion drag force, the electric field, neutral drag, and inter-particle repulsion. The plasma
parameters can be found in table 2.

2.1. Implementation of forces
The plasma is not directly simulated in PPDyn and the forces acting on the dust particle have been adapted from
previouswork [23] as infigure 2. The forces are spatially interpolated to the particle position.

The data describing the forces impacting the dust are collected fromSIGLOby [23], where plasma has been
simulated in a chamberwith the same neutral gas density and geometric dimensions as used for the simulations
in this investigation. The plasma interactionwith the dust particle of radius a is calculated according to the ion
drag Fion and the electric field in the chamber FEL from [23] for a= 3.5μm infigure 2(a) and a range of radii
in (b).

As seen infigure 2(b) the net force Ftot reaches an equilibrium around r= 11mmdepending on the particle
radius. To save computational resources the dust particles are loaded at rest close to r= 11mmas seen in
figure 3a.

2.1.1. Dust charge
The dust charge is non-trivial to solve analytically, and is perhaps best solvedwith a combination of experiments
and numericalmethods. Regardless, wewill provide a brief explanation of dust charge, and themost important
factors impacting it. The ion and electron currents Ii and Iewith respective number densities ne and ni to a
particle with radius a and chargefp< 0 in a stationaryMaxwellian plasma is given by thewell knownOrbital
Motion Limited (OML)model [32]
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Figure 1.The distribution of of particle radius for the different types distributions for increasing range of particle radii a for (a), (b), (c)
and (d) respectively. Blue is Gaussian, red is uniform andblack is binaryGaussian. Thismakes up the 12 datasets used for the 2D-
simulations with distributions of radii of 6000 particles.
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Where kb is the Boltzmann constant and e is the electron charge. The charge numberZd of the particle is given by
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Wherewe can equate the ion and electronOML currents and solve forffl numerically.
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ForArgon, andTe/Ti= 100we obtain 2.41f = -ˆ , such that ourOML charge isZd≈ 6300.However, we do not
have a stationary plasma, and as such ion streaming should be taken into account. For v v0.5 200i i th,< <


it has

been shown thatZd increases asmuch as by a factor of 2 in [33].We have v v1 i i th,<


, meaning that a greaterZd
due to streaming ions is appropriate in our situation. From [34] ion-neutral collisionswillmodify the ion curernt
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Whereℓmfp is themean free path for ion-neutral collisions. As our particle is negatively charged, the resulting
ion current due to ion-neutral collisionwill be larger than in the collisionless case, overall reducing our charge
numberZd.

Lastly, we consider the dusty plasma effect, orHavnes parameter [35, 36]PH, given by

P
Z n

n
6H

d d

i,0

» ( )

Where ni,0 is the undisturbed ion density i.e. the plasma as if therewere no dust particles. Enforcing charge
neutrality we have ni,0= ne,0+ Zdnd, andwe obtain PH≈ 0.003 from the parameters in table 2, where nd is the
2Dnumber density. However, if we translate our dust density from2D to 3D such that our cloud is a sphere with
the same radiuswith n n 4.8 10 md, 3D d

3 2 12 3= = -· we obtain PH>> 1, resulting in electrons being screened
away from the dust cloud such that ne is effectively zero andZd= ni/nd. But, this assumes an infinitely large

Figure 2. In (a)weplotted the forces felt by a dust particle of size a = 3.5μm from ion drag, Fion, and the electricfield, Fel, as a function
of distance from the center of the chamber r. The values are from the SIGLO simulation in [23]. Reprinted (figure)with permission
from [23], Copyright (2021) by theAmerican Physical Society. Here, the force from the ion drag is uniformly increased by a factor of 2
in the implementation (but not in the plot), as also seen in the total force being a sumof the forces for Ftot. Note that r is considered in
the radial direction, effectivelymaking this a 1D case. In (b)we have plotted Fel + Fion for a range of particle radii to show their
different y-intercept (where Fel + Fion = 0).
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Maxwellian background plasma, and semi-infinite cloud-size [35], and cloud thicknessHwhereH>> λS
which is not our case. In fact, we have plasma production in themiddle of our cloud, and it is unlikely that our
3mm thick cloud can entirely contain the plasma discharge such that no electrons enter the cloud due to the
dusty plasma effect.We suggest that electron screening from the dust cloudwill push against the electron
discharge in the center of the chamber, such that the cloud is pushed further out radially, however it will not
substantially alter the results. Further, [23, 24] have good agreement between simulation and experiment
without accounting for this effect in theirMD simulation.

Overall, it is hard to know the exact realistic charge, asmany effects and parameters affect not only the dust
charge, but also each other.With the effectsmentioned, and considering that we are basing our charge of
another simulationwhich already has its own set of assumption, we suggest that the actual charge is probably
within an order ofmagnitude of theOMLvalue ofZd= 6300. As such, we started outwith the results used in
[23], and did some changes to optimize for computational time. In [23] for a= 3.5μm the charge numberwas
found to beZd= 9460 for the SIGLO simulation.However, using [23] as our benchmark, and to lower
computational expense, we increased the dust charge by a factor of 5. Further, increasingZd did not impact the
phenomena of interest in this study, as long as the relative charges remain the same, however it substantially cut
downon the computational time needed to reach a steady state. Additionally, slightly artificially increasing the
neutral drag caused the system to reach the steady state faster without impacting results.

Onemajor limitation of our dust chargemodel is that the dust charge is static. Realistically, dust is charged
dynamically according to the plasma conditions at the particle position. From equations (1), (4) and (5)we see a
dependence on temperature, number density andmass for each species, in addition to the individual velocity
distributions. Futurework should consider a dynamic chargemodel, possibly implementing a hybridmethod
with a simple fluidmodel of plasma and dust as point particles. The effects of charge fluctuations are found to
cause dissipative and instabilitymechanisms for ionwaves in the plasma [37, 38]. However, we assume that the
greatest contribution to our dust dynamics is the size differences’ effect onZd. Even if we consider a dynamically
chargingmodel with dependence on r in our radial symmetry, a binary species will separate according to their
size, as the larger particle alwayswill obtainmore charge.

2.1.2. Static plasma forces
The following calculations follow themethods used by Schütt [23] based onHutchinson [39], Khrapak [40, 41]
andBarnes [42].

E f= -
 

is the electric field in the simulated plasma chamber. The force acting on the dust particle due to
the electricfield is given as [23]

Table 2.Plasma parameters for the SIGLO simulation in [23] and our dusty plasma simulation. The
electron densities are approximations for the simulation box, where the detailed plot can be found in
[23]. rmin is the distance to the closest neighbor.Te and ne are electron temperature and number
density, Ti is ion temperature, P is neutral gas pressure,λS is the screening length, Urf is the electric
potential difference and νrf is the rf frequency andℓmfp is themean free path of ion-neutral collisions.
ā is themean dust particle radii, nd is the dust number density,Zd is the dust charge of particles with
mean radius ā, and rminá ñ is the average distance to the closest neighbouring dust particle.

Plasma parameters

Ti 300K

Te 100Ti

ne ≈1014m−3

P 30 Pa

λS 300μm

Urf 75V

νrf 13.56 MHz

ℓmfp
a 60 μm

Dust parameters

ā 3.5 μm

nd 2.3 · 108m−2

Zd 50 000

λS/a >100

rminá ñ 200μm

a Here, v=
n

ℓ .
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The ion streaming velocity vi is given as
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Where a is the dust particle radius,m, v and n is themass, velocity and densities of the respective species where
the subscript i is for the ions and
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with ion thermal velocityVT,i [23]
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In our case, Hutchinsonʼs approximationTe= 100Tifits well [23] for electron and ion temperatures
respectively, and the collisionless orbit force is [39]
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where u= vi/vT,i [23]. TheCoulomb logarithm lnL is given by [40]
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Figure 3. Simulation runwith 6000 particles of sizes 3.35μm in black and 3.65μm in red, ran for 1 secondwith radial geometry. (a)
shows the initial positions of the particles, with (b) showing thefinal positions of the particles. (c) and (d) are the respective radial
distribution of the species with b̄ being themean radius for each species.
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with the impact parameter for 90 degree scattering b90 given as

b Z e m v4 16d i90
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0 eff
2pe= ( )

whereλeff is the effective screening lentgth taken from [39] such that
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whereλDe is the electronDebye length such that k T n eDe B e e
2

0
2l e= . Finally, the total force found in the plasma

chamber simulations impacting the dust particles of radius a= 3.5μm as seen infigure 2 is given by
Ftotal= Fel+ 2Fion, where Fion is fromSIGLO simulation in [23] seen infigure 2.

2.1.3. particle-particle repulsion
The particle-particle repulsion between two dust particles at distance r is governed by thewell known screened
Coulombpotential

V r
Q Q

r

r
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S

1 2
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⎠p l

= -
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WhereQ is the charge of the respective particles andλS= 300μm in all the simulations [23]. From table 2 the
screenedColoumbpotential is appropriate. The particle repulsion is calculated between all particles.

2.1.4. Neutral drag
The drag force due to neutral gas is is based on the Epstein formula [44]

N v m1.33 19n n nth,b d p= ( )

WhereNn is the number of neutrals given byPV=NRT,mn is themass of the neutrals and

v
k T

m

8
20B

n
th,n

p
= ( )

The force felt by the dust particle is given as

F va 21drag
2b= ( )

The forces arefirst computed for a particle with radius a= 3.5μm, then scaled according to each force’s
dependence on a.

3. Results

Herewe present a variety of diagnostics to quantify the different size distributions’ phase separation, phase
transition, structure, coupling parameter and order parameter. Comparisons to otherworks are presented
alongside the results, while a broader discussion is found in the discussion section.

3.1. Phase separation
First, we investigated the particle distributions’ effect on phase separation. Phase separation has been shown in
binary dusty plasma experiments inmicro-gravity aswell as simulations [23, 24], where simulations using
discrete binary size distributions had less separation than the experiments. Here, continuous and discrete size
distributions have been simulated to investigate this discrepancy further.

3.1.1. Discrete distribution
For discrete binary distributions, the phase separation can simply be quantified by themean radial position of
each species bī and computing the ratio b b2 1

¯ ¯ for the respective species. Infigure 3we presentfinal positions
and radial distributions of simulated particles. Infigures 3(c) and (d) the dashed vertical line shows themean
radii b̄ for initial andfinal time. As expected, we observed that the larger red particlesmove towards the edge and
the smaller black particlesmove towards the center. Infigure 4(a) the time evolution of b b2 1

¯ ¯ is plotted for
different size disparities òwhere

a a a 222 1= - ( ) ¯ ( )

In our simulations a2 and a1 are themean radii of species 1 and 2 and ā is themean value of a2 and a1.We clearly
see a faster and greater degree of phase separation for larger size disparity infigure 4, which corresponds to
results in previous work [23, 24].
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3.1.2. Continuous distribution
To quantify the order of separation in the continuous case, amethod different than b b2 1

¯ ¯ is used as essentially,
6000 species with 6000 different radii were being dealt with. Infigure 5 the particle size is plotted versus radial
position for the continuous distributions’ smallest (a), (c), (d) and largest (b), (d), (f) size disparities. Infigure 5
we observe that for the largest size disparities particle size seems approximately proportionally correlated to
radial position indicating phase separation.However, for the smaller size disparities, it is not clear whether this is
the case.

We also observe a larger dispersion close to r= 12 mm in figures 5(b) and (f). As the dispersion is larger at the
extremes of theGaussian curve, we should expectmore dispersion at the edges for a conmpletely separated
Gaussian particle size distribution. Additionally, the outermost shell needs themost particles tofill, and again
there being fewer andmore dispersed particles at the extremes of theGaussian distribution contributes to this
effect. Lastly, a sharper field gradient f


at the edges of the potential well should also contribute somewhat to

this effect, and largely explains whywe don’t observe the same at the inner edge as there the gradient is very low.
However, we don’t seemore dispersion at the outermost edge in the uniformdistribition infigure 5(d), so the
gradient likely only contributes to less dispersion at the inner edge.

In order to quantify the phase separation also for continuous size distributions we divide space radially into
20 segments ri. Then, the average particle radii aī is calculated for the corresponding segment radially. Nowwe
canfind

a

r
23b

D
D

= ( )

byfitting the line

a r C 24i i ib= +¯ ( )

WhereCi is some constant.With the discrete particle distributionswe have used ò as in equation (22) as a
measure of disparity. However, for continuous distributionswe instead compute the standard deviation of
particle sizeσ(a) for each size distribution as ameasure of size disparity.

Infigure 6we have plottedβ for the different size distributions, and it suggests that the standard deviationσ
(a) predictsβ regardless of distribution type.Macroscopically thismeans that the degree of phase separation is
independent of distribution type, and only dependent on overall standard deviation of the particle sizes. The
deviations from a perfect linear relationship has been likely due to how the forces scale non-linearly with a, and
each distribution type caused a different local distribution during and towards the end of the phase separation.

Further, the separation forces are a result of Fion, Fel and interparticle repulsion, which for each particle
depends on it’s own size, and the size of neighbors. As such, we suggest heterogeneity that depend on the size
distrbutions’ individual topoligy’s effect on howparticles populate the spacewith respect to the static forces. In
figure 5we see how the particle size distribitions’ topoligymanifests itself in the radial position.Hence, the linear
fit ofβ is weighted according to Nd , which is the number of particles at a small section radially withwidth δr, to
take some of the size distribitions’ different radial position into account. Further, we suggest that some particle
size distribution topology can be incorporated in an improvedmodel forβ, but as its effect is not dominating
developing such amodel is outside of the scope of this paper. However fromfigure 6 the variation inβ is not
dominated by this heterogeneity, and as such theweights in ourfit is considered sufficient to showσ(a) as a
predictor of separation regardless of size distribution.

Figure 4. Simulationwith 6000 particles of binary sizewithmean radius a m3.5m=¯ for different size disparity òwhere
a a a2 1= - ( ) ¯. In (a) the evolution of the systemwith the ratio of themean radius b b2 1

¯ ¯ is shown over time. In (b), the average value
of b b2 1

¯ ¯ over the total timeB is shown for different ò.We observeB ∝ òwhich agrees with previous work [23, 24].
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For instance, in distributions with a higher proportion of larger particles, the outermost particles have a
greater repulsion, effectively pushing the rest of the particles further towards the center and offsetting the
position of the static forces seen infigure 2. This effect is larger for the uniform and binaryGaussian distribution,
and smaller for theGaussian.

Micro-gravity experiments have been conductedwith binary dusty plasmawith size disparities ò= 0.05 [45]
with great degree of separation. Infigure 3we have ò= 0.09 and comparable degree of separation, at least from
what is discernible visually in the two cases.

Notice that the binaryGaussian distributions have a greaterσ(a) than its binary equivalent infigure 6.Here,
equivalent refers the discrete size disparity, where the separation between the binary species’ radii are equivalent
to the separation between themean values for the binaryGaussian distributions. In otherwords, the real
experiment with some error for the binary species’ radii, will for the same discrete size disparity have a greaterσ
(a), resulting inmore separation. As such, one should expectmore separation in a real experiment than in a
simulationwith discrete sizes for the same discrete size disparity.

In [23] the experiments also observed larger degrees of separation than the simulations, possible due to the
same effect. This effect is due to half of each species having a larger size disparity due to the twoGaussian

Figure 5.The radial distance from the center of the chamber r versus particle radius a for the smallest ‘min’ and largest ‘max’ size
disparity for binaryGaussian, uniform andGaussian distributions. For the smaller size disparities we observe bonds forming at the
outermost r. For the largest size disparity we see a correlation between a and r, where the uniformdistribution suggests a ∝ r.

Figure 6.The slopeβ of thefitted linewhere a r Ci b= +¯ , where aī is the average particle radii within one of 20 segment of radial
distance from the center of the chamber riwhere r is adapted to contain every single particle such that r r rmin , maxi j jÎ ( ( ) ( )) versus
the standard deviation of the particle radiusσ(a). The linewasfittedwithweights proportional to Ni whereNi is the number of
particles in theith segment.We observeβ ∝ σ(a), which agrees well withB ∝ ò for the discrete binary case.
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distributions, and the other half having a smaller size disparity. Fromour results it appears that this does in fact
not cancel out, and overall leads to larger degree of separation. It is unclear whether the discrepancies between
simulations and experiments can be entirely explained by discrete vs continuous size distributions. All dust-
plasma effects are neglected due to different scales in the simulations, which likely is a considerable contribution
to the discrepancy.

3.2. Coupling parameter
Systems of charged particles are considered coupledwhen theCoulomb energy per particle is greater than the
thermal energy. The respective energies’ ratio is called the coupling parameterΓ and for a screenedCoulumb
potential is given [46]

Z e

k Tr
exp 25d

b WS

2

kG =
á ñ

-
( ) ( ) ( )

WhereT is the temperature of the dust particles, 〈Zd〉 is the average charge number and rWS is the 2DWigner-
Seitz radius given by
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Where η is the number density, which for a 2D system is given per area, andκ= rWS/λSwhereλS is the
screening length. A system is strongly coupled forΓ> 1, and crystalline structures are found in systems of
charged particles withΓ> 168± 2 [2]. In table 3 the coupling parameter is computed for the different
distributions in our simulations, where largerσ(a) correlates with lower coupling parameter.

From figure 7, which shows the coupling parameterΓ as a function ofσ(a), we observe that
alog 1 sG µ( ) ( ). As such, increasing the standard deviation in particle size exponentially degrades coupling.

For the points infigure 7 atσ(a)≈ 0.2μm there is large variety in the coupling parameter, suggesting that the
different distributions have some effect on howΓ depends onσ(a). Further, linear proportionality agrees better
within each distribution type separately than as an overall trend across all distributions. Overall the uniform
distribution has the largestΓ and the smallestσ(a).

From equation (25) the dominating variable is the temperature of the dust particles, which interestingly
infers thatT alog sµ ( ( )). If we consider temperature as ameasure of entropy, and largeσ(a) as a disruption in
the order, it can help understand this relation.One could argue that the differences in temperature is a result of
the simulation not reaching a steady state. However, the runs are initialized the sameway and are run for the
same amount of time, with the only difference being the size distribution. As such, the relation betweenσ(a) and
temperaturemust be the result of non-linear effects from the sumof particle interactions.

However, we here assume constant particle charge, where realistically the charge is dynamicwith
fluctuations as discussed in section 2.1.1.We suggest that charge fluctuationswill induce randommotion in the
dust species, effectively increasing the dust temperature reducingΓ. Further, the dynamic charging is strongly
space dependent, where local variations in plasma conditions will determine the dust charge. Charge
fluctuationsmight perturb the structure locally or globally, inducing dust acoustic waves, where dynamic charge
has proven dissipative in [37, 38].

Forσ(a)< 0.1 infigure 7, which corresponds to a ratio of about a a 0.03s »( ) ¯ , we observeΓ
corresponding to a solid phase, indicating a solid Coulomb crystal [8]. However, forσ(a)> 0.1 the coupling
parameter indicates a liquid phase. If we compare the discrete binary and the binaryGaussian distributions, the
relation betweenσ(a) andΓ is very different, particularly close to the phase transition. For the solid phase the
binaryGaussian has slightly greaterΓ than the discrete binary, while for the liquid phase the binaryGaussian has
significantly lower coupling parameter (by a factor of 4). The binaryGaussian distribution has the largest
difference in coupling parameter from solid to liquid (column (a) and (b) in table 3).We argue that the binary
Gaussian distribution is themost complex, and as such can be expected to be the least predictable. As such, phase

Table 3.Coupling parameterΓ for increasing size disparity
from (a) to (d) respectively for the different size
distributions.

Coupling parameterΓ

Distribution (a) (b) (c) (d)
Binary 220 144 35 16

BinGauss 291 38 26 17

Uniform 700 402 107 50

Gaussian 203 86 30 12
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transitions should be expected to behave quite differently in simulationswith discrete binary distributions
compared to real experiments with twoGaussian distributions.

Cylindrical dusty plasma experiments with layered ring crystals have shown coupling parameters in the
range 370–490 forκ in the range 1.7 to 2.4 [25]. Our simulations haveκ= 0.4, whereΓ/κ diagrams grow
exponentially in [8], resulting in good agreement between ourGaussian distributionwith error of 2% and the
results in [25]. However, the size error of the dust particles were not shown in [25], only themean
radii a m2.55m=¯ .

Numerical studies have shown a exponential proportionality of bothκ andΓ to a/λS [26], suggesting that
continuous size distributions have non-linear effects on particle coupling. Our results suggest a similar effect as
seen in the differences already discussed infigure 7 and table 3, however the studies in [26] did not use a
continuous size distribution but particles with radius a= 1μm, which is discrete and smaller than our particles.
Overall, we show that the distribution type impacts coupling and phase transitions in a non-linear way, which
has been inferred fromprevious works [8, 26] but not explicitly shown.

3.3. Local structures
Next, the local structure is quantified and examined. Infigure 5 there are bonds forming for the smaller size
disparities in (a), (c), and (e), which are not present for the largest size disparities in (b), (d) and (f). This suggest
that there are different local structures both radially and for the different size disparities.

Pair correlation functions, orientational bond-order plots, andVoronoi diagrams are produced to
investigate the distribution types effect on local structures. The pair correlation and bond order has been used to
determine the phase of strongly coupled systems [4, 47].

For the translational pair correlation and orientational order plots the particles have been divided into 4
regions radially in order to compare and isolate the local differences. Due to different levels of separation, and
different size distributions, different particle sizes populate each of said 4 regions. There is some overlap between
the regions to compensate for lowparticle number in the innermost and outermost region.

It’s been shown that 2D systems always have long-range fluctuations disrupting order [4, 13], such that our
results will not be the same as in a 3D systems. It has also been suggested that freezing is a two-stage process in
2D,first undergoing a hexatic phase, which is not present in 3D [4], whichwill be discussed later.

Figure 7.The coupling parameterΓ versus standard deviation of particle sizeσ(a) andσ(a)−k, in (a) and (b) respectively, for all the
distributions. The dashed line atΓ = 168 represents the phase transition between solid and fluid. The individual distribution types
appears to be affected differently, with alog sG µ( ) ( ) for uniform anddiscrete binary in (a), and alog ksG µ -( ) ( ) for Gaussian and
binaryGaussian in (b), with k ≈ 0.3. Note that the discrete binary and binaryGaussian have different scaling forΓ andσ.

11

Phys. Scr. 99 (2024) 055606 GHolen et al



3.3.1. Translational pair correlation function
For a given particle it has been investigated howmany particles δNi are found at a distance (ri, ri+ δr) such that

g r
N

r r
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2
27i

i

ir
d
p d

=( ) ( )

Where ρ is the particle density. Averaging over all particles we get the translational correlation function g(r),
which indicates the range of the order of the system and gives the average particle distance.

Infigure 8 the translational correlation suggests strong translational order for smaller size disparities with at
least 3 distinct peaks. For the larger size disparities the translational bond order is weaker, with atmost 2 distinct
peaks. Additionally, themean particle distance is smaller towards the outside of the circle which is where the
forces acting on the particles are strongest.

3.3.2. Orientational order
To further quantify the order we have used the orientaional bond order [48] by assuming a hexagonal structure.
A perfect crystal lattice will be equiangular hexagonal in 2D [49], whereas in 3D it will have BCC (BodyCentered
Cubic) crystal structure [50]. Hence, by quantifying howhexagonal our structure is, we also quantify the extent
of a 2D crystal lattice structure. Next, we draw the bonds froma given particle to its closest 6 neighbors, where
the angle θi is the angle between each bond and some common vector pointing radially from the given particle to
the center of the chamber. The orientational bond order is given by
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WhereM= 6 andΨ is a complex number ofmagnitude |Ψ|� 1. Further, we evaluate the orientational
alignment of the closest six neighbors for any particle pair i and k separatedwith distance r r ri k= -

 ∣ ∣.
Averaging over all particles we obtain [51]

G r r r 29k j6 = áY Y ñ
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The orientational order infigure 9 has the same overall trend as the translational order;more ordered for smaller
size disparity.

3.3.3. Voronoi diagrams
A thirdway to evaluate the order in the hexagon is done by quantifying howmuch each bond to the closest 6
neighbours with length li deviates from the average bond lengthμl. A perfect hexagonwill have all li= μl. Hence,
a bond length parameter L is given by
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WhereM= 6 corresponding to the closest 6 neighbours. CombinedwithΨ6, we obtain both ameasure of equal
bond length and equal bond angle. Infigure 10 the product L ·Ψ has been plotted as an overall indication of the
hexagonal structure per Voronoi cell. Letsfirst consider the discrete binary and binaryGaussian distributions,
where for the smaller size disparities infigures 10(a) and (c) there are islands of hexagonal lattices separated by
comparable islands of dislocations. However, for the larger size disparities wemostly observe a hexagonal lattice
with few dislocations for the discrete binary infigure 10(b), particularly along the separation border between the
two species at about r= 11 mm.However, the binaryGaussian in (d) has some small islands of hexagonal shape
withmostly non-lattice structuring.

Next, for the uniformdistribution in figure 10(e)we observe themost structured hexagonal lattice, with only
some dislocations. Unlike the discrete binary, there is no separation border between the two discrete species
causing dislocations for the uniformdistribution. In (f), we observe the smallest degree of hexagonal lattice
structure. In both 10(e) and (f), the structure and lack thereof, respectively, appears uniform in the interval
r= (10, 12)mm.

Lastly, theGaussian distribution infigures 10(g) and (h)has the least overall structure in their columns.
Further, it appears that themore structured regions in theGaussian distributions are populating themiddle of
the particles’ radial domain.

Overall, we observe that the different particle size distributions’ topology correlate withwherewefind the
hexagonal lattice structure radially. The structured regions are where the neighbouring particles are closest in
size, whichwill depend on the particle displacement due to separation and the probability that the neighbouring
particles will be close in size. Now, tofill the outermost layer we need the largest number of particles, whichwill
also be the largest particles due to the separation.However, given aGaussian particle size distribution, the size
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variationwill be greatest at the extremes, such that the outermost layer should have less structure, as seen in
figures 10(g) and (h).We observe equivalent effects for the other distributions.

Further, we observed different behavior for the discrete binary and continuous distributions. In particular,
the discrete binary distribution appears to getmore structured for larger size disparity while the continuous
distributions suggest less structure for larger size disparities. For large size disparities the discrete binary dust is
almost entirely separated, effectively resulting in twomono-dispersed species separatedwith amixing layer with
some dislocations as seen infigure 10(b). However, we don’t see the same behaviour for any of the continuous
distributions despite comparable levels of separation.

Infigure 11 the average of the product 〈L ·Ψ6〉 is plotted against the standard deviation of particle radiiσ(a)
for each distribution type.Here, the distribution type does not seem tomattermuch, leaving the parameterσ(a)
as the dominating predictor of 〈L ·Ψ6〉. Comparing figure 11 tofigure 7, the coupling parameter hasmuchmore
variation depending on distribution type, indicating that the coupling parameter ismore dependent on each
distribition’s individual topological differences.

The number of higher peaks are observed to be decliningwith respect to r infigure 9 for all distribitions.
However, the uniform andGaussian distributions appear to retainmore peaks better, particularly in the second
column infigure 9.

Comparing the discrete binary and binaryGaussian distributions, we see large differences infigure 10.
Futher, while the differences are smaller, we still note some differences infigures 9 and 8, such as the shape of the
outermost segment (blue line) in column 3 and 4. As such, we have demonstrated that a real experiment with
twoGaussian size distributions and a simulation of two discrete species can behave quite differently. This
suggests that using binaryGaussian distributions in simulations can help better approximate real experiment
behaviors such as in [23].

Figure 8.Translational pair correlation function g(r) for 4 sections radially. The rows indicate distribution types discrete binary,
binaryGaussian, uniform andGaussian, respectively. The column indicates size discrepancywith increasingσ(a) from left to right.
On the left there are several peaks indicating a solid phase and long range order. Note the slight differences in binary and binary
Gaussian, particularly for the blue line, indicating that discrete and continuous binary distributions do not behave exactly the same.
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3.4. Force per particle
As outlined in section 2.1 the particles will feel the effect of the ion drag, electricfield, inter-particle repulsion
and neutral drag. For a system at steady state, the sumof the forceswill be zero, with zero neutral drag, such that

F F F 0 31el ion repc+ + = ( )

Where Frepc is the repulsive force radially. Further, when Fel= Fion, which is the y-intercept infigure 2, we
also need the repulsive force to be zero for net zero forces at the steady state.Moving away radially from the point
where Fel= Fion, it follows that Frepc∝ Fion+ Fel assuming a steady state.

Formono-dispersed particles, the point where Fel= Fionwill be the same for every particle as the forces
depend on particle radii a. However, for binary particles, therewill be two such points, and for continuous size
distributions every particle will have a unique profile for Fel and Fion (as seen infigure 2).

Infigure 12 the forces per particle have been plotted for the largest size disparity for the discrete and
continuous binary distribution in (a)–(b) and (c)–(d) respectively. First, we notice a discontinuity for the discrete
binary in (a) and (b) at the separation border slightly above r≈ 10.5.However, for the continuous binary
Gaussian in (c) and (d)no such discontinuity was found. Infigure 10(d)wenoted a breakup of hexagonal
structure at said discontinuity infigures 12(a) and (b)whichwas not present in the continuous distributions.
Essentially, the binaryGaussian size distribution results in small differences between the forces acting on the
particles, which in any real experiment would be the case due to smallfluctuations in Fion and Fel aswell as
dynamic charging of the dust particles. As such, the discontinuity and breakup of structure at the discontinuity
has entirely been a simulation artifact and not realistic.

Next, we observe that the repulsive force Frepc is proportional to the sumof the static forces Fion and Fel in
figures 12(b) and (d). However, they’re not equal which indicates that the system is not yet at rest. Further, the
point where Fel= Fion (sumof forces is zero), which corresponds to the discontinuities infigure 12, is clearly

Figure 9.Orientational pair correlation functionG6(r) for 4 sections radially. The rows indicate distribution types discrete binary,
binaryGaussian, uniform andGaussian, respectively. The column indicates size discrepancywith increasingσ(a) from left to right.
On the left there are several peaks indicating a solid phase and long range order. Note the differences in binary and binaryGaussian,
indicating that discrete and continuous binary distributions do not behave exactly the same.
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defined for the discrete binary infigures 12(a) and (b) as they have the exact same size and thus the same point
where Fel= Fion. However, for the continuous distribution in (c) and (d)where every particle has a different
point for Fel= Fion the zero point has dispersion correlatedwith particle size dispersion. As particles will be
pushed towards the Fel= Fion point, and this points being different for every particle, it will result in a shear force
disrupting the lattice or hexagonal structure. Ultimately, the size in our case is regulating the dust particle’s
charge, so Fel= Fion depends on particle charge only. In a real experiment, the particles will charge dynamically,
and as such the Fel= Fion point will change dynamically for every particle (not tomention that Fel and Fionwill
fluctuate), perhapswiggling about a time averaged point. As such, the case infigures 12(a) and (b)where
Fel= Fion point is clearly defined is not realistic and also ultimately a simulation artifact.

4.Discussion

In our diagnostics we observe both similar and different behaviour for discrete and continuous size
distributions.We have already discussed andmade some comparisonswith other work for each specific
diagnostics type.Here, wewill take a holistic look at our results and discuss the impact of continuous vs discrete
size distributions in the context of existing simulations and experiments in strongly coupled systems.

Figure 10.Combined L · Ψ6 calculated for each particle tomapped to color eachVoronoi cell for the smallest (a), (c), (e), (g) and
largest (b), (d), (f), (h) size disparity for each of the size distribution types. The cropped region is zoomed in to the left part of the
particle ring. For the continuous size distributions we have higher L · Ψ6 for the smallest size disparity. However, for the discrete
binary distribution this trend is reversedwith higher L · Ψ6 for larger size disparity.
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4.1.Hexatic phase
While the system is not a crystalline solid, not an isotropic liquid, there exists in 2D a hexatic phase in between
according toKTHNY theory [4, 13, 14, 16]. The requirements for the hexatic phase are conventionally short
range translational orderwhere g(r)∝ e− r/ ξ and quasi-long orientational order whereG6(r)∝ r− νwith
0< ν� 1/4with some dislocations disturbing the hexagonal structure [47, 52]. Figures 8 and 9 suggest the
hexatic phase for the smallestσ(a) at the outermost region r= 11.5mm particularly for the uniformdistribution
seen infigure 8(e) and 9(e).Wewere able tofit approximate lines with ξ= 0.2 and ν= 2.Here, ν is outisde of its
acceptable range, however that would require translational pair orderwhich is impossible with our geometry. As
such, we suggest that a hexatic phase from earlier is justified.

Infigure 13 the distortion of hexagonal lattices are shown in a simple diagram.Nowwewill try to quantify
these errors with some approximations. Let’s assumewe have a shell of evenly distributed particles, such that the

number of particles in the shell N r

d

2= p , where r is the shell’s radial position and d is the distance to the closest

neighbour in the shell. Then, we have for r= 11 mmand d= 0.2 mm thatN= 350. Then, the difference

between expected distance to closest neighbor is approximately given by r r

N

2D = p( ) , which in our case should

not bemore than 1/4 of d before results of the translational pair order stopsworking, which is around 2 mm.
The translational pair orderwill deterioate gradually up until this limit, such that translational pair correlation
with longer range than this limit is also impossible for a perfect crystal. Further, the distortion in orientational

order is given by r tan d

r
1

2
q = -( ) ( ), which in our case is about 0.01rad. As our orientaional order operates with

multiples ofπ/6, this is an error of only 2%. As such, the translational pair order ismuchmore significantly
impacted by the circular distortion of the hexagonal lattice, than the orientational order.

Note that the uniformdistribution has the lowestσ(a)with strongest bond order correlation, and the single
Gaussian has the highestσ(a)with theweakest bond order correlation. As such, the hexatic phasemight be
correlated to the overall particle size distribution, where high enough size disparityσ(a)makes the hexatic phase
impossible. However, when the discrete binary distribution is completely separated, we obtained twomono-
dispersed species inhabiting different regions radially: Onewith only species 1, onemixing layer and onewith
only species 2. The two regionswith only one species present will haveσ(a)= 0 locally, while the overallσ
(a)≠ 0.Hence, looking only atmacroscopic predictors such asσ(a)might suggest similar behaviour for discrete
and continuous size distributions while in reality the local structures are different. Similarly, the local structure
infigures 10(c) and (d) suggest that the discrete binary distribution ismore ordered locally for higher size
disparityσ(a) outside themixing layer at r> 10.5, while themacroscopic average 〈L ·Ψ6〉 infigure 11 suggest less
order for higherσ(a).

Figure 11. In (a): The average value of L · Ψ6 over all particles versus the standard deviation of particle size for all the distributions. In
(b)Weobserve a power law L ak

6 sY µ-( · ) ( )where k = 5.61, indicating that largerσ(a) exponentially degrades structure. Here, k is
found by fitting L · Ψ6 = cσ(a)−1/k such that L log c alog log

k6
1 sY = +( · ) ( ) ( ( )).
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4.2.Macroscopic structure and problemswith structure factors
While the coupling parameter infigure 7 has 2 different scalings for theΓ− σ(a) space, and at least 3 different
slopes, the parameter L · Ψ6 can sufficiently be predictedwith one scaling and one slope as seen infigure 11(b). As
such, we havemacroscopic homogenity in the L ·Ψ6− σ(a) across all distributions.However, in theΓ− σ(a)
spacewe have strong heterogeneity with topological structures that depend on the individual particle size
distrbutions. That being said,Γ can be predicted byσ(a), however that requires including the topological

Figure 12.The radial inter-particle repulsive force Frepc, ion drag force Fion and electric field Fel per particle. The dashed line is the ion
drag force and dotted line is the electric field for particle radius a = 3.5μm. The discrete binary data is used in (a) and (b)while the
binaryGaussian data is used in (c) and (d) both for the largest size disparity.

Figure 13.The distorted hexagonal lattice due to radial symmetry. Note the blue arrowswhich fails to intercept the third circle, and
how the radial distance between shells shrinks closer towards the center. This helps visualize how the pair order parameters fail over
long distances even though the hexagonal lattice is as good as it can be in radial geometry.
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structures of the particle size distrbutions. Hence, the coupling parameter depends on the local structural
differences we see infigures 5 and 10.

Further, there are some issues related to the bond order parameters [53], particularly in the 6 closest
neighbours. The particles at the outermost and innermost layer will not have 6 neighbours, but 4. As such, the
innermost and outermost particles will falsely indicate lack of structure. Others have improved on this with a
more sophisticated choice of neighbourhood [53] andweighted bond order [15].

The average particle distance to the closest neighbour depends on the repulsive force Frepc∝ Fion+ Fel. This
means that the translational order is not expected to be the same everywhere, butwill vary radially depending on
Fion and Fel. As the profile of Fion and Fel depends on a and is unique for every particle, accounting for and
correcting for this non-linear particle repulsion effect in the translational correlation is non-trivial. Further, the
radial symmetry fundamentally does notworkwith a perfect hexagonal structure, unless the hexagon is
distorted tofit a circular geometry. Regardless, this effect is also not taken into account for the bond order
parameters.

Overall, the complexity of the inter-particle forces and differences in the Fion and Fel profile for each particle
lead to a complex particle distribution in space over long distances that escapes particularly the translational
bond order (as it assumes the same inter-particle distance everywhere). As such, the bond order indication that
the particle distributions have similar structure from figures 9, 8 and 11might be subject to the common
shortcomings of the order parameters outweighing their differences.

4.3. Phase separation vs bond order
Fromfigures 11 and 6we see that bothβ and 〈L ·Ψ6〉 can be predicted byσ(a). This suggest that phase separation
indicates the structure of the system. Even for the discrete binary distribution for large size disparities where the
two species are almost completely separated (as indicated by the discontinuity infigure 12)we still see separation
indicating less structure.

Phase separation indicates a difference in forces acting on the particles, according to size a in our case.
Structure on the other hand indicates how regular the inter-particle forces are, where a perfect crystal has the
exact same inter-particle forces everywhere. This suggests that any sign of partial phase separation is detrimental
to a perfect crystal lattice. For particles to separate, we need that the separation force is greater than the particle
coupling force keeping the particles in their place in the lattice. Hence, separation indicates that said force
upholding the lattice structure is tooweak.

However, it is possible to completely separate in binary species such asmulti-component fluids before phase
transitions. But, as shown in our results, real dust with binaryGaussian distributions do not appear completely
separate and then form crystals the sameway discrete binary systems do. Further, as we observe phase separation
even for the single peakGaussianwithσ(a) at 2% any attempt at studying crystal-like structures should be aware
that the particle size error has a significant effect onwhat type of structures one should expect to see.

4.4. Comparing discrete andGaussian binary distributions
Binary dusty plasmas are typically simulatedwith discrete sizes [23] and compared to experimental data where
sizes are continuous. If we consider the discrete binary and binaryGaussian distribution simulation runswe can
evaluate some of the similarities and differences as a result of continuous vs discrete sizes. In table 4we see that
using a continuous distribution results in overall largerσ(a), something to keep inmind formetrics whereσ(a)
appears to be a good indicator.

In [23, 24] phase separation in discrete binary simulations are compared tomicro-gravity experiments
where greater separation is observed in the experimental data. In our experiments, we observe a general trend of
greater separation for the binaryGaussian distribution.However this is likely due to continuous and discrete
distributions having differentσ(a) for the same ò, as seen in table 4. Further, ifσ(a) is taken into account, it
appears that discrete and continuous binary distributions largely have the same degree of separation according
to ourmetrics.

For the coupling parameter however, we see the largest diversion between the discrete andGaussian binary
distribution as seen in figure 7. Particularly, the binaryGaussian has a very large increase inΓ from the liquid to
the solid phase compared to especially the discrete binary, but also all other distributions. This indicates that
phase transitionsmay be significantly affected by continuous vs discrete implementations, somethingwe also see
infigure 10. Further, the discrete and binaryGaussian have different scaling laws forΓ andσ(a) infigure 7,
suggesting that coupling, and phase transitions, work differently forGaussian distribitions.

The reduced coupling parameter due to largeσ(a) is similar to the phenomena known as ‘freezing point
depression’ [54], where introducing impurities into a liquid (such as salt inwater) effectively reduces it’s freezing
temperature.However, it appears that in our case the largerσ(a) actually prevents cooling rather than lowering
the freezing point, as the final temperature is different for differentσ(a) as indicated byΓ.Whether the
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mechanism is exactly the same or not is not clear, however it is clear that both continuous size distributions and
impurities as described by [54] disrupts crystal formation.

Overall, phase separation seems relatively unaffected once changes inσ(a) is accounted for.However, the
coupling and phase transitions appear to be largely affected by the different distributions.

4.5. Benefits of continuous vs discrete
One could argue that the point of a simulation is to investigate ideal and simplified scenarios with unrealistic
assumptions for simplicity. If so, it is extremely important to be aware of such assumptions. On the contrary, the
simulation artifacts due to simplificationmight cause unnecessary barriers when comparing simulations to real
experiments. In our case, there are several benefits of the continuous vs discrete distributions

1. Particle charge changes dynamically and will typically not be homogeneous even for the exact same particle
size. A particle distribution size bettermodels dynamic particle charging.

2. Discrete binary species has force discontinuity and too well defined net zero force point as seen in figure 12
which is unrealistic.

3. A hard border between species as seen infigure 10(d)disrupts particle structure.

Overall, assuming that continuous size distributions are trivial to implement, there is no reason not to have
them. It removes a lot of ambiguity especially for local structures and disregarding unrealistic simulation
artifacts.

4.6. General applications ofσ(a) in strongly coupled systems
Our results suggest that varyingσ(a) has a significant effect on phase transitions.We know thatmono-dispersed
Coulomb crystals undergo phase transitions according to theirΓ− κ phase diagrams [8]. Yet, it is unclear
whether the same conditions apply for largeσ(a). However, the conditions for the hexatic phase in [47, 51] agree
with our diagnostics for lowσ(a).While we refer toσ(a) as radius, its physical effects on the systemmanifest
themselves in the particle charge andmass’ dependence on size. Further, the charge andmass affect both
particle-particle and particle-field interactions. Despite strongly coupled systems of ions operatingwith discrete
sizes,masses and charges, we suggest that fluctuations in particle-particle and particle-field interactions are
analogous toσ(a). The essence of this suggestions, is that the existence of imperfections, be it in size, charge or
field, will have a non-linear effect on the order of the system. Further, as our results show, statistically
quantifying the imperfections allows us to predict andmodel their effects.

4.7. Limitations of ourmodel
Herewewill briefly discuss some limitations of ourmodel and assumptions and possible impacts on our results.
First, we assume constant charge of the dust particles. Fluctuating charge has shown dissipative [37, 38], which in
our case would erode structuring. Further, as we have shown that small changes inZd due to a normal
distrbution of particle size impacts self organizing phenomena and phase tranitions, we can assume that small
chargefluctuations inZdwill impact the same processes.

Second, we assume negligible sheath edge effects, as our dust particles are populated in a potential well
situatedmanyDebye lengths away from the chamberwalls. Our experiment exists inmicrogravity, however
other experiments with a strong potential to counteract gravitymight observe significant sheath edge effects.

Third, we assume a negligible dusty plasma effect. As shown in section 2.1.1, our 2Ddisc of particles have a
Havnes parameter PH≈ 0.003, justifying the negligible effect. However, for a sphere of equal particle density in
3Dwhere particle numberN= 464000, theHavnes parameter isPH>> 1,meaningwe have complete
screening of electrons. But, our dust cloud ismuch smaller thanwhat theHavnes effect assumes, andwe don’t
have aMaxwellian homogeneous background plasma. As such, exactly how a spherical cloud is affected remains
somewhat ambiguous, and should be considered futurework.

Table 4.The size disparity ò andσ(a) for the discrete andGaussian binary
distributions. The distributions with 2Gaussian peaks have a largerσ(a)
despite the peaks’mean radii being equivalent to the discrete binary
distribution.

Distribution ò[μm] 0.03 0.09 0.20 0.29

Binary a a %s ( ) ¯ [ ] 1.43 4.29 10.01 14.27

BinGauss a a %s ( ) ¯ [ ] 1.52 4.77 10.74 15.65
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5. Summary

Wehave studied the phase separation and bond order for discrete and continuous size distributions in dusty
plasma simulations. Our findings can be summarized to 3main points, highlighting differences, similarities as
well as some findings independent of distrubtion type.Overall, the standard deviation of all the particle sizes
seem to be a very important indicator, both for phase separation and structuring. Themainfindings are the
following

1. Phase separation, orientational and translational pair correlation functions can be predicted by σ(a) and are
almost entirely independent of distribution type. All distribitions in the L ·Ψ6− σ(a) space scale according to
L ak

6 sY µ-( · ) ( )with the same k= 5.61.

2. There appears to be local structural differences for large size distributions and a high degree of separation for
discrete and continuous size distributions.

3. The coupling parameter space Γ− σ(a) scales differently depending on the distribition type. Here,
alog sG µ( ) ( ) for uniform and discrete binary, and alog ksG µ -( ) ( ) forGaussian and binaryGaussian.

4. Different size distributions have different final temperature, which in turn affects the coupling parameter.
Temperature is proportional to alog s( ( )). However, this effect is different for different size distributions at
roughly the sameσ(a).

5. Phase transitions appear to be affected by discrete vs continuous size distributions, particularly in the
binary case.

6. Static forces and discrete particle sizes creates artifacts in the force per particle resulting in disruptions at the
species’ separation border and a too stable andwell defined zero force resting point not present in continuous
distributions.

Further work should consider whether thesefindings also apply for 3D, and overcome the shortcomings of
the bond order outlined in section 4.2 and [53]. Additionally, perturbing the static forces Fion and Fel, or
dynamically charging the dust, should be compared to the effect of continuous size distributions. Continuous
size distributionsmight satisfactory account for perturbations and dynamic charging, or perhaps other
phenomena could be observed. Lastly, such effects should be compared to experimental data to determine
which effects should bemodelled, andwhich could be neglected.
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