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A B S T R A C T

Short-term wind power forecasting has become a de facto tool to better facilitate the integration of such
renewable energy resources into modern power grids. Instead of point predictors, which produce single-value
predictions for the expected power, probabilistic forecasts predict probability distributions over the expected
power output or associated confidence intervals. In this study, three different parametric and non-parametric
methods for uncertainty modelling in wind power forecasting were studied, namely quantile regression (QR),
variational inference and a maximum likelihood estimation (MLE) method. Johnson’s SU distribution was
studied as a novel candidate for modelling wind power, which is a transformed normal distribution that exhibits
both skew and heavy tails. This was one of the first studies to provide a thorough investigation of Johnson’s
SU distribution for uncertainty modelling in a complex deep learning framework for wind forecasting. It was
found that Johsnon’s SU likelihood and QR-based models significantly outperformed models using Gaussian
likelihoods, based on a range of quantitative metrics to evaluate probability distributions and qualitative
investigation of produced forecasts. Variational inference models using Johnson’s SU likelihoods performed
remarkably well, with near-perfect calibration and higher precision than models using any of the other methods
for uncertainty modelling, as evaluated through the pinball loss, Average Coverage Error (ACE) and Prediction
Interval Coverage Percentage (PICP) metric. With the superior performance of Johnson’s SU likelihood models,
the study mainly contributes to the literature by introducing another candidate distribution for probabilistic
wind forecasting, which is analytical, unbounded and easy to integrate into modern deep learning frameworks.
1. Introduction

With growing pressure on the depletion of fossil fuel-based energy
resources, the adoption of wind energy has experienced significant
attention and rapid acceleration in recent years. Despite another year
marked by the COVID-19 pandemic, 2021 emerged as the second-best
year for wind energy, with 94 GW of added capacity globally (GWEC,
2022). Renewable energy resources such as wind and solar are in-
herently intermittent, which can make their integration into power
systems challenging. Therefore, improved weather forecasting emerges
as an important topic of research to provide more information on
the expected power outputs from these resources in the near future.
Physical models, such as numerical weather predictions (NWP), can
provide very accurate forecasts for the medium- to long-term horizons,
ranging from days to a few weeks ahead (Wang et al., 2021). However,
a disadvantage of NWP models is that they require immense computing
power to simulate the underlying physics (Bazionis and Georgilakis,
2021), while also being less accurate for the immediate short-term, a
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few minutes to hours ahead (Wang et al., 2021). Statistical and ma-
chine learning methods, which are trained on historical measurement
data, have materialised as the most interesting for short-term wind
forecasting in recent years (Wang et al., 2021; Aslam et al., 2021).

Even though accurate point forecasts of wind speed and power
are necessary for the robust integration of wind power into energy
systems, such methods do not provide any confidence intervals or
measures of the uncertainty associated with predictions. In order to
make more informed decisions using forecasting systems, probabilistic
models that can provide some prediction of the intervals that the true
values are expected to lie within for some associated confidence level
should be developed (Bazionis and Georgilakis, 2021). Probabilistic
forecasting models can broadly be categorised into parametric and
non-parametric approaches. Parametric approaches assume some fully
defined probability distribution for the likelihood of the data, such as a
Gaussian or Beta distribution (Zhang et al., 2014; Bazionis et al., 2022).
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Nomenclature

ACE Average Coverage Error
ARIMA Autoregressive Integrated Moving Average
BMA Bayesian Model Averaging
CDF Cumulative Density Function
CNN Convolutional Neural Network
CRPS Continuous Ranked Probability Score
DL Deep Learning
ELBO Evidence Lower Bound
FFN Feed-Forward Network
GAT Graph Attention Network
GCN Graph Convolutional Network
GNN Graph Neural Network
GRU Gated Recurrent Unit
HMM Hidden Markov Model
KDE Kernel Density Estimation
KL Kullback–Leibler
LayNorm Layer Normalisation
LSTM Long Short-Term Memory
LUBE Lower Upper Bound Estimation
MAE Mean Absolute Error
MHA Multi-Head Attention
MLE Maximum Likelihood Estimation
MLP Multilayer Perceptron
MPN Message Passing Network
MSE Mean Squared Error
NLL Negative Log-Likelihood
NWP Numerical Weather Prediction
PDF Probability Density Function
PICP Prediction Interval Coverage Percentage
PIAW Prediction Interval Average Width
QR Quantile Regression
RL Reinforcement Learning
SCADA Supervisory Control and Data Acquisition
VI Variational Inference

Having mathematically simple probability density (PDFs) and cumu-
lative distribution functions (CDFs) might make it easier to interpret
results, while also providing the opportunity to leverage a long history
of research within probability theory. However, the simplicity comes at
a cost, where the assumed distributions will impose some bias on the
models and might not perfectly reflect the true underlying distribution.
Non-parametric approaches do not impose the same constraints on the
likelihoods and might therefore be able to more accurately model the
underlying true distributions given enough data.

Most studies that focus on probabilistic wind forecasting consider
interval prediction, where the models will provide point predictions
along with predictions of the expected upper and lower limits for the
respective intervals (Bazionis et al., 2022). For instance, a wind speed
forecasting model could have five outputs, corresponding to the point
prediction for the most likely wind speed and the expected upper and
lower wind speeds for the 50 and 95% confidence intervals. Wider
intervals can inform the user that the predictions are less certain than
for narrow intervals. Such additional information could be crucial to
best decide on appropriate downstream actions, such as those related
to the unit commitment.

Parametric models include techniques such as variational infer-
ence (VI) or maximum likelihood estimation (MLE) methods. Non-
parametric approaches include quantile regression (QR), kernel density
2

estimators (KDE) and ensemble methods. Since most studies on wind
forecasting consider point estimators and many probabilistic systems
have focused on non-parametric approaches, this study instead consid-
ers a comparison of different probabilistic models, namely QR, MLE and
VI. Furthermore, the study also investigates the effect of a couple of
different distributions for the parametric approaches, namely Gaussian
and Johnson’s SU distribution, of which the latter is yet to be thor-
oughly investigated for modelling wind power. The main contributions
of this work can be summarised as:

• In this study, we investigate the feasibility of Johnson’s SU distri-
bution - a transformed Gaussian with four parameters to model
skew and heavy tails. The distribution has a fully defined PDF
and is unbounded, which makes it easy to integrate into modern
DL frameworks. Johnson’s SU distribution is yet to be exten-
sively studied for probabilistic wind forecasting. The main novelty
of this paper is a thorough analysis of Johnson’s SU distribu-
tion, both when used in a simple MLE and more complex VI
framework, compared to non-parametric QR models and Gaussian
likelihoods.

• VI is investigated as a Bayesian and parametric approach that
should be able to model both aleatoric and epistemic uncer-
tainty. Such complex parametric methods are less studied for
wind forecasting using deep learning. The study therefore aims
to provide information on the relative merits of such a complex
probabilistic framework, compared to more conventional MLE
and QR methods.

• The study provides a detailed analysis and comparison of the
performance of QR, VI, MLE and different likelihoods for wind
power forecasting. The probabilistic methods are evaluated in a
complex spatio-temporal DL framework based on graph neural
networks with LSTM and Transformer sequence learners. To the
best of the authors’ knowledge, this is the first study in the liter-
ature to provide such a detailed analysis of the aforementioned
probabilistic methods in a complex DL framework.

2. Related works

2.1. Time series forecasting methods

Moving average models, such as the autoregressive integrated mov-
ing average (ARIMA) model, represent some of the simplest, yet very ef-
fective, statistical forecasting methods used for wind energy (Kavasseri
and Seetharaman, 2009). Simple machine learning methods have also
been popularly applied to wind forecasting. Ren and Suganthan (2014)
forecasted wind speeds using empirical mode decomposition followed
by K-nearest neighbour (KNN) models as the principal predictors,
while support vector regression (SVR) has also been popularly used as
in Santamaría-Bonfil et al. (2016).

DL has experienced a surge of use cases in recent years, due to
cheaper computing power and large datasets that facilitate the training
of such models. Multilayer perceptrons (MLP) are the quintessential
architecture that underpins modern DL. Various studies use MLPs as the
principal predictor in wind forecasting models, either in isolation (Sfet-
sos, 2002) or in combination with other methods, such as an ARIMA
model (Cadenas and Rivera, 2010) or some signal decomposition (Liu
et al., 2013). Convolutional neural networks (CNNs) are primarily used
for image analysis, where the data is ordered in a two-dimensional
grid. By changing the 2D convolution to a 1D causal convolution
along the temporal dimension, CNNs have also become popular for
sequence analysis (Oord et al., 2016) and forecasting (Shang et al.,
2022). Nevertheless, recurrent neural networks (RNN) are still more
popularly employed for forecasting applications. The Long short-term
memory (LSTM) cell and gated recurrent unit (GRU) both introduce
gating into the vanilla RNN architecture. The gating improves the learn-
ing ability and retains information across longer sequences, making

them very competitive contenders for use in wind speed and power
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forecasting (Wang et al., 2021; Salinas et al., 2020). The Transformer
alleviates the need for recurrence and has been found to outperform
RNN-based methods for a range of different applications (Vaswani
et al., 2017), including wind forecasting (Wang et al., 2022a; Qu et al.,
2022). The Transformer does not require all past information to be
encoded in a single memory vector, which is one of the reasons why
the LSTM and GRU networks might struggle for long and complex time
series (Vaswani et al., 2017). In recent years, Reinforcement Learning
(RL) has also been used as a different learning technique to develop DL-
based forecasting systems for wind. Li et al. (2023) used an RL-based
algorithm as the basic forecasting model, integrated with federated
learning to avoid privacy issues. Similarly, Li et al. (2021) used a deep
RL model for multi-period forecasting to be used in optimal energy
scheduling.

Spatio-temporal models consider time series recorded at differ-
ent physical locations to learn global characteristics and correlations,
which have been found to improve wind forecasting models (Bazionis
and Georgilakis, 2021; Quan et al., 2019). Some studies assign each
individual time series to a location in a grid-like structure, similar
to pixels in an image, and leverage CNNs to extract spatial correla-
tions (Zhu et al., 2019; Liu et al., 2020). However, such a rigid ordering
of the spatial information might not be the best method for representing
the spatial locations, as measurement locations might have complex
topologies, which do not closely follow a grid-like structure. Instead
of CNNs, graph neural networks (GNNs), which operate on graph-
structured data with arbitrary ordering, have therefore emerged as the
most interesting architectures for modelling spatial correlations in wind
forecasting in recent years (Khodayar and Wang, 2018; Liao et al.,
2021).

2.2. Probabilistic forecasting methods

There are generally two sources of uncertainty for time series fore-
casting models, namely aleatoric and epistemic uncertainty. Aleatoric
uncertainty refers to the uncertainty and variability in the data that
are a result of inherently random effects and cannot be reduced with
more data. In the context of wind forecasting, this could for example
be uncertainties that stem from poor sensory equipment or random
component failures (Billinton and Huang, 2008). Epistemic, or model
uncertainty, refers to the model’s uncertainty in parameters and can
be reduced with more data, information or different model archi-
tectures (Der Kiureghian and Ditlevsen, 2009). Methods where point
predictors are made probabilistic by adding additional outputs to pre-
dict expected distribution parameters or quantiles can generally be
argued to only consider aleatoric uncertainty, e.g. in MLE or QR. This is
because there is no randomness introduced into the model architecture
itself (Valdenegro-Toro and Mori, 2022). On the other hand, Bayesian
approaches such as VI aim to learn posterior distributions for all model
parameters. In this way, such models are able to capture both epistemic
and aleatoric uncertainty, since the distribution over the weights should
be able to reflect the epistemic (model) uncertainty.

KDE, QR and lower upper bound estimation (LUBE) are some of the
most popularly used non-parametric methods to make machine learn-
ing models probabilistic in wind forecasting (Bazionis and Georgilakis,
2021; Bazionis et al., 2022). Various studies propose wind forecasting
models based on QR and KDE, where KDE is used to estimate the
full PDF given the predicted quantiles (He and Li, 2018; He and
Zheng, 2018). Ensemble methods, where the predicted distributions are
obtained from aggregating predictions from multiple model candidates,
are generally non-parametric, but able to capture both aleatoric and
epistemic uncertainty. Sloughter et al. (2010) proposed a probabilistic
wind speed forecasting model using ensembles and Bayesian model
averaging (BMA), while Liu et al. (2019) performed solar irradiation
forecasting using ensemble convolutional GRU. Afrasiabi et al. (2020)
3

proposed a probabilistic DL model based on a CNN and GRU with a
special gradient-based loss function. The architecture produced mix-
ture distributions and was found to outperform KDE and Monte Carlo
Dropout models on two datasets for hour-ahead wind speed forecasts.

Various studies also train DL models with multiple outputs to pre-
dict distribution-specific parameters. For example in MLE, a model
can learn to predict the mean and standard deviation for a Gaussian
by minimising the negative log-likelihood. The most common and
simplest distribution to fit using MLE is the Gaussian distribution, but
many studies investigate the performance of other likelihoods, such as
Gamma, Beta, Weibull and LogNormal (Bazionis and Georgilakis, 2021;
Bazionis et al., 2022; Pobočíková et al., 2017). Pobočíková et al. (2017)
compared four probability distributions for wind speed modelling and
found a three-parameter Weibull distribution to achieve superior re-
sults. Wang et al. (2022b) proposed the AL-MCNN-BiLSTM model,
where an asymmetrical Laplace distribution is assumed to characterise
the uncertainty in wind power forecasts, which can model skew in ei-
ther direction. The motivation for using the aforementioned probability
distributions is generally that wind speed and power distributions have
evident skew and heavy tails which cannot be accurately represented
by a standard Gaussian likelihood (Zhang et al., 2014; Bludszuweit
et al., 2008). However, a problem with the Gamma, Beta, Weibull and
LogNormal distributions is that their PDFs are either bounded or can
only model skew in a particular direction. Johnson’s SU distribution is a
transformed Normal distribution with four parameters to control shift,
variance, skewness and heavy tails (Johnson, 1949). The use of John-
son’s SU distribution for wind power modelling has been limited, Li
et al. (2020) and Zhang et al. (2016). This study has therefore decided
to investigate this distribution due to its simple analytical definition
and shape versatility. These properties are hypothesised to be able to
model the skewness of wind power distributions well, while also being
fully defined and applicable in an MLE or VI framework.

VI has been less studied for wind forecasting. Wang et al. (2017)
proposed a multi-kernel regression model trained using VI for wind
power forecasting. Similarly, Liu et al. (2020) studied a ConvGRU
model for spatio-temporal wind speed forecasting trained using VI,
achieving superior results compared to Gaussian process regression
(GPR) and hidden Markov model (HMM). Despite the large number of
research on QR, there lacks substantial research on the comparison of
non-parametric methods such as QR against parametric MLE and VI
models, where the latter should also be able to explicitly model both
aleatoric and epistemic uncertainties. Furthermore, Johnson’s SU distri-
bution emerges as an interesting candidate for wind power distribution
modelling and should be compared against the Gaussian distribution
for a couple of different parametric methods.

Overall, the contributions of this paper with respect to the literature
can be summarised in two parts. First, there is a lack of research com-
paring non-parametric QR against parametric VI and MLE methods in
complex spatio-temporal DL forecasting frameworks. In this study, we
therefore perform a relative comparison of these probabilistic methods
for a couple of different DL architectures, in order to establish distinct
characteristics of the different methods. Secondly, the main novelty of
this paper will be the investigation into the suitability of Johnson’s SU
distribution for uncertainty modelling in wind forecasting. This distri-
bution seems to encompass the key properties desirable for modelling
wind, namely the ability to model skew and heavy tails. Furthermore,
Johnson’s SU distribution seems particularly suitable for DL applica-
tions since it has analytically defined PDFs and is unbounded. With
a lack of research investigating Johnson’s SU distribution, this paper
should advance the literature by studying a new candidate distribution
for modelling uncertainty in wind forecasting.

3. Preliminaries

3.1. Neural architectures

3.1.1. LSTM
The LSTM unit is an alteration of the original RNN, where gating

mechanisms enable the network to learn long-term dependencies by
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Fig. 1. Illustration of the LSTM gating mechanism.

Fig. 2. Transformer encoder with multi-head attention (MHA) and position-wise
feed-forward network (FFN).

selecting what information to write to and forget from the memory
vector (Hochreiter and Schmidhuber, 1997). An illustration of the
LSTM unit is given in Fig. 1 to show the internal workings of the input,
forget and output gating mechanisms. The recurrent architecture can
process variable length inputs, which are fed sequentially to encode
information into the memory vector. To produce wind power forecasts,
either an encoder–decoder or direct strategy can be used. In a direct
strategy, as will be used in this study, the final output from the last
LSTM layer, 𝒉𝑇 ∈ R1×𝑑 , will be fed through an MLP or a single linear
transform, 𝑾 (𝑜𝑢𝑡) ∈ R𝑑×𝑃 , as

𝒉𝑇 = LSTM(𝑿1,𝑿2,… ,𝑿𝑇 ) (1)

�̂� = 𝒉𝑇𝑾 (𝑜𝑢𝑡), (2)

where 𝑿𝑡 are the inputs at time 𝑡 and �̂� ∈ R1×𝑃 are the forecasts for 𝑃
future times 𝑇 + 1, 𝑇 + 2,… , 𝑇 + 𝑃 .

3.1.2. Transformer
The Transformer architecture was proposed as an alternative to

RNNs for sequence modelling (Vaswani et al., 2017). Fully reliant
on the attention mechanism, the Transformer alleviates the need for
recurrence and avoids the problem of vanishing or exploding gradients,
making it better at learning complex long-term dependencies. Due to
the lack of recurrence, positional encoding has to be introduced into
the inputs, often through a sine–cosine embedding as in the original
architecture. A single layer is comprised of an attention module, resid-
ual connections and position-wise feed-forward networks (FFN). The
computation in a single layer, 𝑙, can be summarised as

Attn(𝑿(𝑙)) = softmax
(

(𝑿(𝑙)𝑸(𝑙))(𝑿(𝑙)𝑲 (𝑙))𝑇
√

𝑑

)

𝑿(𝑙)𝑽 (𝑙) (3)

𝒁(𝑙) = LayNorm
(

Attn
(

𝑿(𝑙)) +𝑿(𝑙)) (4)
4

Fig. 3. Illustration of the spatial locations for the 134 turbines in the studied wind
farm. The 𝑥 and 𝑦 coordinates are in meters.

Fig. 4. Spatio-temporal model architecture. Multiple layers of stacked GCN and
temporal layers to extract spatial and temporal correlations, respectively.

𝑿(𝑙+1) = LayNorm
(

FFN(𝑙) (𝒁(𝑙)) +𝒁(𝑙)
)

, (5)

where 𝑸(𝑙),𝑲 (𝑙) and 𝑽 (𝑙) ∈ R𝑑×𝑑𝑘 are linear projections for layer,
𝑙, to queries, keys and values, respectively, and 𝑿(𝑙+1) the outputs
from layer 𝑙. Typically, multi-head attention (MHA) is used, where
multiple attention operations are performed in each layer before the
outputs are concatenated and linearly transformed to produce the latent
output, 𝒁(𝑙) ∈ R𝑇×𝑑 , where 𝑇 is the sequence length and 𝑑 the latent
dimensionality. LayNorm and FFN are layer normalisation (Ba et al.,
2016) and position-wise feed-forward networks, respectively. Multiple
layers are typically stacked to increase the model’s complexity and a
visualisation of the architecture is given in Fig. 2. To make forecasts in
an encoder setting, a sequence of length 𝑇 + 𝑃 is typically fed to the
model for 𝑇 historical measurements and the 𝑃 future times for which
to forecast. Placeholders such as mean or last recorded values are used
for the last 𝑃 indices in the inputs.

3.1.3. Spatio-temporal forecasting with GNNs
In spatio-temporal forecasting, the aim is to improve prediction

performance by leveraging correlated time series information from
different physical locations. For our particular application of wind
power forecasting, we have separate time series recorded for the 134
wind turbines shown in Fig. 3. An overview of our spatio-temporal
framework is given in Fig. 4, where multiple layers are stacked, along
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with embedding and projection layers which will depend on the par-
ticular temporal model used. A single layer is comprised of a graph
convolutional layer to learn spatial correlations, followed by a temporal
network, such as an LSTM or Transformer layer, to learn temporal
correlations as described in Sections 3.1.1 and 3.1.2.

The inputs are graph-structured,  = (𝑿, ). Input node features,
𝑿(0) ∈ R(𝑁×𝑇×𝑑𝑖𝑛𝑝), contain 𝑑𝑖𝑛𝑝 number of different features, such as
wind speed, power and temperature, recorded for 𝑇 previous time steps
at 𝑁 different nodes, i.e. 134 different turbine locations. The graph’s
connectivity is described through the index set,  , where 𝑖 contains
the indices of all nodes sending to node 𝑖. For all experiments described
in this study, the index set 𝑖, will contain the 9 closest neighbouring
turbines, based on Euclidean distance, as well as self-connections.
Considering the simplest graph convolutional update, i.e. a vanilla
message-passing network (MPN), a single update can be summarised
as:

𝒙(𝑙)𝑖 = 𝜙
⎛

⎜

⎜

⎝

𝒙(𝑙−1)𝑖 ,
⨁

𝑗∈𝑖

𝜓(𝒙(𝑙−1)𝑖 ,𝒙(𝑙−1)𝑗 )
⎞

⎟

⎟

⎠

, (6)

where 𝜙 and 𝜓 are the update and message functions, respectively, such
as a linear transform or an MLP, and 𝒙(𝑙)𝑖 are the updated features for
node, 𝑖, after layer, 𝑙. To aggregate the neighbourhood information,

is a permutation invariant aggregator, such as a sum or mean
peration. A range of more advanced graph updates exist, such as
raph attention networks (GAT) (Veličković et al., 2017), where an
ttention mechanism will weigh the influence of neighbouring nodes
ifferently, essentially turning the aggregator, ⨁, into a learnable

weighted average. GATv2 (Brody et al., 2021) is an improved version
of the original GAT and is the focus of this study. Here, a single graph
layer update becomes:

𝛼𝑖𝑗 =
exp

(

𝒂𝑇 LeakyReLU
(

𝑾 (𝑟)𝒙(𝑙−1)𝑖 +𝑾 (𝑠)𝒙(𝑙−1)𝑗

))

∑

𝑗′∈𝑖
exp

(

𝒂𝑇 LeakyReLU
(

𝑾 (𝑟)𝒙(𝑙−1)𝑖 +𝑾 (𝑠)𝒙(𝑙−1)𝑗′

)) (7)

𝒙(𝑙)𝑖 = 𝜎(
∑

𝑗∈𝑖

𝛼𝑖𝑗 ⋅𝑾 𝑟𝒙𝑗 ), (8)

where 𝑾 (⋅) ∈ R𝑑𝑘×𝑑 , 𝒂 ∈ R𝑑𝑘 and 𝜎 a non-linearity. Multiple attention
eads are typically also used, where outputs from Eq. (8) will be
oncatenated and linearly transformed.

.2. Uncertainty modelling

In this study, we chose to focus on three different methods for uncer-
ainty modelling of wind power forecasts, namely quantile regression
QR), maximum likelihood estimation (MLE) and variation inference
VI) techniques. QR is non-parametric and can model any underlying
istribution. VI introduces randomness into the model parameters and
s the only technique that explicitly incorporates epistemic (model)
ncertainty.

.2.1. Quantile regression
In QR, the model should predict the conditional 𝑞-quantile of the

dependant variable (Koenker and Hallock, 2001). For instance, a QR
model can provide an estimate for 𝑦(𝑞), with 𝑞 ∈ (0, 1), for which
there is a probability 𝑞 that the true value is smaller than 𝑦(𝑞). To
enable quantile predictions for a model 𝑓 , we will have |𝑄| outputs that
correspond to the |𝑄| different quantiles we want to predict, e.g. 𝑄 =
(0.1, 0.25, 0.5, 0.75, 0.9). Our QR model then becomes:

�̂� = 𝑓 (𝑿, 𝜃), (9)

where, �̂� ∈ R𝑁×𝑃×|𝑄| contains the predicted quantile levels for the 𝑃
future time steps at 𝑁 spatial locations, 𝑿 ∈ R𝑁×𝑇×𝑑𝑖𝑛𝑝 , 𝜃 are the model
parameters and 𝑓 a model such as the spatio-temporal architecture
utlined in Fig. 4. Apart from additional outputs to predict the different
5

uantile levels, nothing else changes in terms of the actual model c
architecture, compared to a point-prediction setting. However, since
the true quantiles are not known, a special loss function is used to train
a QR model, namely the pinball loss function:

𝐿pinball = 1
𝑁𝑇

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

∑

𝑞∈𝑄
𝜑𝑞(𝑌𝑖,𝑡 − 𝑌𝑖,𝑡,𝑞), (10)

where

𝜑𝑞(𝑢) =

{

𝑞𝑢 when 𝑢 ≥ 0
(𝑞 − 1)𝑢 when 𝑢 < 0.

(11)

3.2.2. Maximum likelihood estimation
Similar to the QR methodology, the only architectural changes for

MLE estimation are additional outputs. However, instead of predicting
quantile levels, an MLE model will predict distribution-specific parame-
ters to fit a particular distribution to the data. For a Gaussian likelihood,
the model will simply have two outputs to predict the expected mean
and standard deviation of the forecasts, i.e. �̂� ∈ R𝑁×𝑃×2 in Eq. (9). To
train an MLE model, we minimise the negative log-likelihood (NLL). For
a Gaussian likelihood, where �̂� 𝑖,𝑡,0 and �̂� 𝑖,𝑡,1 are the predicted means
and standard deviations, respectively, for location, 𝑖, at a time, 𝑡, the
NLL loss function becomes:

𝐿𝑁𝐿𝐿 = 1
𝑁𝑇

𝑁
∑

𝑖=1

𝑇
∑

𝑡=1

1
2

(

𝑌𝑖,𝑡 − 𝑌𝑖,𝑡,0
𝑌𝑖,𝑡,1

)2

+ ln 𝑌𝑖,𝑡,1
√

2𝜋. (12)

Since 𝐿𝑁𝐿𝐿 computes the log probabilities, a requirement is that the
distribution that we want to fit the data has a fully defined PDF that
can be easily computed.

3.2.3. Variational inference
Bayesian methods are different to QR and MLE in that they propose

prior distributions for the model parameters and update the belief about
these as more observations are available. The updated distributions
serve as the model’s best guess for the posterior, 𝑝(𝜃|). Since the
rue posterior is intractable, variational inference (VI) aims to find a
istribution, 𝑞(𝜃), which is a good approximation of the posterior. The
roposed distribution, also referred to as the guide, needs to be well-
efined, meaning that it should be easy to sample from and that the PDF
an be analytically computed. In VI, the distribution 𝑞(𝜃) is obtained by
inimising the Kullback–Leibler (KL) divergence between 𝑞(𝜃) and the

true posterior 𝑝(𝜃|) (Blei et al., 2017):

𝑞∗(𝜃) = argmin
𝑞(𝜃)

𝐾𝐿(𝑞(𝜃) ∥ 𝑝(𝜃|)). (13)

owever, since the posterior is intractable, we cannot obtain the opti-
al, 𝑞∗(𝜃), directly. Instead, we rearrange Eq. (13) to

ln 𝑝() = E𝑞(𝜃) ln
𝑝(𝜃,)
𝑞(𝜃)

+𝐾𝐿(𝑞(𝜃) ∥ 𝑝(𝜃|)). (14)

ere, the evidence, 𝑝(), is difficult to compute but is constant. There-
ore, the KL term in Eq. (14), can be minimised indirectly, by maximis-
ng the expectation. In VI we maximise this expectation, known as the
vidence lower bound (ELBO), through gradient ascent, which can also
e written as:

LBO = E𝑞(𝜃) ln 𝑝(|𝜃) −𝐾𝐿(𝑞(𝜃) ∥ 𝑝(𝜃)). (15)

uring training, the KL term in Eq. (15), can be quite a strong regu-
ariser, resulting in KL vanishing and the model parameters converging
o the prior distributions, known as posterior collapse. Training might
herefore be improved by reducing the importance of the KL term
r using different annealing schedules (Bowman et al., 2015). In this
tudy, we experimented with a few different schedules, such as cyclic,
tep, linear, exponential and constant annealing. For the final results,
ll VI-based models used a constant schedule, multiplying the KL-term
y 0.1, as this gave similar results to models using the other more

omplex annealing schedules. Without any annealing, training was
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more challenging, with some models resulting in posterior collapse,
i.e. simply learning the prior distribution, 𝑝, for the guide, 𝑞.

Gaussian distributions are most commonly used for the prior and
proposal distributions, 𝑝(𝜃) and 𝑞(𝜃), respectively, while the likeli-
hood, 𝑝(|𝜃), is more domain specific. For Gaussian likelihoods, a
model will have two outputs, as for the MLE method described in
Section 3.2.2. Unlike the QR and MLE methods, VI is a true probabilistic
method, since the aim is to learn distributions for all the parameters
in the model, instead of scalar values. This means that the model will
also learn the uncertainty associated with its parameters, and VI is,
therefore, capable of explicitly modelling epistemic uncertainty.

3.3. Homoscedastic and heteroscedastic likelihoods

When the data noise is constant across the input domain, the noise
can be classified as homoscedastic, while for heteroscedasticity, the
noise will be input-dependent (Rogers et al., 2020). In our analysis,
we will investigate both homo- and heteroscedastic likelihoods for the
MLE and VI models. In the heteroscedastic setting, the models will
have additional outputs to predict the input-dependent variance, as
shown in Eq. (12). For homoscedastic likelihoods, the variance will not
depend on the input. Considering a homoscedastic Gaussian likelihood,
the models will only have one output to predict the mean and a single
additional learnable parameter to represent the constant variance. The
different methods for homo- and heteroscedastic settings with Gaussian
likelihoods are summarised in Eqs. (16) and (17), respectively.

Homoscedastic: �̂� 𝑖,𝑡 ∼ 
(

𝑓 (𝑿, 𝜃)𝑖,𝑡, 𝛾
)

(16)

Heteroscedastic: �̂� 𝑖,𝑡 ∼ 
(

𝑓 (𝑿, 𝜃)𝑖,𝑡,0, 𝑓 (𝑿, 𝜃)𝑖,𝑡,1
)

, (17)

where 𝑓 is an arbitrary model, with either one or two outputs for the
two settings, respectively, and 𝛾 is a learnable parameter to represent
homoscedastic noise.

3.4. Johnson’s SU distribution

Johnson’s SU distribution is a four-parameter distribution with skew
and heavy tails (Johnson, 1949). The distribution is unbounded, which
makes it easy to work with since it can be applied to any data range, in-
cluding negative values. Furthermore, the distribution is a transformed
normal distribution and has analytically defined PDFs which makes
it easy to compute the likelihoods required for MLE and VI models.
Random variables, x, of Johnson’s SU distribution can be generated as

x = 𝜉 + 𝜆 sinh
(

𝛷−1(u) − 𝛾
𝛿

)

, (18)

where 𝛷−1 is the inverse CDF of a normal distribution and u a random
variable uniformly distributed on [0, 1]. The distribution shift (analo-
gous to mean of a standard normal), is controlled by 𝜉, 𝜆 > 0 controls
the spread, 𝛾 the amount and direction of skew, while 𝛿 > 0 is a shape
parameter for which larger values result in heavier tails. The PDF is
analytically defined as:

𝑝(𝑥) = 𝛿

𝜆
√

2𝜋

1
√

1 + 𝑧2
𝑒−

1
2 (𝛾+𝛿 sinh

−1(𝑧))2 ,

where 𝑧 = 𝑥 − 𝜉
𝜆

.
(19)

Examples of Johnson’s SU PDFs, 𝑆𝑈 (𝜉, 𝜆, 𝛾, 𝛿), for different skew and
shape parameters are given in Fig. 5, along with a standard Gaussian
with zero mean and 0.5 standard deviation,  (0.0, 0.5). Johnson’s SU
distribution was selected as an additional distribution to study for
probabilistic wind power forecasting, due to its versatility in modelling
a range of underlying distributions, with both skew and heavy tails.
Since the distribution is unbounded, it is also easier to implement with
modern DL techniques, as it does not impose any constraints on the
value space, such as strictly positive values or upper and lower bounds.
Finally, the lack of research applying Johnson’s SU distribution for
6

Fig. 5. Example of Johnson’s SU PDF for different levels of skew (blue) and shape
(green) parameters, along with a Gaussian PDF (black).

probabilistic wind forecasting also makes it a particularly interesting
candidate to further investigate. Studying the Johnson’s SU distribution
could therefore potentially bring significant contributions to the litera-
ture, by proposing a flexible distribution to model uncertainty in wind
forecasting, which is also easy to integrate into modern DL frameworks.

4. Experiments

4.1. Dataset

The dataset used for the study was taken from the KDD Cup22
forecasting competition (Zhou et al., 2022). The dataset contains 10-
minute averaged Supervisory Control and Data Acquisition (SCADA)
measurements on wind speed and direction, external and internal
temperature, blade pitch, yaw and power outputs, recorded at the 134
different wind turbine locations shown in Fig. 3 for 245 days. First, cor-
rupt measurements were removed according to the specifications (Zhou
et al., 2022):

𝑃𝑎𝑏 ≥ 90◦ (20)

𝑊 𝑑𝑖𝑟 ∉ [−180◦, 180◦] (21)

𝑁𝑑𝑖𝑟 ∉ [−720◦, 720◦] (22)

𝑃𝑎𝑡𝑣 < 0, (23)

where 𝑃𝑎𝑏 are blade pitch angles, 𝑊 𝑑𝑖𝑟 the wind direction, 𝑁𝑑𝑖𝑟 the
yaw angles, and 𝑃𝑎𝑡𝑣 the active turbine power output. The directional
features, i.e. blade pitch, wind direction and yaw angle, were all
decomposed into sine and cosine components to capture the circular
characteristics. All features were scaled using a standard scaler to have
zero mean and unit variance. The dataset was then split into training
and validation sets, with a 90%–10% split, respectively. A separate
test dataset was provided, used for the final test phase in the actual
competition. Additional information and download links to the datasets
can be found here.1

Different to the 48-hour (288 steps) ahead forecasts produced for
the KDD Cup22 competition (Zhou et al., 2022), the main focus of
this study will be on short-term forecasts, one hour ahead (6 steps).
Forecasts will be produced for the expected power output from every
turbine over the next hour in 10-minute resolution. The reason for
choosing a shorter forecasting horizon was that this can be critical for

1 https://aistudio.baidu.com/aistudio/competition/detail/152.

https://aistudio.baidu.com/aistudio/competition/detail/152
https://aistudio.baidu.com/aistudio/competition/detail/152
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grid stability and short-term decision-making. Furthermore, it is for the
shorter horizons that machine learning methods have seen the greatest
improvements over NWP models.

4.2. Experimental setting

All models followed the spatio-temporal architecture in Fig. 4, with
the GATv2 (Brody et al., 2021) as the GCN update in each layer. In
order to conclude on general characteristics of the different probabilis-
tic methods, two different temporal update functions were studied for
each method, namely, a single LSTM or Transformer encoder layer. For
the LSTM-based models, a direct strategy was used, as described in
Section 3.1.1, with inputs 𝑋(0) ∈ R𝑁×𝑇×𝑑𝑖𝑛𝑝 , where 𝑑𝑖𝑛𝑝 are the number
f input features and 𝑇 the number of previous recordings used to
roduce forecasts for the future 𝑃 = 6 time steps. The Transformer-
ased models on the other hand had inputs 𝑋(0) ∈ R𝑁×(𝑇+𝑃 )×𝑑𝑖𝑛𝑝 , where
he first 𝑇 vectors are recorded values for the last 𝑇 time steps. We
oncatenate the last recorded values 𝑃 times, which just act as a set of
laceholders, with the above sequence of 𝑇 vectors to form the input
(0).

Both spatio-temporal architectures, using either LSTM or Trans-
ormer updates as sequence learners, were tested for the different
ncertainty modelling techniques described in Section 3.2. For QR, the
odels had 11 outputs, corresponding to the quantiles; 𝑄 = [0.05,
.15, 0.25, 0.35, 0.45, 0.5, 0.55, 0.65, 0.75, 0.85, 0.95] in Eq. (10).
hree different MLE models were tested for both LSTM and Transformer
pdates. The first two had heteroscedastic likelihoods using either the
aussian or Johnson’s SU distribution, resulting in 2 and 4 model
utputs, respectively. The third MLE model had homoscedastic likeli-
oods, where the models predict the mean of a Gaussian distribution,
ith an independent learnable parameter to model the constant noise,
s in Eq. (16). Exactly the same likelihoods were investigated for
he VI models, i.e. for 𝑝(|𝜃) in Eq. (15), resulting in three different
odels for each of the sequence learners. All VI models had Gaussian
roposal and prior distributions, i.e. for 𝑞(𝜃) and 𝑝(𝜃), respectively, in
q. (15). To ensure distributional stability, a softplus activation was
pplied to the predicted standard deviations and 𝜆 for the Gaussian
nd Johnson’s SU likelihoods, respectively. Values for the predicted
kew and shape parameters, 𝛾 and 𝛿, for the Johnson’s SU likelihoods
ere also constrained using tanh(�̂�) and tanh(𝛿)∕2 + 1. This was found

o give better results as the distributions were constrained to sensible
evels. Furthermore, at the beginning of training, the parameters for
ohnson’s SU distribution were initialised to 0.2, 0.0 and 1.0 for 𝜆, 𝛾
nd 𝛿, respectively. This was done by multiplying the predicted outputs
or the three parameters by a trainable parameter, initialised to zero.
uch an approach has not been used in the current literature but
as found to significantly stabilise training and reduce convergence

ime, because the models were initialised to a sensible starting point.
eterministic point predictors that do not model uncertainty were also

mplemented to be able to better evaluate the point prediction accuracy
f the probabilistic models.

All models described so far used embedding layers, as shown in
ig. 4:
(0) = 𝑿𝑖𝑛𝑝𝑾 (𝑒) + TempEnc(𝒕𝒔) + PosEnc(𝑇 ), (24)

where 𝑾 (𝑒) ∈ R𝑑𝑖𝑛𝑝×𝑑 , 𝑿𝑖𝑛𝑝 ∈ R𝑁×𝑆×𝑑𝑖𝑛𝑝 are the 𝑑𝑖𝑛𝑝 recorded features
described in Section 4.1 for 𝑆 time steps and𝑁 nodes. The TempEnc en-
codes temporal information using the available time-stamp information
taken as the minute-of-hour and hour-of-day. Each time-stamp feature
was decomposed into sine and cosine components to capture the circu-
lar characteristic, similar to what was done for the directional features
described in Section 4.1, but with different frequencies. Considering a
recording obtained at 18:20, the input feature to the TempEnc module
would become:

[

−1 0 0.866 −0.5
]

=

⎡

⎢

⎢

⎢

⎢

sin (18 ⋅ (2𝜋∕24))
cos (18 ⋅ (2𝜋∕24))
sin (20 ⋅ (2𝜋∕60))

⎤

⎥

⎥

⎥

⎥

𝑇

(25)
7

⎣

cos (20 ⋅ (2𝜋∕60))
⎦

c

The decomposed time-stamp information, 𝒕𝒔 ∈ R𝑁×𝑆×4, would then be
fed to the TempEnc:

TempEnc(𝒕𝒔) = 𝒕𝒔𝑾 (𝑡𝑠), (26)

where 𝑾 (𝑡𝑠) ∈ R4×𝑑 . The PosEnc in Eq. (24) was used only for the
Transformer-based models, due to the lack of recurrence, and fol-
lowed the same sine–cosine positional encoding proposed in the vanilla
Transformer (Vaswani et al., 2017).

Inspired by Zeng et al. (2023), which argue that a simple linear
transform of the inputs can be a competitive model, outperforming
advanced Transformer architectures for long-term forecasting, we also
implement a Linear baseline model as:

�̂� 𝑇+1,⋯ , �̂� 𝑇+𝑃 = 𝑸𝑿⋅, (27)

where 𝑿 ∈ R𝑁×𝑇×𝑑𝑖𝑛𝑝 and 𝑸 ∈ R𝑃×(𝑇 ⋅𝑑𝑖𝑛𝑝). The Linear model does not
take into account any spatial correlations but was implemented for all
the deterministic, QR, MLE and VI settings.

The input sequence length, 𝑇 , for all models, was 48, i.e. features
observed for the last 8 h. All models were iteratively tuned using a
random grid search. First, a wide search space was used, before it was
narrowed to obtain the final model parameters. With reference to Fig. 4,
all models had 𝑁 = 3 layers and a latent dimensionality, 𝑑 = 32. A
batch size of 32 was used and models were trained for 25 epochs. All
models, along with model-specific parameters obtained from tuning,
are summarised in Table 1.

4.3. Evaluation metrics

In order to ensure that the overall findings were robust and to
reduce potential bias, a range of different metrics were used to evaluate
the different models. The first metrics to evaluate prediction perfor-
mance were the mean squared (MSE) and absolute errors (MAE), which
only consider point predictions, �̂� :

𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝒀 𝑖 − �̂� 𝑖)2 (28)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝒀 𝑖 − �̂� 𝑖|, (29)

here 𝒀 are the observed measurements. Since the probabilistic models
o not directly provide point predictions, but instead distributions or
ntervals, different methods are required to obtain point predictions
rom these models. For all models, point predictions were taken as the
edian value predictions, i.e. those associated with the quantile level,
= 0.5, where 50% of the data is expected to fall above and below the
redicted values.

Since the VI models, unlike QR and MLE models, were not deter-
inistic, we had to sample multiple predictions from these models

o obtain a single estimate for the distribution-specific parameters.
o combine aleatoric and epistemic uncertainty for VI models with
aussian likelihoods, we used a weighted average approach based on

he predicted noise (Ritter and Karaletsos, 2022; Kendall and Gal,
017). The process can be summarised as

̂𝑖,𝑡 =

∑𝑘
𝑗=1(�̂�𝑖,𝑡,𝑗∕�̂�

2
𝑖,𝑡,𝑗 )

∑𝑘
𝑗=1(1∕�̂�

2
𝑖,𝑡,𝑗 )

(30)

�̂�𝑖,𝑡 =

√

√

√

√

√

1
𝑘

𝑘
∑

𝑗=1
(�̂�2𝑖,𝑡,𝑗 ) + 𝑉 𝑎𝑟(�̂�𝑖,𝑡), (31)

here 𝑘 is the number of samples drawn from the model, here 300, and
𝑎𝑟(�̂�𝑖,𝑡) the variance of predicted means across samples. For VI with

ohnson’s SU likelihoods, the models predict four parameters, for which
he shift and spread parameters, 𝜉 and 𝜆, respectively, do not directly
orrespond to the mean and standard deviation. Therefore, we here



Journal of Cleaner Production 434 (2024) 139944L.Ø. Bentsen et al.

𝜆

B
a
r

u
a
F
o
w

p
i
d

𝑃

w
t
𝛼
n

t
(
c

𝑃

Table 1
Model parameters.

Model GCN Temporal model Outputs Loss LR Norm FFN

Det-Linear – – 1 MSE 1e−04 – –
Det-LSTM GATv2 LSTM 1 MSE 1e−04 – –
Det-Trans GATv2 MHA 1 MSE 1e−04 ReZero Yes
MLE-Gauss-Hetero-Linear – – 2 NLL 1e−04 – –
MLE-Gauss-Hetero-LSTM GATv2 LSTM 2 NLL 1e−04 – –
MLE-Gauss-Hetero-Trans GATv2 MHA 2 NLL 1e−04 ReZero Yes
MLE-Gauss-Homo-Linear – – 1 NLL 1e−04 – –
MLE-Gauss-Homo-LSTM GATv2 LSTM 1 NLL 1e−04 – –
MLE-Gauss-Homo-Trans GATv2 MHA 1 NLL 1e−04 ReZero Yes
MLE-Johns-Hetero-Linear – – 4 NLL 1e−04 – –
MLE-Johns-Hetero-LSTM GATv2 LSTM 4 NLL 1e−04 – –
MLE-Johns-Hetero-Trans GATv2 MHA 4 NLL 1e−04 ReZero Yes
QR-Linear – – 11 pinball 1e−04 – –
QR-LSTM GATv2 LSTM 11 pinball 1e−04 – –
QR-Trans GATv2 MHA 11 pinball 1e−04 ReZero Yes
VI-Gauss-Hetero-Linear – – 2 ELBO 1e−03 – –
VI-Gauss-Hetero-LSTM GATv2 LSTM 2 ELBO 1e−03 – –
VI-Gauss-Hetero-Trans GATv2 MHA 2 ELBO 1e−03 ReZero Yes
VI-Gauss-Homo-Linear – – 1 ELBO 1e−03 – –
VI-Gauss-Homo-LSTM GATv2 LSTM 1 ELBO 1e−03 – –
VI-Gauss-Homo-Trans GATv2 MHA 1 ELBO 1e−03 ReZero Yes
VI-Johns-Hetero-Linear – – 4 ELBO 1e−03 – –
VI-Johns-Hetero-LSTM GATv2 LSTM 4 ELBO 1e−03 – –
VI-Johns-Hetero-Trans GATv2 MHA 4 ELBO 1e−03 ReZero Yes
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instead used Bayesian model averaging (BMA) to estimate the predicted
parameters from multiple samples:

𝜉𝑖,𝑡 =

∑𝑘
𝑗=1 𝜉𝑖,𝑡,𝑗𝑞(𝜃𝑗 )
∑𝑘
𝑗=1 𝑞(𝜃𝑗 )

(32)

̂𝑖,𝑡 =

∑𝑘
𝑗=1 �̂�𝑖,𝑡,𝑗𝑞(𝜃𝑗 )
∑𝑘
𝑗=1 𝑞(𝜃𝑗 )

(33)

𝛿𝑖,𝑡 =

∑𝑘
𝑗=1 𝛿𝑖,𝑡,𝑗𝑞(𝜃𝑗 )
∑𝑘
𝑗=1 𝑞(𝜃𝑗 )

(34)

�̂�𝑖,𝑡 =

∑𝑘
𝑗=1 �̂�𝑖,𝑡,𝑗𝑞(𝜃𝑗 )
∑𝑘
𝑗=1 𝑞(𝜃𝑗 )

. (35)

MA was also tested for the Gaussian likelihoods, but the weighted
verage approach in Eqs. (30) and (31) seemed to yield slightly better
esults.

To evaluate the probabilistic models’ ability to model the underlying
ncertainty, the pinball loss function in Eqs. (10) and (11) was used
s a measure to compare the precision of the different quantile levels.
or the parametric MLE and VI methods, quantiles could be easily
btained from the predicted Johnson’s SU and Gaussian distributions
ith analytical PDFs and CDFs.

In probabilistic forecasting, it is also desirable to have narrow
rediction intervals. As a measure of interval sharpness, the prediction
nterval average width (PIAW) calculates the average interval width for
ifferent confidence intervals:

𝐼𝐴𝑊𝛼 = 1
𝑁

𝑁
∑

𝑖=1

(

𝐼𝑖,0.5+ 𝛼
2
− 𝐼𝑖,0.5− 𝛼

2

)

, (36)

here 𝐼0.5+ 𝛼
2

and 𝐼0.5− 𝛼
2

are the predicted lower and upper bounds for
he 𝛼 interval. The PIAW is calculated for a range of different intervals,
∈ (0, 1), where smaller values for PIAW are desirable, indicating

arrower prediction intervals.
The PIAW measure in Eq. (36) does not evaluate the reliability of

he probabilistic forecasts. The prediction interval coverage percentage
PICP) indicates the ability of the models to cover the targets under
ertain confidence intervals, 𝛼:

𝐼𝐶𝑃𝛼 = 1
𝑁

𝑁
∑

𝑖=1
𝑐𝑖, 𝑐𝑖 =

⎧

⎪

⎨

⎪

1, 𝑦𝑖 ∈ [𝐼0.5− 𝛼
2
, 𝐼0.5+ 𝛼

2
]

0, 𝑦𝑖 ∉ [𝐼0.5− 𝛼 , 𝐼0.5+ 𝛼 ],
(37)
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where 𝑦𝑖 are the true values. Since the PICP computes the proportion
of true values that fall within a certain confidence interval, i.e. the
calibration, an ideal model will have 𝑃𝐼𝐶𝑃𝛼 as close to 𝛼 as possible.
To obtain a single measure for the overall calibration, the average
coverage error (ACE) can also be computed:

𝐴𝐶𝐸 = 1
|A|

∑

𝛼∈A
|𝛼 − 𝑃𝐼𝐶𝑃𝛼|, (38)

here A is a set containing the different confidence intervals, 𝛼, that are
onsidered, e.g. A = [0.25, 0.5, 0.75]. Since ACE computes the average
bsolute difference between PICP and the desired confidence interval,
maller values for ACE is better.

The final probabilistic evaluation metric used was the continu-
us ranked probability score (CRPS). CRPS quantifies the difference
etween the CDF for the observed and predicted data:

𝑅𝑃𝑆 = 1
𝑁

𝑁
∑

𝑖=1
∫

+∞

−∞

(

𝐹𝑖(𝑥) − 𝟏𝑥≥𝑦𝑖
)2
𝑑𝑥, (39)

here 𝐹 is the CDF for the predicted distribution and 𝟏𝑥≥𝑦𝑖 is a
umulative-probability step function, which jumps from zero to one at
he point where 𝑥 equals the observation 𝑦𝑖. The CRPS is negatively
riented, meaning that smaller values are better, and has a close
elation to the MAE, since for point predictions, the CRPS will equal
he MAE.

.4. Results and discussion

All results are the computed mean from five independent training
terations, with the standard deviation values in Tables 2 and 3 being
he standard deviation for the five different seeds. Similarly, shaded
egions in Fig. 6 are also ±1 standard deviation from the mean.

.4.1. Point prediction performance
First, point prediction performance of the different models was

valuated using the MAE and MSE metrics, with the results given in
able 2. Considering the different neural architectures, the models
ith LSTMs as temporal update functions in Fig. 4, generally achieved

he best performance in terms of both MAE and MSE. Models with
ransformer-based temporal functions achieved similar performance to
he LSTM-based models, while the architectures using only a simple
inear transform yielded higher point prediction errors. Such findings
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Table 2
Point prediction errors in 𝑘𝑊 for the different models.

Model MSE ± std MAE ± std

LSTM Transformer Linear LSTM Transformer Linear

Deterministic 33,048 ± 199 34,211 ± 450 48,355 ± 2410 114.1 ± 0.8 118.9 ± 2.3 148.2 ± 5.2
QR 34,741 ± 340 34,188 ± 293 40,459 ± 840 112.2 ± 0.6 111.4 ± 1.0 122.1 ± 2.3
MLE-Gauss-Hetero 34,316 ± 1,951 40,878 ± 9184 100,129 ± 19,084 116.5 ± 4 3.9 134.5 ± 20.3 209.8 ± 23.0
MLE-Gauss-Homo 32,456 ± 241 34,066 ± 435 67,861 ± 16,811 113.0 ± 0.8 119.4 ± 2.4 177.8 ± 26.0
MLE-Johns-Hetero 35,133 ± 552 36,368 ± 638 41,532 ± 800 111.6 ± 1.3 114.5 ± 0.7 126.3 ± 1.6
VI-Gauss-Hetero 31,737 ± 182 33,337 ± 228 56,545 ± 1447 110.3 ± 0.5 113.5 ± 0.4 162.9 ± 2.2
VI-Gauss-Homo 31,533 ± 86 32,790 ± 31 51,401 ± 1751 111.1 ± 0.3 114.1 ± 0.3 155.2 ± 3.3
VI-Johns-Hetero 34,329 ± 375 37,531 ± 668 47,956 ± 1963 107.8 ± 0.8 113.7 ± 1.0 142.5 ± 3.9
Table 3
Probabilistic prediction evaluation for the different models.

Model ACE ± std Pinball ± std CRPS ± std

LSTM Transformer Linear LSTM Transformer Linear LSTM Transformer Linear

QR 0.046 ± 0.011 0.038 ± 0.005 0.089 ± 0.007 6288 ± 106 6566 ± 342 6809 ± 111 75.2 ± 0.4 75.8 ± 3.0 69.0 ± 0.8
MLE-Gauss-Hetero 0.054 ± 0.009 0.088 ± 0.046 0.140 ± 0.029 16,724 ± 253 20,840 ± 4.670 36,436 ± 899 75.0 ± 2.8 92.9 ± 20.8 163.1 ± 8.5
MLE-Gauss-Homo 0.210 ± 0.003 0.209 ± 0.009 0.207 ± 0.053 23,241 ± 74 24,301 ± 1,075 33,568 ± 1,462 89.8 ± 0.2 94.7 ± 3.6 143.9 ± 8.6
MLE-Johns-Hetero 0.058 ± 0.016 0.065 ± 0.014 0.033 ± 0.001 6276 ± 308 6325 ± 605 6416 ± 156 76.8 ± 0.9 76.3 ± 2.8 83.7 ± 2.7
VI-Gauss-Hetero 0.085 ± 0.004 0.089 ± 0.003 0.149 ± 0.002 16,345 ± 73 16,834 ± 75 27,232 ± 220 70.9 ± 0.3 73.2 ± 0.3 121.8 ± 1.1
VI-Gauss-Homo 0.156 ± 0.001 0.155 ± 0.001 0.160 ± 0.002 20,020 ± 30 20,363 ± 27 26,350 ± 526 78.6 ± 0.2 80.7 ± 0.1 114.6 ± 2.8
VI-Johns-Hetero 0.022 ± 0.003 0.018 ± 0.007 0.157 ± 0.008 5313 ± 355 5629 ± 111 5353 ± 201 69.0 ± 0.2 70.9 ± 1.4 73.4 ± 2.3
were unsurprising, as the LSTM and Transformer learners are more
complex and specifically designed to extract temporal features, as
well as having GCNs to leverage spatial correlations with the GATv2
updates. There are a few reasons why the LSTM networks might have
achieved superior results compared to the Transformer updates. First,
the sequence and prediction lengths of 48 historical and 6 future time
steps, respectively, are not very long. The advantage of Transformers
for extracting long-term dependencies, where the LSTM network can
tend to forget information for long sequences, might not be as relevant
for the particular application of short-term wind power forecasting.
Furthermore, the MHA in the Transformer is insensitive to local context
and considers time steps independently when querying. This might in
part explain why the LSTM performed better since the autoregressive
architecture considers points sequentially, being more sensitive to local
context. Finally, Transformers are known to require considerably longer
training and large datasets, which might also explain the inferior
performance compared to LSTMs for the fairly limited dataset size used
in this study.

Now, considering the different probabilistic models, given by the
different rows in Table 2, it was found that the VI models with Gaussian
likelihoods, ‘VI-Gauss-Hetero’ and ‘VI-Gauss-Homo’, achieved superior
results for the LSTM- and Transformer-based models in terms of MSE.
However, looking at the MAEs, the ‘VI-Johns-Hetero-LSTM’ model out-
performed all other models. Generally, it was found that the relative
performance of the models with Johnson’s SU likelihoods, i.e. ‘MLE-
Johns-Hetero’ and ‘VI-Johns-Hetero’ in Table 2, was much better in
terms of MAEs, where these models showed some of the best per-
formance, compared to some of the worst in terms of MSEs. Higher
relative MSEs than MAEs indicate that the QR models and those with
Johnson’s SU likelihoods had a few point predictions that were far
away from the observed values, since MSE penalise larger errors more
heavily, while on average most predictions were close to the target. The
more flexible distributions produced using Johnson’s SU likelihood or
QR might enable the models to have sharper probability distributions
peaking closer to the exact values, while still covering the less likely
values with a small probability. These less likely observations might
be further away from the point predictions and therefore result in
higher MSEs for these models, even though they might be within the
larger confidence intervals which are not considered when evaluating
point prediction accuracy. Overall, it was found that models with LSTM
sequence learners generally outperformed Transformer-based models.
Furthermore, it was found that probabilistic models capable of pro-
9

ducing more flexible distributions, i.e. QR and models with Johnson’s
SU distribution, had higher relative MSEs than MAEs. This meant that
these models had some point predictions that were far away from the
observed values, while on average having more predictions that were
very close to the observed values.

4.4.2. Probabilistic prediction performance
For assessing the models’ probabilistic forecasting performance, the

ACE, pinball loss and CRPS were computed and provided in Table 3.
In general, the Transformer and LSTM-based architectures gave similar
results, outperforming the linear models for most settings. The linear
models mostly showed inferior results but had a few surprising in-
stances of well-calibrated and precise probabilistic predictions, such
as for the QR-Linear model. The VI-Johns-Hetero models performed
remarkably well, with high calibration, as seen by the small ACE values
of 0.022 and 0.018 in Table 3, low pinball losses which indicate high
precision and narrow intervals, along with accurate overall CDFs seen
by low CRPS values.

Gaussian likelihoods showed good point-prediction accuracies,
along with the heteroscedastic Gaussians also having fairly good CRPS
values. However, Gaussian likelihood models were not as good at
producing accurate probability distributions, as seen by the higher
ACE and pinball loss values, which indicate poor calibration. CRPS is
a holistic metric that accounts for both distribution calibration and
prediction accuracy. The acceptable CRPS values for Gauss-Hetero
models in Table 3, might therefore in large part be due to good
point prediction accuracies for these models, while the pinball metrics
indicate that the models were not able to generate very precise overall
distributions. Similarly, for the models with Johnson’s SU likelihoods,
the relative performance of these models in terms of CRPS, was not
as superior as for the ACE and pinball metrics, which might be due to
these models having relatively higher MSEs.

Considering the VI- and MLE-Gauss-Hetero models, they achieved
decent results in terms of ACE, with values ranging from 0.054–0.089.
ACE is an absolute accuracy metric that does not consider the precision
of predicted intervals, only calibration, while the pinball loss uses
asymmetric weighting and captures the distance of observed values
away from the predicted quantiles. In terms of pinball loss, the VI- and
MLE-Gauss-Hetero models showed significantly worse performance,
with values in the range of 16,000–20,000 kW. QR and Johnson’s SU
likelihood models on the other hand, yielded pinball loss values in the
range 5300–6600 kW. Low precision for the Gaussian likelihoods, as

seen through the poor pinball loss values, could be because even though
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Fig. 6. Left and right columns show the PICP and PIAW values for the different models,
respectively, where straight lines in the left-hand column show ideal calibration. Each
row corresponds to a different method for uncertainty modelling, indicated by the text
to the right of the PIAW plots. Shaded regions represent the ±1 standard deviation for
five different training seeds.

such simple symmetric distributions might overall capture the correct
proportion of observations within the respective intervals, they might
have too wide intervals or quantile levels that are placed too far in
either direction. For instance, considering the 50% confidence interval,
10
these models might correctly have predicted the 25% quantile level,
but have the 75% quantile level too far away due to the constraint of
a symmetric Gaussian. In this scenario, nearly 50% of the data could
be between the 25 and 50% quantiles, with hardly any points within
the 50%–75% interval. Such low precision would not be captured by
the ACE metric. The pinball loss on the other hand, considers quantiles
independently and uses the observed distances of points away from
the predicted quantiles, which would give a much higher loss for the
too-high 75% quantile. With reference to the PIAW plots in Fig. 6,
Gaussian likelihoods generally had wider intervals than the QR- and
Johns-based models. From the PICP values in Fig. 6, it was found how
Gaussian likelihoods tended to have too conservative predictions that
overestimate the confidence intervals (i.e. curves lie over the straight
line representing ideal coverage).

For the PICP values from the QR and Johns-Hetero models in
Fig. 6, it was found that the models did not systematically overesti-
mate intervals, but generally had very accurate interval predictions.
Furthermore, considering the PICP values, the VI-Johns-Hetero models
achieved remarkably well-calibrated predictions, which aligned closely
with the superior results discussed for Table 3, while also having
slightly smaller PIAWs meaning higher interval sharpness. Such find-
ings were interesting, as the results in Table 3 indicate that the simple
Gaussian distributions were not complex enough to model the wind
power distributions, compared to QR and Johns-Hetero models which
yielded much better results.

Even though the VI-Johns-Hetero models achieved superior results
across all probabilistic evaluation metrics in Table 3, their relative im-
provements compared to other models were lower for pinball loss than
ACE values. Since Johnson’s SU distribution is parametric, quantile
levels are not determined independently of each other. The slightly
worse performance in terms of pinball loss might indicate that John-
son’s SU distribution is also not perfect for modelling wind power
and could benefit from potentially slightly narrower intervals around
certain regions of highly concentrated observations. However, it was
difficult to conclude on such an observation, since the VI-Johns models
achieved even lower pinball losses than the QR-based models, which
should be able to place quantile levels precisely at the correct locations,
while also having very well-calibrated predictions according to the
PICP plots in Fig. 6.

Homoscedastic likelihoods had poor calibration and precision, as
seen by the higher ACE, pinball and CRPS values in Table 3. This was
unsurprising, as it was expected that the uncertainty associated with a
prediction would be input-dependant. For instance, the uncertainty is
intuitively higher for powers around 1000 kW than for around 0 kW, as
the power outputs are proportional to the wind speed cubed. Further-
more, power values close to rating or zero are also expected to remain
in these regions for the immediate short-term, potentially reducing
the uncertainty. Comparing VI and MLE, VI-based models seemed to
achieve slightly more favourable results, indicating that these models
benefited from having uncertainty inherently incorporated into the
models.

To summarise, it was found that parametric MLE and VI models with
Johnson’s SU likelihoods and QR models produced well calibrated and
precise interval predictions. VI-Johns-Hetero models outperformed all
other models in terms of every evaluation metric, indicating accurate
CDFs, high precision and calibration. Both MLE and VI models with
Johnson’s SU likelihood had very accurate PICPs, with less erratic
behaviour across intervals compared to the more flexible QR-models,
proving the suitability of Johnson’s SU distribution in modelling uncer-
tainty for wind forecasting. Gaussian likelihood models showed decent
calibration in terms of ACE values but were found to consistently
overestimate prediction intervals and had low precision with higher
pinball losses. From the results, the VI-Johns-Hetero models seemed
the most suitable for probabilistic wind power forecasting, with better
performance across all metrics, while QR models achieved slightly
inferior results, but with the added benefit of being somewhat easier
to implement and faster.
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Fig. 7. Prediction examples for LSTM-based models for different methods of uncertainty modelling. Red are the observed values, and dark blue lines are the point predictions
(i.e. 50% quantile levels). Shaded regions indicate the predicted 10, 30, 50, 70 and 90% confidence intervals.
4.4.3. Analysis of forecasting examples

Some prediction examples for all LSTM-based models are provided
in Fig. 7. In Fig. 7, the red lines are the observed power values for a
particular turbine in the farm, while the dark blue lines are point pre-
dictions, with shaded regions representing the forecasted 10, 30, 50, 70
11
and 90% confidence intervals. Values in Fig. 7 are discontinuous at ev-
ery sixth-time step to distinguish the individual hour-ahead predictions.
It can be observed from Fig. 7 how all models with heteroscedastic
likelihoods showed progressively larger confidence intervals for predic-
tions further into the future, i.e. larger uncertainty for the sixth than
for the first step ahead predictions. This makes sense, as the models



Journal of Cleaner Production 434 (2024) 139944L.Ø. Bentsen et al.
are expected to be less certain about predictions made further into the
future. Considering the QR and Johns-Hetero models, it was seen how
the models were able to generate skewed distributions, e.g. for regions
with very small power production at the start or end of the plots in
Fig. 7, such as for the predictions starting at time step 270.

From the prediction examples for the QR-LSTM model in Fig. 7,
intervals seemed more chaotic, with overlapping quantiles and less
discernible or regular structure across intervals. Such characteristics
are common for QR models since the quantiles are predicted indepen-
dently and are not restricted to adhere to any particular shape. The
more erratic quantiles can make the predictions more challenging to
interpret for downstream users, compared to predictions with Gaussian
or Johnson’s SU likelihoods that are forced to produce more consistent
quantile levels. Considering commercial applications, such differences
could be important, as improved interpretability for downstream users
might be critical for the successful integration of advanced forecasting
systems. On the other hand, VI models were generally more challenging
to train, requiring investigation into different KL annealing schedules
and good initialisation of Johnson’s SU likelihood-based models. Such
challenges could mean that QR-based models might be preferred for
some commercial applications, despite slightly inferior performance.

With reference to the MLE-Johns-Hetero-LSTM predictions in Fig. 7,
the 90% confidence intervals for the fifth and sixth step-ahead predic-
tions were very wide. This characteristic was commonly seen when
training models with Johnson’s SU likelihood, due to the ability to
control tail weights and skew. The Johnson’s SU distribution also posed
some challenges in training, due to vanishing or exploding gradients
for very wide or sharp distributions. Such challenges in training might
be one of the reasons for the very wide confidence intervals for the
MLE-Johns-Hetero-LSTM model and were also the motivation behind
initialising the skew and shape parameters to sensible values at the start
of training, as discussed in Section 4.2.

To summarise, the prediction examples confirmed some of the
previous conclusions, namely that the flexibility of QR and Johnson’s
SU distribution improved forecasts by being able to model skew and
heavy tails. However, for intermediate regions, results were similar for
models with Johnson’s SU and Gaussian distributions. Finally, from the
prediction results in Fig. 7, it was evident how parametric methods are
easier to interpret, due to consistent interval levels, with the QR-LSTM
model producing more erratic and inconsistent quantile levels.

4.4.4. Power- and horizon-specific analysis
As an additional analysis, we investigate the results for the differ-

ent 1–6 step-ahead predictions (10–60 min), as well as for specific
observed wind speed bins. This was done as an additional analysis
to further strengthen our conclusions on the relative characteristics
of the different probabilistic methods. Fig. 8 shows the computed
evaluation metrics in Tables 2 and 3 for the different prediction steps
and observed wind speeds for LSTM-based models. From the left-hand
column in Fig. 8, it was found that MSEs and MAEs increased for
predictions further into the future, which was expected. Pinball losses
also increased for predictions further into the future, which indicates
that the predicted quantile levels had lower precision. Recall that for
the prediction examples in Fig. 7, interval widths generally increased
further into the future. When quantile levels are further apart, it is
challenging for the models to have very small pinball losses since the
metric takes into account the distance of observations away from the
predicted quantiles. In terms of calibration, most models did not seem
to perform worse for predictions further into the future, as seen by the
non-increasing ACE values in the bottom-left plot of Fig. 8. This was
interesting as it meant that, since interval predictions generally had
similar reliability for the later prediction steps, the increase in pinball
loss might largely be a result of wider intervals, rather than the models
performing much worse for the later prediction steps.

From the right-hand column in Fig. 8, it was found that MSEs,
MAEs and CRPS values increased for larger observed wind speeds.
12
Fig. 8. Visualisation of point- and probabilistic prediction metrics for the different
step-ahead predictions (left column) and for observed wind speeds (right column). Only
results for the LSTM-based models are shown here for brevity.

Again, this was expected, since power values are likely to vary more
for higher wind speeds and absolute point prediction accuracy will
therefore be lower. For very high wind speeds, greater than 15 m/s,
MSE, MAE and CRPS values flattened out, due to powers being closer
to rating and therefore being potentially easier to accurately predict.
Evaluating the quantile prediction performance, it was found that
Johnson’s SU likelihood and QR models performed much better than
Gaussian likelihoods for lower wind speeds, smaller than 7 m/s. Models
with Gaussian likelihoods achieved very precise quantile predictions,
as seen by small pinball losses, for intermediate wind speeds around
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8–11 m/s, before the VI-Johns and QR models again outperformed
Gaussian models for very high wind speeds. This indicates that wind
power might be well-modelled by symmetric Gaussian distributions for
specific wind conditions, although skew and heavy tails are important
for low and high wind speeds. In theory, Johnson’s SU likelihood
and QR models should be able to achieve competitive results even
for the intermediate regions since they can also produce symmetric
distributions similar to a Gaussian. However, most of the training data
contained examples of lower wind speeds, which might in part, explain
why the more complex distributions did not perform as well for the less
represented wind conditions. More data would potentially be required
for these complex models to produce a more versatile range of different
distribution shapes. The limited training data might also explain some
of the variability observed for MSE, MAE, pinball and CRPS values for
higher wind speeds.

Finally, looking at all the computed metrics, for both different time
steps and wind speeds in Fig. 8, it was generally found that the VI-
Johns and QR models had less variability within the different subplots.
This was desirable as it meant that these models were more consistent
across prediction steps and for different wind conditions, making them
potentially more reliable for downstream users.

To summarise, it was found that Gaussian likelihoods seemed well-
equipped at modelling uncertainty for intermediate wind speeds, where
wind power distributions are more symmetrical. QR and Johnson’s SU
distribution showed more consistent performance across wind speeds,
which is a desirable property of a forecasting system to improve re-
liability. Considering the VI-Johns-LSTM model, it showed very small
variability in calibration across different step-ahead predictions, indi-
cating that the model was able to produce accurate predictions across
the entire forecast horizon.

5. Conclusions

This study has researched three different methods for uncertainty
modelling in wind power forecasting using DL, namely VI, MLE and
QR, with either Gaussian or Johnson’s SU likelihoods for the parametric
methods. Non-parametric models based on QR, which can model any
underlying distribution, were found to produce fairly precise and well-
calibrated forecasts that generally outperformed VI and MLE methods
with simpler Gaussian likelihoods. The main novelty of this paper
was the investigation into the use of Johnson’s SU distribution for
probabilistic spatio-temporal wind forecasting, a distribution which has
not been extensively studied in the literature. Parametric MLE and VI
methods with Johnson’s SU distribution yielded highly calibrated and
precise forecasts, compared to Gaussian likelihoods. Calibration and
precision were evaluated through the pinball loss, ACE, PICP and CRPS
metrics, while general conclusions were supported by investigating
results for different wind conditions, step-ahead times and qualitative
assessment of produced forecasts. VI models with Johnson’s SU likeli-
hoods were found to outperform all other methods, with better results
across all the aforementioned evaluation metrics. Since Johnson’s SU
distribution has limited research being applied to wind modelling and
is very flexible, unbounded and easy to integrate into modern DL
frameworks, this paper should enable a new direction of research that
might significantly advance the field of probabilistic wind forecasting.
However, despite the superior performance of VI architectures with
Johnson’s SU distribution, there are a few trade-offs that should be con-
sidered. Since VI is a true probabilistic model that requires sampling to
produce probabilistic forecasts and can have challenges with posterior
collapse, QR-based models are easier to implement out of the box and
are faster. Furthermore, for the parametric VI and MLE methods with
Johnson’s SU likelihoods, it was found that it was important to initialise
the distribution prior to training. This could make it more difficult to
effectively implement Johnson’s SU distribution and to obtain models
13

that achieve the best results. For future work, it would be particularly
interesting to further investigate the performance of Johnson’s SU dis-
tribution for modelling uncertainty in wind for additional datasets and
applications. Furthermore, Johnson’s SU distribution should be further
compared against more complicated distributions than a Gaussian, such
as Beta or Gamma distributions.
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