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Abstract

Complex plasma with a variety of continuous and discrete dust grain size distributions are simulated
in 2D with molecular dynamics simulations with radial geometry to determine differences in self-
organizing phenomena to more realistically represent the actual in situ variations in dust-size. The
standard deviation of particle size o(a) strongly correlates with phase separation and coupling
parameter [ for all distribution types. We observe local differences in bond order parameters and
Voronoi diagrams for different size distributions, and our results suggest that phase transition is
affected by continuous size distributions, particularly in the binary distribution case. Simulations with
discrete size result in artifacts and discontinuities that are not found in the continuous distributions.
The use of continuous distributions is observed to be beneficial both for more realistic approximation
of complex plasma experiments and to study systems of strongly coupled particles in general.

1. Introduction

Self organizing phenomena govern the spontaneous global order in chaotic systems which determine the nature
of evolving structure, or lack thereof. Phase transitions and phase separation have been studied in coupled
systems of charged particles in the fields of condensed matter, statistical mechanics, plasma and complex plasma
physics [1-8]. Strongly coupled systems of charged particles, atoms, molecules and dust operate at different
spatial and time scales, however, the self-organizing mechanisms are the same. Dusty plasma experiments allows
us to study such strongly coupled systems at the scale of millimeters and seconds [9], which has significant
practical advantages. This scale-invariance also applies for simulations, which is obvious once units are
normalized, with the benefit of superior diagnostics. Hence, dusty plasma experiments and simulations are a
great tool for studying self-organizing in strongly coupled systems of charged particles across many disciplines
[1,4,7,10-12].

The liquid, crystal and lattice related phases, structures and transitions of mono-dispersed particles have
been studied and classified in a variety of fields [3, 4, 13—17]. However, extending theory on mono-dispersed
dusty plasma to continuous distributions is challenging due to non-linear effects between particles where
essentially every particle is its own species. Further, phase separation has been studied in binary dusty plasma
[17-22].

A binary dusty plasma consists of neutral gas, electrons, ions and two species of dust with different radii a,
and a, respectively, which is characterized by the size disparity € = (a, — a;)/a where a, > a;. In said studies of
binary dusty plasma, size disparity has shown a linear relationship with phase separation in both simulations and
experiments [23, 24]. However, the degree of phase separation was different for the same particle radii in in situ
experiment and simulation. It is non-trivial to achieve perfect agreement with experiment and simulation as
simulations inherently rely on assumptions and simplifications. For instance, dust and plasma dynamics exist in
different time-scales and can not be easily simulated at the same time, and as such the simulations in [23] and our
simulations assume a static plasma unaffected by the dust charging. Further, it is convention to assume that the
size distribution is entirely discrete in simulations [23, 25, 26] whereas the dust particles used in the experiment

© 2024 The Author(s). Published by IOP Publishing Ltd
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Table 1. The set of selected radii for the dust particles for the different
distributions in the 2D runs for Discrete Binary, Uniform, Gaussian and
Binary Gaussian with the standard deviation o as a fraction of the mean value
1, for the Gaussian distributions. The distributions are centered on a mean
1o such that 1, = 3.5 pm where Aa[;um] refers to the difference between the
two means. The variations in column (a) and (d) are typically referred to as
‘min’ and ‘max’ respectively to indicate the degree of the size variation in

figures.
Dist Variation
(a) : min (b) (o) (d) : max
DiscBin Aalpm] 0.1 0.3 0.7 1
Uni Aalpm]* 0.1 0.3 0.7 1
Gauss Lalpom] 3.50 3.50 3.50 3.50
olpal 0.02 0.04 0.1 0.2
BinGauss Aalpm] 0.1 0.3 0.7 1
olpal 0.005 0.02 0.4 0.6

* Here Aarefers to the difference between the largest and smallest particle.

has an error of 2% resulting in a continuous size distribution with 2 Gaussian peaks at the species’ respective
mean radii. In this paper we challenge this convention by investigating the effects of continuous size
distributions.

Itis unclear how a discrete versus continuous size distribution affects organizing phenomena in systems of
charged particles. As all real dusty plasma experiments have a continuous size distribution due to particle
fabrication error margins, it is crucial to understand how this error margin affects self-organizing phenomena.
This is especially important if the continuous size distributed dusty plasma experiment is used to infer a general
understanding of strongly coupled systems of charged particles with naturally discrete charge, mass and size
(such as an electron).

To study the effect of a continuous size distributions we simulated discrete binary and various continuous
size distributions for dusty plasma with a simplified radial 2D geometry with a newly developed code PPDyn.
The set of size distributions can be found in table 1 and visualized in figure 1.

Further, we developed a new way to numerically quantify phase separation for continuous size distributions,
extending the methods for binary species presented in [23]. To compare our results with systems of strongly
coupled charged particles in general, we have used typical diagnostics such as coupling parameter, orientational
bond order, translational bond order, voronoi diagrams as well as a per particle force contribution breakdown.

2. Simulation setup and plasma forces

The dusty plasma is simulated in two steps, where first the plasma was simulated by [23] withoutany dustina
plasma chamber modelling the geometry and conditions of the real experiment in [23, 24]. This simulation was
done with the SIGLO code (SIGLO-2D version 1.1, Kinema Software 1996—2003) [27], which adopts a fluid
approach solving the hydrodynamic transport equations for charged particles.

Next, the dust particles are simulated in a static plasma, where the plasma induced forces are collected from
the first simulation. Binary dusty plasmas have been simulated with molecular dynamics codes [23, 25, 28, 29].
However, we have developed a new fully parallel and C-compiled Python based code called PPDyn tailored
specifically to the case of dusty plasmas. Specifically, our codes provide easy implementation of different size
distribitions such as:

+ Discrete where all the particles are defined exactly by a given set. This is accurate for particles of discrete size
and charge.

+ Gaussian distribution about one or multiple mean radii, which emulates manufacturing errors in real dust
experiments such as [6, 23, 24, 27].

+ Uniform distribution within a range, which is similar to space plasmas such as Saturns rings [30]

In this investigation we have simulated 6000 particles for one second with 3000 timesteps in 2D with particle size
distributions according to table 1. The code uses the velocity Verlet method [31] to move the particles. The
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Figure 1. The distribution of of particle radius for the different types distributions for increasing range of particle radii a for (a), (b), (c)
and (d) respectively. Blue is Gaussian, red is uniform and black is binary Gaussian. This makes up the 12 datasets used for the 2D-
simulations with distributions of radii of 6000 particles.

simulated chamber has a simple radial geometry extending 15mm radially from the center of a circular 2D
chamber. The geometry in the real experiment in [23] has a wall at about 18 mm, however the potential well, as
seen in figure 2 prohibits dust particles from exceeding past 12 mm radially. As such, the edge effects at the
physical walls of the chamber are neglected, as the Debye length is 300 #m. The dominating forces considered in
the simulations are the ion drag force, the electric field, neutral drag, and inter-particle repulsion. The plasma
parameters can be found in table 2.

2.1.Implementation of forces
The plasma is not directly simulated in PPDyn and the forces acting on the dust particle have been adapted from
previous work [23] as in figure 2. The forces are spatially interpolated to the particle position.

The data describing the forces impacting the dust are collected from SIGLO by [23], where plasma has been
simulated in a chamber with the same neutral gas density and geometric dimensions as used for the simulations
in this investigation. The plasma interaction with the dust particle of radius a is calculated according to the ion
drag F;,,, and the electric field in the chamber Fg; from [23] for a = 3.5 pum in figure 2(a) and a range of radii
in (b).

As seen in figure 2(b) the net force F,,, reaches an equilibrium around r = 11 mm depending on the particle
radius. To save computational resources the dust particles are loaded at rest close to r = 11 mm as seen in
figure 3a.

2.1.1. Dust charge

The dust charge is non-trivial to solve analytically, and is perhaps best solved with a combination of experiments
and numerical methods. Regardless, we will provide a brief explanation of dust charge, and the most important
factors impacting it. The ion and electron currents I; and I, with respective number densities n,and n;to a
particle with radius a and charge ¢, < 0 in a stationary Maxwellian plasma is given by the well known Orbital
Motion Limited (OML) model [32]

: ep
I = ma*nie 8k T (1 — p)

Ty ks T;
e
I. = —ma’nee 8k Te exp ﬁ (1)
T, ks T:
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(a) : Static forces for particle radii a = 3.5um
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Figure 2. In (a) we plotted the forces felt by a dust particle of size a = 3.5um from ion drag, F;,,,, and the electric field, F,;, as a function
of distance from the center of the chamber r. The values are from the SIGLO simulation in [23]. Reprinted (figure) with permission
from [23], Copyright (2021) by the American Physical Society. Here, the force from the ion drag is uniformly increased by a factor of 2
in the implementation (but not in the plot), as also seen in the total force being a sum of the forces for F,,,. Note that ris considered in
the radial direction, effectively making this a 1D case. In (b) we have plotted F,; + F;,, for a range of particle radii to show their
different y-intercept (where F,; + Fj,, = 0).

Where k; is the Boltzmann constant and eis the electron charge. The charge number Z,; of the particle is given by

_ 47T€0L1 an(/;\S

Z4 (@)

e e
Where ¢ is the normalized floating potential given by

ey
ke Te

Where we can equate the ion and electron OML currents and solve for ¢g numerically.

1 - ﬂ = mi e Eexp —e¢ﬂ 4)
kBT{ meTi nj kBTe

For Argon, and T,/T; = 100 we obtain ¢ = —2.41, such that our OML charge is Z; =~ 6300. However, we do not
have a stationary plasma, and as such ion streaming should be taken into account. For 0.5 < #;/v; 4 < 200 it has
been shown that Z, increases as much as by a factor of 2in [33]. We have 1 < #;/v; ;,, meaning that a greater Z,;
due to streaming ions is appropriate in our situation. From [34] ion-neutral collisions will modify the ion curernt
I; such that

3= 3)

ep ed 2
L = ma’nievni| 1 — —= + 0.1 —= As 5)
kB’E kB’E fmfp

Where £ 14, is the mean free path for ion-neutral collisions. As our particle is negatively charged, the resulting
ion current due to ion-neutral collision will be larger than in the collisionless case, overall reducing our charge
number Z,;.
Lastly, we consider the dusty plasma effect, or Havnes parameter [35, 36] Py, given by
Py~ 21 ©
1,0

Where #, o is the undisturbed ion density i.e. the plasma as if there were no dust particles. Enforcing charge
neutrality we have n; o = 1. o + Z;m4, and we obtain Py = 0.003 from the parameters in table 2, where n4is the
2D number density. However, if we translate our dust density from 2D to 3D such that our cloud is a sphere with
the same radius with ng 3p = ”d3 /2 = 4.8 - 10">’m3 we obtain Py, > > 1, resulting in electrons being screened
away from the dust cloud such that n, is effectively zero and Z; = n;/nq4. But, this assumes an infinitely large
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Table 2. Plasma parameters for the SIGLO simulation in [23] and our dusty plasma simulation. The
electron densities are approximations for the simulation box, where the detailed plot can be found in
[23]. 7, 1s the distance to the closest neighbor. T, and 1, are electron temperature and number
density, Tiis ion temperature, P is neutral gas pressure, XS is the screening length, Urfis the electric
potential difference and v/yis the rf frequency and 4, is the mean free path of ion-neutral collisions.
a is the mean dust particle radii, 1, is the dust number density, Z, is the dust charge of particles with
mean radius a, and (r,,;,) is the average distance to the closest neighbouring dust particle.

Plasma parameters

T; 300K

T, 100T;

M, ~10"*m™>
p 30 Pa
As 300 pm
Uy 75V

Vyp 13.56 MHz
Confp 60 pum
Dust parameters

a 3.5 um
g 2.3-10°m™?
Zy 50 000
As/a >100
(Tinin) 200 pm

2 Here, ¢ = ,%

Maxwellian background plasma, and semi-infinite cloud-size [35], and cloud thickness H where H > > Ag
which is not our case. In fact, we have plasma production in the middle of our cloud, and it is unlikely that our
3mm thick cloud can entirely contain the plasma discharge such that no electrons enter the cloud due to the
dusty plasma effect. We suggest that electron screening from the dust cloud will push against the electron
discharge in the center of the chamber, such that the cloud is pushed further out radially, however it will not
substantially alter the results. Further, [23, 24] have good agreement between simulation and experiment
without accounting for this effect in their MD simulation.

Opverall, it is hard to know the exact realistic charge, as many effects and parameters affect not only the dust
charge, but also each other. With the effects mentioned, and considering that we are basing our charge of
another simulation which already has its own set of assumption, we suggest that the actual charge is probably
within an order of magnitude of the OML value of Z; = 6300. As such, we started out with the results used in
[23], and did some changes to optimize for computational time. In [23] for a = 3.5um the charge number was
found to be Z; = 9460 for the SIGLO simulation. However, using [23] as our benchmark, and to lower
computational expense, we increased the dust charge by a factor of 5. Further, increasing Z,; did not impact the
phenomena of interest in this study, as long as the relative charges remain the same, however it substantially cut
down on the computational time needed to reach a steady state. Additionally, slightly artificially increasing the
neutral drag caused the system to reach the steady state faster without impacting results.

One major limitation of our dust charge model is that the dust charge is static. Realistically, dust is charged
dynamically according to the plasma conditions at the particle position. From equations (1), (4) and (5) we see a
dependence on temperature, number density and mass for each species, in addition to the individual velocity
distributions. Future work should consider a dynamic charge model, possibly implementing a hybrid method
with a simple fluid model of plasma and dust as point particles. The effects of charge fluctuations are found to
cause dissipative and instability mechanisms for ion waves in the plasma [37, 38]. However, we assume that the
greatest contribution to our dust dynamics is the size differences’ effect on Z,. Even if we consider a dynamically
charging model with dependence on rin our radial symmetry, a binary species will separate according to their
size, as the larger particle always will obtain more charge.

2.1.2. Static plasma forces
The following calculations follow the methods used by Schiitt [23] based on Hutchinson [39], Khrapak [40, 41]
and Barnes [42].

E = — V¢ istheelectric field in the simulated plasma chamber. The force acting on the dust particle due to
the electric field is given as [23]
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(a) : initial state (b) : final state

distribution of the species with b being the mean radius for each species.

X [mm]
(c) : initial state (d) : final state
= 1 N
g 0.25
e8]
2 0.00 & 0 =L I\
8 8 10 12
r [mm] r [mm]

Figure 3. Simulation run with 6000 particles of sizes 3.35pm in black and 3.65m in red, ran for 1 second with radial geometry. (a)
shows the initial positions of the particles, with (b) showing the final positions of the particles. (c) and (d) are the respective radial

Ei= Z4eV¢
The ion streaming velocity v;is given as
Vi = NiE
Using Frost’s ion mobility slightly modified such that [41, 43]

1.238—1.238/2
E E
u; = 1.68 x 1019l1 + (7 X 1018—) ] -
Ny ny

The collection forceis [23]

2epq )

Fon = ma’mivin;vi{ 1 — ——
m;v

)

®)

©

(10)

Where a is the dust particle radius, m, vand n is the mass, velocity and densities of the respective species where

the subscript i is for the ions and
vo= (v} + 4vi,/m)\/?
with ion thermal velocity V;[23]
vri = kg Ti/m;)'/?

In our case, Hutchinson’s approximation T, = 1007T; fits well [23] for electron and ion temperatures

respectively, and the collisionless orbit force is [39]

2.2

e“dy

2
mj'VT’i

Fou = 8ma’n;G(u)InA

where G(u) is the Chandrasekhar function [23]
1 2u
G(u) = —| erf(u) — — exp(—u?
() Zuz[ (W ~ —Zexpl )]

where u = v;/v7;[23]. The Coulomb logarithm InA is given by [40]
boo + At
bgo +a

InA =In

(11

(12)

(13)

(14)

15)
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with the impact parameter for 90 degree scattering bg given as
boy = Zge?/dmegmvi; (16)
where \jis the effective screening lentgth taken from [39] such that
Aeff = (L + az)l/z (17)
‘ 1+ 2k T,/ mivig

where \p, is the electron Debye length such that X;,, = £k T,/ €. Finally, the total force found in the plasma
chamber simulations impacting the dust particles of radius a = 3.5um as seen in figure 2 is given by
Fiotal = Fe1 + 2F;on, where Fj,,, is from SIGLO simulation in [23] seen in figure 2.

2.1.3. particle-particle repulsion
The particle-particle repulsion between two dust particles at distance r is governed by the well known screened
Coulomb potential

V(r) = %exp(—L) (18)
As

4megr

Where Q is the charge of the respective particles and Ag = 300 in all the simulations [23]. From table 2 the
screened Coloumb potential is appropriate. The particle repulsion is calculated between all particles.

2.1.4. Neutral drag
The drag force due to neutral gas is is based on the Epstein formula [44]

B = 61.337N, v, 11y (19)

Where N,, is the number of neutrals given by PV = NRT, m,, is the mass of the neutrals and

8kg T
Vi = | — (20)
T,
The force felt by the dust particle is given as
Firag = va’3 (21)

The forces are first computed for a particle with radius a = 3.5 m, then scaled according to each force’s
dependence on a.

3. Results

Here we present a variety of diagnostics to quantify the different size distributions’ phase separation, phase
transition, structure, coupling parameter and order parameter. Comparisons to other works are presented
alongside the results, while a broader discussion is found in the discussion section.

3.1. Phase separation

First, we investigated the particle distributions’ effect on phase separation. Phase separation has been shown in
binary dusty plasma experiments in micro-gravity as well as simulations [23, 24], where simulations using
discrete binary size distributions had less separation than the experiments. Here, continuous and discrete size
distributions have been simulated to investigate this discrepancy further.

3.1.1. Discrete distribution

For discrete binary distributions, the phase separation can simply be quantified by the mean radial position of
each species b; and computing the ratio b, /b, for the respective species. In figure 3 we present final positions
and radial distributions of simulated particles. In figures 3(c) and (d) the dashed vertical line shows the mean
radii b for initial and final time. As expected, we observed that the larger red particles move towards the edge and
the smaller black particles move towards the center. In figure 4(a) the time evolution of b, /b, is plotted for
different size disparities e where

e=(m —a)/a (22)

In our simulations a, and a, are the mean radii of species 1 and 2 and 4 is the mean value of a, and a,. We clearly
see a faster and greater degree of phase separation for larger size disparity in figure 4, which corresponds to
results in previous work [23, 24].
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m— ¢ = 0.03 e =0.09 === € =0.20 == ¢ =0.29
(a) (b)
1.10
_ 1.1 *
'S
3 1051
1.0 A T T T T T
0 1 0.09 0.20 0.29
time [s] size disparity e

Figure 4. Simulation with 6000 particles of binary size with mean radius @ = 3.5um for different size disparity e where
€ = (a, — a)/a.In (a) the evolution of the system with the ratio of the mean radius b, /b, is shown over time. In (b), the average value
of b, /b, over the total time Bis shown for different . We observe B o e which agrees with previous work [23, 24].

3.1.2. Continuous distribution

To quantify the order of separation in the continuous case, a method different than b, /b, is used as essentially,
6000 species with 6000 different radii were being dealt with. In figure 5 the particle size is plotted versus radial
position for the continuous distributions’ smallest (a), (c), (d) and largest (b), (d), (f) size disparities. In figure 5
we observe that for the largest size disparities particle size seems approximately proportionally correlated to
radial position indicating phase separation. However, for the smaller size disparities, it is not clear whether this is
the case.

We also observe a larger dispersion close to r = 12 mm in figures 5(b) and (f). As the dispersion is larger at the
extremes of the Gaussian curve, we should expect more dispersion at the edges for a conmpletely separated
Gaussian particle size distribution. Additionally, the outermost shell needs the most particles to fill, and again
there being fewer and more dispersed particles at the extremes of the Gaussian distribution contributes to this
effect. Lastly, a sharper field gradient V¢ at the edges of the potential well should also contribute somewhat to
this effect, and largely explains why we don’t observe the same at the inner edge as there the gradient is very low.
However, we don’t see more dispersion at the outermost edge in the uniform distribition in figure 5(d), so the
gradient likely only contributes to less dispersion at the inner edge.

In order to quantify the phase separation also for continuous size distributions we divide space radially into
20 segments r;. Then, the average particle radii d4; is calculated for the corresponding segment radially. Now we
can find

Aa
ar =P (23)
by fitting theline
a; = B + C; (24)

Where C;is some constant. With the discrete particle distributions we have used € as in equation (22) as a
measure of disparity. However, for continuous distributions we instead compute the standard deviation of
particle size o(a) for each size distribution as a measure of size disparity.

In figure 6 we have plotted (3 for the different size distributions, and it suggests that the standard deviation o
(a) predicts Bregardless of distribution type. Macroscopically this means that the degree of phase separation is
independent of distribution type, and only dependent on overall standard deviation of the particle sizes. The
deviations from a perfect linear relationship has been likely due to how the forces scale non-linearly with g, and
each distribution type caused a different local distribution during and towards the end of the phase separation.

Further, the separation forces are a result of F;,,,, F,;and interparticle repulsion, which for each particle
depends on it’s own size, and the size of neighbors. As such, we suggest heterogeneity that depend on the size
distrbutions’ individual topoligy’s effect on how particles populate the space with respect to the static forces. In
figure 5 we see how the particle size distribitions’ topoligy manifests itself in the radial position. Hence, the linear
fit of 3is weighted according to /6N, which is the number of particles at a small section radially with width 67, to
take some of the size distribitions’ different radial position into account. Further, we suggest that some particle
size distribution topology can be incorporated in an improved model for 3, but as its effect is not dominating
developing such a model is outside of the scope of this paper. However from figure 6 the variation in Jis not
dominated by this heterogeneity, and as such the weights in our fit is considered sufficient to show o(a) as a
predictor of separation regardless of size distribution.

8
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(a) : bingauss min (b) : bingauss max

a [pm]

(d) : uniform max

3.55 1

3.50 4

a [pm]

3.45 1

3.75 1

3.50 1

a [pm]

3.25 1

r [mm] r [mm]

Figure 5. The radial distance from the center of the chamber r versus particle radius a for the smallest ‘min’ and largest ‘max’ size
disparity for binary Gaussian, uniform and Gaussian distributions. For the smaller size disparities we observe bonds forming at the
outermost . For the largest size disparity we see a correlation between a and r, where the uniform distribution suggests a o r.

% Bin = 4
0.4 - Uni *
A Gauss xm
B BinGauss 4
Q.
0.2 A
a
&
0.0 v=*
0.0 0.2 0.4 0.6
o(a) [um]

Figure 6. The slope (3 of the fitted line where @; = (r + C, where d; is the average particle radii within one of 20 segment of radial
distance from the center of the chamber r;where ris adapted to contain every single particle such that ; € (min(r;), max(r;)) versus
the standard deviation of the particle radius o(a). The line was fitted with weights proportional to \/N; where N; s the number of
particles in theith segment. We observe 3 o o(a), which agrees well with B o € for the discrete binary case.

For instance, in distributions with a higher proportion of larger particles, the outermost particles have a
greater repulsion, effectively pushing the rest of the particles further towards the center and offsetting the
position of the static forces seen in figure 2. This effect is larger for the uniform and binary Gaussian distribution,
and smaller for the Gaussian.

Micro-gravity experiments have been conducted with binary dusty plasma with size disparities € = 0.05 [45]
with great degree of separation. In figure 3 we have ¢ = 0.09 and comparable degree of separation, at least from
what is discernible visually in the two cases.

Notice that the binary Gaussian distributions have a greater o(a) than its binary equivalent in figure 6. Here,
equivalent refers the discrete size disparity, where the separation between the binary species’ radii are equivalent
to the separation between the mean values for the binary Gaussian distributions. In other words, the real
experiment with some error for the binary species’ radii, will for the same discrete size disparity have a greater &
(a), resulting in more separation. As such, one should expect more separation in a real experiment thanin a
simulation with discrete sizes for the same discrete size disparity.

In [23] the experiments also observed larger degrees of separation than the simulations, possible due to the
same effect. This effect is due to half of each species having a larger size disparity due to the two Gaussian
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Table 3. Coupling parameter I" for increasing size disparity
from (a) to (d) respectively for the different size

distributions.

Coupling parameter I'
Distribution (a) b) (©) (d)
Binary 220 144 35 16
BinGauss 291 38 26 17
Uniform 700 402 107 50
Gaussian 203 86 30 12

distributions, and the other halfhaving a smaller size disparity. From our results it appears that this does in fact
not cancel out, and overall leads to larger degree of separation. It is unclear whether the discrepancies between
simulations and experiments can be entirely explained by discrete vs continuous size distributions. All dust-
plasma effects are neglected due to different scales in the simulations, which likely is a considerable contribution
to the discrepancy.

3.2. Coupling parameter
Systems of charged particles are considered coupled when the Coulomb energy per particle is greater than the
thermal energy. The respective energies’ ratio is called the coupling parameter I and for a screened Coulumb
potential is given [46]

(Za)e)?

D= 29 exp(— 25
Ko Tros exp(—k) (25)

Where T'is the temperature of the dust particles, (Z,) is the average charge number and ryysis the 2D Wigner-

Seitz radius given by

1)

ws = (—) (26)
™

Where nis the number density, which for a 2D system is given per area, and k = ryys/ As where Agis the
screening length. A system is strongly coupled for I' > 1, and crystalline structures are found in systems of
charged particles with I" > 168 =+ 2 [2]. In table 3 the coupling parameter is computed for the different
distributions in our simulations, where larger o(a) correlates with lower coupling parameter.

From figure 7, which shows the coupling parameter I" as a function of o(a), we observe that
log(I") & 1/0(a). As such, increasing the standard deviation in particle size exponentially degrades coupling.
For the points in figure 7 at o(a) ~ 0.2 um there is large variety in the coupling parameter, suggesting that the
different distributions have some effect on how I" depends on o(a). Further, linear proportionality agrees better
within each distribution type separately than as an overall trend across all distributions. Overall the uniform
distribution has the largest I and the smallest o(a).

From equation (25) the dominating variable is the temperature of the dust particles, which interestingly
infers that T o< log(o (a)). If we consider temperature as a measure of entropy, and large o(a) as a disruption in
the order, it can help understand this relation. One could argue that the differences in temperature is a result of
the simulation not reaching a steady state. However, the runs are initialized the same way and are run for the
same amount of time, with the only difference being the size distribution. As such, the relation between o(a) and
temperature must be the result of non-linear effects from the sum of particle interactions.

However, we here assume constant particle charge, where realistically the charge is dynamic with
fluctuations as discussed in section 2.1.1. We suggest that charge fluctuations will induce random motion in the
dust species, effectively increasing the dust temperature reducing I'. Further, the dynamic charging is strongly
space dependent, where local variations in plasma conditions will determine the dust charge. Charge
fluctuations might perturb the structure locally or globally, inducing dust acoustic waves, where dynamic charge
has proven dissipative in [37, 38].

For o(a) < 0.1 in figure 7, which corresponds to a ratio of about o (a)/a ~ 0.03, we observe I
corresponding to a solid phase, indicating a solid Coulomb crystal [8]. However, for o(a) > 0.1 the coupling
parameter indicates a liquid phase. If we compare the discrete binary and the binary Gaussian distributions, the
relation between o(a) and I is very different, particularly close to the phase transition. For the solid phase the
binary Gaussian has slightly greater I than the discrete binary, while for the liquid phase the binary Gaussian has
significantly lower coupling parameter (by a factor of 4). The binary Gaussian distribution has the largest
difference in coupling parameter from solid to liquid (column (a) and (b) in table 3). We argue that the binary
Gaussian distribution is the most complex, and as such can be expected to be the least predictable. As such, phase
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Figure 7. The coupling parameter I versus standard deviation of particle size o(a) and o(a) %, in (a) and (b) respectively, for all the
distributions. The dashed line at I' = 168 represents the phase transition between solid and fluid. The individual distribution types
appears to be affected differently, with log(I") o & (a) for uniform and discrete binary in (a), and log(I") oc o (a) * for Gaussian and
binary Gaussian in (b), with k & 0.3. Note that the discrete binary and binary Gaussian have different scaling for I" and o.

transitions should be expected to behave quite differently in simulations with discrete binary distributions
compared to real experiments with two Gaussian distributions.

Cylindrical dusty plasma experiments with layered ring crystals have shown coupling parameters in the
range 370-490 for « in the range 1.7 to 2.4 [25]. Our simulations have k = 0.4, where I/ x diagrams grow
exponentially in [8], resulting in good agreement between our Gaussian distribution with error of 2% and the
results in [25]. However, the size error of the dust particles were not shown in [25], only the mean
radii a = 2.55um.

Numerical studies have shown a exponential proportionality of both k and I" to a/ A [26], suggesting that
continuous size distributions have non-linear effects on particle coupling. Our results suggest a similar effect as
seen in the differences already discussed in figure 7 and table 3, however the studies in [26] did not use a
continuous size distribution but particles with radius a = 1um, which is discrete and smaller than our particles.
Opverall, we show that the distribution type impacts coupling and phase transitions in a non-linear way, which
hasbeen inferred from previous works [8, 26] but not explicitly shown.

3.3.Local structures

Next, the local structure is quantified and examined. In figure 5 there are bonds forming for the smaller size
disparities in (a), (¢), and (e), which are not present for the largest size disparities in (b), (d) and (f). This suggest
that there are different local structures both radially and for the different size disparities.

Pair correlation functions, orientational bond-order plots, and Voronoi diagrams are produced to
investigate the distribution types effect on local structures. The pair correlation and bond order has been used to
determine the phase of strongly coupled systems [4, 47].

For the translational pair correlation and orientational order plots the particles have been divided into 4
regions radially in order to compare and isolate the local differences. Due to different levels of separation, and
different size distributions, different particle sizes populate each of said 4 regions. There is some overlap between
the regions to compensate for low particle number in the innermost and outermost region.

It’s been shown that 2D systems always have long-range fluctuations disrupting order [4, 13], such that our
results will not be the same as in a 3D systems. It has also been suggested that freezing is a two-stage process in
2D, first undergoing a hexatic phase, which is not present in 3D [4], which will be discussed later.
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3.3.1. Translational pair correlation function
For a given particle it has been investigated how many particles ON; are found at a distance (r;, r; + 6r) such that
1 6N;

1) = —
8 p 27r; 61

(27)

Where pis the particle density. Averaging over all particles we get the translational correlation function g(r),
which indicates the range of the order of the system and gives the average particle distance.

In figure 8 the translational correlation suggests strong translational order for smaller size disparities with at
least 3 distinct peaks. For the larger size disparities the translational bond order is weaker, with at most 2 distinct
peaks. Additionally, the mean particle distance is smaller towards the outside of the circle which is where the
forces acting on the particles are strongest.

3.3.2. Orientational order

To further quantify the order we have used the orientaional bond order [48] by assuming a hexagonal structure.
A perfect crystal lattice will be equiangular hexagonal in 2D [49], whereas in 3D it will have BCC (Body Centered
Cubic) crystal structure [50]. Hence, by quantifying how hexagonal our structure is, we also quantify the extent
of a 2D crystal lattice structure. Next, we draw the bonds from a given particle to its closest 6 neighbors, where
the angle 6;is the angle between each bond and some common vector pointing radially from the given particle to
the center of the chamber. The orientational bond order is given by

M
U(7) = ﬁZeXp(zBGi) (28)

i=1

Where M = 6 and ¥ is a complex number of magnitude |¥| < 1. Further, we evaluate the orientational
alignment of the closest six neighbors for any particle pair i and k separated with distance r = |} — 7#%|.
Averaging over all particles we obtain [51]

Ge(r) = (W) - W) (29)

The orientational order in figure 9 has the same overall trend as the translational order; more ordered for smaller
size disparity.

3.3.3. Voronoi diagrams

A third way to evaluate the order in the hexagon is done by quantifying how much each bond to the closest 6
neighbours with length /; deviates from the average bond length 1. A perfect hexagon will have all /; = ;. Hence,
abond length parameter L is given by

1 X — 1
L=ty i (30)
MiD H

Where M = 6 corresponding to the closest 6 neighbours. Combined with ¥4, we obtain both a measure of equal
bond length and equal bond angle. In figure 10 the product L - ¥ has been plotted as an overall indication of the
hexagonal structure per Voronoi cell. Lets first consider the discrete binary and binary Gaussian distributions,
where for the smaller size disparities in figures 10(a) and (c) there are islands of hexagonal lattices separated by
comparable islands of dislocations. However, for the larger size disparities we mostly observe a hexagonal lattice
with few dislocations for the discrete binary in figure 10(b), particularly along the separation border between the
two species at about r = 11 mm. However, the binary Gaussian in (d) has some small islands of hexagonal shape
with mostly non-lattice structuring.

Next, for the uniform distribution in figure 10(e) we observe the most structured hexagonal lattice, with only
some dislocations. Unlike the discrete binary, there is no separation border between the two discrete species
causing dislocations for the uniform distribution. In (f), we observe the smallest degree of hexagonal lattice
structure. In both 10(e) and (f), the structure and lack thereof, respectively, appears uniform in the interval
r=(10,12) mm.

Lastly, the Gaussian distribution in figures 10(g) and (h) has the least overall structure in their columns.
Further, it appears that the more structured regions in the Gaussian distributions are populating the middle of
the particles’ radial domain.

Opverall, we observe that the different particle size distributions’ topology correlate with where we find the
hexagonal lattice structure radially. The structured regions are where the neighbouring particles are closest in
size, which will depend on the particle displacement due to separation and the probability that the neighbouring
particles will be close in size. Now, to fill the outermost layer we need the largest number of particles, which will
also be the largest particles due to the separation. However, given a Gaussian particle size distribution, the size
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Figure 8. Translational pair correlation function g(r) for 4 sections radially. The rows indicate distribution types discrete binary,
binary Gaussian, uniform and Gaussian, respectively. The column indicates size discrepancy with increasing o(a) from left to right.
On the left there are several peaks indicating a solid phase and long range order. Note the slight differences in binary and binary
Gaussian, particularly for the blue line, indicating that discrete and continuous binary distributions do not behave exactly the same.

variation will be greatest at the extremes, such that the outermost layer should have less structure, as seen in
figures 10(g) and (h). We observe equivalent effects for the other distributions.

Further, we observed different behavior for the discrete binary and continuous distributions. In particular,
the discrete binary distribution appears to get more structured for larger size disparity while the continuous
distributions suggest less structure for larger size disparities. For large size disparities the discrete binary dust is
almost entirely separated, effectively resulting in two mono-dispersed species separated with a mixing layer with
some dislocations as seen in figure 10(b). However, we don’t see the same behaviour for any of the continuous
distributions despite comparable levels of separation.

In figure 11 the average of the product (L - W) is plotted against the standard deviation of particle radii o(a)
for each distribution type. Here, the distribution type does not seem to matter much, leaving the parameter o(a)
as the dominating predictor of (L - Us). Comparing figure 11 to figure 7, the coupling parameter has much more
variation depending on distribution type, indicating that the coupling parameter is more dependent on each
distribition’s individual topological differences.

The number of higher peaks are observed to be declining with respect to rin figure 9 for all distribitions.
However, the uniform and Gaussian distributions appear to retain more peaks better, particularly in the second
column in figure 9.

Comparing the discrete binary and binary Gaussian distributions, we see large differences in figure 10.
Futher, while the differences are smaller, we still note some differences in figures 9 and 8, such as the shape of the
outermost segment (blue line) in column 3 and 4. As such, we have demonstrated that a real experiment with
two Gaussian size distributions and a simulation of two discrete species can behave quite differently. This
suggests that using binary Gaussian distributions in simulations can help better approximate real experiment
behaviors such asin [23].
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Figure 9. Orientational pair correlation function Gg(r) for 4 sections radially. The rows indicate distribution types discrete binary,
binary Gaussian, uniform and Gaussian, respectively. The column indicates size discrepancy with increasing o(a) from left to right.
On the left there are several peaks indicating a solid phase and long range order. Note the differences in binary and binary Gaussian,
indicating that discrete and continuous binary distributions do not behave exactly the same.

3.4. Force per particle
As outlined in section 2.1 the particles will feel the effect of the ion drag, electric field, inter-particle repulsion
and neutral drag. For a system at steady state, the sum of the forces will be zero, with zero neutral drag, such that

Fi + Fon + Eepc =0 (31

Where F,,, is the repulsive force radially. Further, when F,; = Fj,,,, which is the y-intercept in figure 2, we
also need the repulsive force to be zero for net zero forces at the steady state. Moving away radially from the point
where F,; = Fj,,, it follows that F,,c o< Fj,, + Fassuming a steady state.

For mono-dispersed particles, the point where F,; = F;,,, will be the same for every particle as the forces
depend on particle radii a. However, for binary particles, there will be two such points, and for continuous size
distributions every particle will have a unique profile for F,;and F;,,, (as seen in figure 2).

In figure 12 the forces per particle have been plotted for the largest size disparity for the discrete and
continuous binary distribution in (a)-(b) and (c)—(d) respectively. First, we notice a discontinuity for the discrete
binaryin (a) and (b) at the separation border slightly above r ~ 10.5. However, for the continuous binary
Gaussian in (c) and (d) no such discontinuity was found. In figure 10(d) we noted a breakup of hexagonal
structure at said discontinuity in figures 12(a) and (b) which was not present in the continuous distributions.
Essentially, the binary Gaussian size distribution results in small differences between the forces acting on the
particles, which in any real experiment would be the case due to small fluctuations in F;,,, and F,;as well as
dynamic charging of the dust particles. As such, the discontinuity and breakup of structure at the discontinuity
has entirely been a simulation artifact and not realistic.

Next, we observe that the repulsive force F,.,. is proportional to the sum of the static forces Fj,,, and F;in
figures 12(b) and (d). However, they’re not equal which indicates that the system is not yet at rest. Further, the
point where F,; = Fj,,, (sum of forces is zero), which corresponds to the discontinuities in figure 12, is clearly
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Figure 10. Combined L - ¥ calculated for each particle to mapped to color each Voronoi cell for the smallest (a), (¢), (e), (g) and
largest (b), (d), (f), (h) size disparity for each of the size distribution types. The cropped region is zoomed in to the left part of the

particle ring. For the continuous size distributions we have higher L - W for the smallest size disparity. However, for the discrete
binary distribution this trend is reversed with higher L - W for larger size disparity.

defined for the discrete binary in figures 12(a) and (b) as they have the exact same size and thus the same point
where F,; = F;,,,. However, for the continuous distribution in (c) and (d) where every particle has a different
point for F,; = F;,,, the zero point has dispersion correlated with particle size dispersion. As particles will be
pushed towards the F,; = F;,,, point, and this points being different for every particle, it will result in a shear force
disrupting the lattice or hexagonal structure. Ultimately, the size in our case is regulating the dust particle’s
charge, so F,; = F,,,, depends on particle charge only. In a real experiment, the particles will charge dynamically,
and as such the F,; = F;,,, point will change dynamically for every particle (not to mention that F,;and F;,,, will
fluctuate), perhaps wiggling about a time averaged point. As such, the case in figures 12(a) and (b) where

F,; = F,,,, point s clearly defined is not realistic and also ultimately a simulation artifact.

4. Discussion

In our diagnostics we observe both similar and different behaviour for discrete and continuous size
distributions. We have already discussed and made some comparisons with other work for each specific
diagnostics type. Here, we will take a holistic look at our results and discuss the impact of continuous vs discrete
size distributions in the context of existing simulations and experiments in strongly coupled systems.
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Figure 11. In (a): The average value of L - W over all particles versus the standard deviation of particle size for all the distributions. In
(b) We observe a power law (L - Ws) ™% o o (a) where k = 5.61, indicating that larger o(a) exponentially degrades structure. Here, k is
found by fitting L - ¥y = co(a)” /¥ such that log(L - ) = log(c) + %log(a (a)).

4.1. Hexatic phase

While the system is not a crystalline solid, not an isotropic liquid, there exists in 2D a hexatic phase in between
according to KTHNY theory[4, 13, 14, 16]. The requirements for the hexatic phase are conventionally short
range translational order where g(r) o< e~ "/ € and quasi-long orientational order where G4(r) o< r~ “ with

0 < v < 1/4 with some dislocations disturbing the hexagonal structure [47, 52]. Figures 8 and 9 suggest the
hexatic phase for the smallest o(a) at the outermost region r = 11.5mm particularly for the uniform distribution
seen in figure 8(e) and 9(e). We were able to fit approximate lines with £ = 0.2 and v = 2. Here, v is outisde of its
acceptable range, however that would require translational pair order which is impossible with our geometry. As
such, we suggest that a hexatic phase from earlier is justified.

In figure 13 the distortion of hexagonal lattices are shown in a simple diagram. Now we will try to quantify
these errors with some approximations. Let’s assume we have a shell of evenly distributed particles, such that the
number of particles in the shell N = 277, where ris the shell’s radial position and d is the distance to the closest
neighbour in the shell. Then, we have for r = 11 mm and d = 0.2 mm that N = 350. Then, the difference
between expected distance to closest neighbor is approximately given by A(r) = %, which in our case should
not be more than 1/4 of d before results of the translational pair order stops working, which is around 2 mm.
The translational pair order will deterioate gradually up until this limit, such that translational pair correlation
with longer range than this limit is also impossible for a perfect crystal. Further, the distortion in orientational
orderis givenby (r) = tanfl(%), which in our case is about 0.01rad. As our orientaional order operates with
multiples of 7/6, this is an error of only 2%. As such, the translational pair order is much more significantly
impacted by the circular distortion of the hexagonal lattice, than the orientational order.

Note that the uniform distribution has the lowest o(a) with strongest bond order correlation, and the single
Gaussian has the highest o(a) with the weakest bond order correlation. As such, the hexatic phase might be
correlated to the overall particle size distribution, where high enough size disparity o(a) makes the hexatic phase
impossible. However, when the discrete binary distribution is completely separated, we obtained two mono-
dispersed species inhabiting different regions radially: One with only species 1, one mixing layer and one with
only species 2. The two regions with only one species present will have o(a) = 0 locally, while the overall &

(a) = 0. Hence, looking only at macroscopic predictors such as (a) might suggest similar behaviour for discrete
and continuous size distributions while in reality the local structures are different. Similarly, the local structure
in figures 10(c) and (d) suggest that the discrete binary distribution is more ordered locally for higher size
disparity o(a) outside the mixing layer at r > 10.5, while the macroscopic average (L - ) in figure 11 suggest less
order for higher o(a).
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Figure 12. The radial inter-particle repulsive force F,;,, ion drag force F;,,, and electric field F,; per particle. The dashed line is the ion
drag force and dotted line is the electric field for particle radius a = 3.5pm. The discrete binary data is used in (a) and (b) while the
binary Gaussian data is used in (c) and (d) both for the largest size disparity.

Figure 13. The distorted hexagonal lattice due to radial symmetry. Note the blue arrows which fails to intercept the third circle, and
how the radial distance between shells shrinks closer towards the center. This helps visualize how the pair order parameters fail over
long distances even though the hexagonal lattice is as good as it can be in radial geometry.

4.2. Macroscopic structure and problems with structure factors

While the coupling parameter in figure 7 has 2 different scalings for the I' — o(a) space, and at least 3 different
slopes, the parameter L - Uy can sufficiently be predicted with one scaling and one slope as seen in figure 11(b). As
such, we have macroscopic homogenity in the L - W4 — o(a) across all distributions. However, in the I — o(a)
space we have strong heterogeneity with topological structures that depend on the individual particle size
distrbutions. That being said, I' can be predicted by o(a), however that requires including the topological
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structures of the particle size distrbutions. Hence, the coupling parameter depends on the local structural
differences we see in figures 5 and 10.

Further, there are some issues related to the bond order parameters [53], particularly in the 6 closest
neighbours. The particles at the outermost and innermost layer will not have 6 neighbours, but 4. As such, the
innermost and outermost particles will falsely indicate lack of structure. Others have improved on this with a
more sophisticated choice of neighbourhood [53] and weighted bond order [15].

The average particle distance to the closest neighbour depends on the repulsive force Fy. o< Fjo,, + Fe;. This
means that the translational order is not expected to be the same everywhere, but will vary radially depending on
F;,nand F,;. As the profile of F;,,, and F,; depends on a and is unique for every particle, accounting for and
correcting for this non-linear particle repulsion effect in the translational correlation is non-trivial. Further, the
radial symmetry fundamentally does not work with a perfect hexagonal structure, unless the hexagon is
distorted to fit a circular geometry. Regardless, this effect is also not taken into account for the bond order
parameters.

Opverall, the complexity of the inter-particle forces and differences in the F;,,, and F,; profile for each particle
lead to a complex particle distribution in space over long distances that escapes particularly the translational
bond order (as it assumes the same inter-particle distance everywhere). As such, the bond order indication that
the particle distributions have similar structure from figures 9, 8 and 11 might be subject to the common
shortcomings of the order parameters outweighing their differences.

4.3. Phase separation vs bond order

From figures 11 and 6 we see thatboth Sand (L - ¥4) can be predicted by o(a). This suggest that phase separation
indicates the structure of the system. Even for the discrete binary distribution for large size disparities where the
two species are almost completely separated (as indicated by the discontinuity in figure 12) we still see separation
indicating less structure.

Phase separation indicates a difference in forces acting on the particles, according to size a in our case.
Structure on the other hand indicates how regular the inter-particle forces are, where a perfect crystal has the
exact same inter-particle forces everywhere. This suggests that any sign of partial phase separation is detrimental
to a perfect crystal lattice. For particles to separate, we need that the separation force is greater than the particle
coupling force keeping the particles in their place in the lattice. Hence, separation indicates that said force
upholding the lattice structure is too weak.

However, it is possible to completely separate in binary species such as multi-component fluids before phase
transitions. But, as shown in our results, real dust with binary Gaussian distributions do not appear completely
separate and then form crystals the same way discrete binary systems do. Further, as we observe phase separation
even for the single peak Gaussian with o(a) at 2% any attempt at studying crystal-like structures should be aware
that the particle size error has a significant effect on what type of structures one should expect to see.

4.4. Comparing discrete and Gaussian binary distributions

Binary dusty plasmas are typically simulated with discrete sizes [23] and compared to experimental data where
sizes are continuous. If we consider the discrete binary and binary Gaussian distribution simulation runs we can
evaluate some of the similarities and differences as a result of continuous vs discrete sizes. In table 4 we see that
using a continuous distribution results in overall larger o(a), something to keep in mind for metrics where o(a)
appears to be a good indicator.

In [23, 24] phase separation in discrete binary simulations are compared to micro-gravity experiments
where greater separation is observed in the experimental data. In our experiments, we observe a general trend of
greater separation for the binary Gaussian distribution. However this is likely due to continuous and discrete
distributions having different o(a) for the same ¢, as seen in table 4. Further, if o(a) is taken into account, it
appears that discrete and continuous binary distributions largely have the same degree of separation according
to our metrics.

For the coupling parameter however, we see the largest diversion between the discrete and Gaussian binary
distribution as seen in figure 7. Particularly, the binary Gaussian has a very large increase in I from the liquid to
the solid phase compared to especially the discrete binary, but also all other distributions. This indicates that
phase transitions may be significantly affected by continuous vs discrete implementations, something we also see
in figure 10. Further, the discrete and binary Gaussian have different scaling laws for I and o(a) in figure 7,
suggesting that coupling, and phase transitions, work differently for Gaussian distribitions.

The reduced coupling parameter due to large o(a) is similar to the phenomena known as ‘freezing point
depression’ [54], where introducing impurities into a liquid (such as salt in water) effectively reduces it’s freezing
temperature. However, it appears that in our case the larger o(a) actually prevents cooling rather than lowering
the freezing point, as the final temperature is different for different o(a) as indicated by I'. Whether the
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Table 4. The size disparity € and o(a) for the discrete and Gaussian binary
distributions. The distributions with 2 Gaussian peaks have alarger o(a)
despite the peaks’ mean radii being equivalent to the discrete binary

distribution.

Distribution e[pum] 0.03 0.09 0.20 0.29
Binary o(a)/al%] 1.43 4.29 10.01 14.27
BinGauss o(a)/al%] 1.52 4.77 10.74 15.65

mechanism is exactly the same or not is not clear, however it is clear that both continuous size distributions and
impurities as described by [54] disrupts crystal formation.

Opverall, phase separation seems relatively unaffected once changes in o(a) is accounted for. However, the
coupling and phase transitions appear to be largely affected by the different distributions.

4.5. Benefits of continuous vs discrete

One could argue that the point of a simulation is to investigate ideal and simplified scenarios with unrealistic
assumptions for simplicity. If so, it is extremely important to be aware of such assumptions. On the contrary, the
simulation artifacts due to simplification might cause unnecessary barriers when comparing simulations to real
experiments. In our case, there are several benefits of the continuous vs discrete distributions

1. Particle charge changes dynamically and will typically not be homogeneous even for the exact same particle
size. A particle distribution size better models dynamic particle charging.

2. Discrete binary species has force discontinuity and too well defined net zero force point as seen in figure 12
which is unrealistic.

3. Ahardborder between species as seen in figure 10(d) disrupts particle structure.

Opverall, assuming that continuous size distributions are trivial to implement, there is no reason not to have
them. It removes a lot of ambiguity especially for local structures and disregarding unrealistic simulation
artifacts.

4.6. General applications of o(a) in strongly coupled systems

Our results suggest that varying o(a) has a significant effect on phase transitions. We know that mono-dispersed
Coulomb crystals undergo phase transitions according to their I' — x phase diagrams [8]. Yet, it is unclear
whether the same conditions apply for large o(a). However, the conditions for the hexatic phase in [47, 51] agree
with our diagnostics for low o(a). While we refer to o(a) as radius, its physical effects on the system manifest
themselves in the particle charge and mass’ dependence on size. Further, the charge and mass affect both
particle-particle and particle-field interactions. Despite strongly coupled systems of ions operating with discrete
sizes, masses and charges, we suggest that fluctuations in particle-particle and particle-field interactions are
analogous to o(a). The essence of this suggestions, is that the existence of imperfections, be it in size, charge or
field, will have a non-linear effect on the order of the system. Further, as our results show, statistically
quantifying the imperfections allows us to predict and model their effects.

4.7. Limitations of our model

Here we will briefly discuss some limitations of our model and assumptions and possible impacts on our results.
First, we assume constant charge of the dust particles. Fluctuating charge has shown dissipative [37, 38], which in
our case would erode structuring. Further, as we have shown that small changes in Z; due to a normal
distrbution of particle size impacts self organizing phenomena and phase tranitions, we can assume that small
charge fluctuations in Z,; will impact the same processes.

Second, we assume negligible sheath edge effects, as our dust particles are populated in a potential well
situated many Debye lengths away from the chamber walls. Our experiment exists in microgravity, however
other experiments with a strong potential to counteract gravity might observe significant sheath edge effects.

Third, we assume a negligible dusty plasma effect. As shown in section 2.1.1, our 2D disc of particles have a
Havnes parameter Py = 0.003, justifying the negligible effect. However, for a sphere of equal particle density in
3D where particle number N = 464000, the Havnes parameter is P; > > 1, meaning we have complete
screening of electrons. But, our dust cloud is much smaller than what the Havnes effect assumes, and we don’t
have a Maxwellian homogeneous background plasma. As such, exactly how a spherical cloud is affected remains
somewhat ambiguous, and should be considered future work.
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5. Summary

We have studied the phase separation and bond order for discrete and continuous size distributions in dusty
plasma simulations. Our findings can be summarized to 3 main points, highlighting differences, similarities as
well as some findings independent of distrubtion type. Overall, the standard deviation of all the particle sizes
seem to be a very important indicator, both for phase separation and structuring. The main findings are the
following

1. Phase separation, orientational and translational pair correlation functions can be predicted by o(a) and are
almost entirely independent of distribution type. All distribitions in the L - Us — o(a) space scale according to
(L - Y% x o(a)with thesame k = 5.61.

2. There appears to be local structural differences for large size distributions and a high degree of separation for
discrete and continuous size distributions.

3. The coupling parameter space I' — o(a) scales differently depending on the distribition type. Here,
log(I') o< o (a) for uniform and discrete binary, and log(I") o< o (a)~* for Gaussian and binary Gaussian.

4. Different size distributions have different final temperature, which in turn affects the coupling parameter.
Temperature is proportional to log(o (a)). However, this effect is different for different size distributions at
roughly the same o(a).

5. Phase transitions appear to be affected by discrete vs continuous size distributions, particularly in the
binary case.

6. Static forces and discrete particle sizes creates artifacts in the force per particle resulting in disruptions at the
species’ separation border and a too stable and well defined zero force resting point not present in continuous
distributions.

Further work should consider whether these findings also apply for 3D, and overcome the shortcomings of
the bond order outlined in section 4.2 and [53]. Additionally, perturbing the static forces F;,,, and F,;, or
dynamically charging the dust, should be compared to the effect of continuous size distributions. Continuous
size distributions might satisfactory account for perturbations and dynamic charging, or perhaps other
phenomena could be observed. Lastly, such effects should be compared to experimental data to determine
which effects should be modelled, and which could be neglected.
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