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Abstract
Ophiolites are remnants of oceanic crust and mantle, now typically found within continental mountain ranges like the 

Alps. Particularly in areas once part of the Tethys Ocean, ophiolites are often accompanied by narrow stripes of metamor
phic rocks, commonly referred to as metamorphic soles. These metamorphic soles typically exhibit peak metamorphic 
conditions characteristic of either granulite or amphibolite facies. Geochronological studies of Tethyan ophiolites indicate 
that the development of these metamorphic soles occurred almost simultaneously with the crystallization of the ophio
lite’s crustal sequence. Geological evidence also suggests that the metamorphism of the sole rocks took place concur
rently with deformation, likely at the same time as the ophiolite’s obduction. In our research, we explore the metamorphic 
effects of shearing in an ophiolite sequence overlying a crustal sequence. Our findings reveal that strong lithologies like 
ophiolites can produce additional heat through the dissipation of mechanical energy, which can potentially explain the 
high temperatures found in metamorphicsole rocks. In addition, heatingdriven softening of the footwall rocks even
tually leads to the migration of the active shear zone from the mantle sequence into the upper crustal domain. This mi
gration may be  responsible for the metamorphic sole incorporation at the base of the ophiolite. Finally, we demonstrate 
that stopping the shearing process rapidly cools these rocks, corresponding with the findings from thermochronological 
studies from Oman ophiolite.
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1. Introduction
Ophiolites are considered to be the remnants of an

cient oceanic lithosphere and can now be found on top 
of continental regions (e.g. Frisch et al., 2011). Numerous 
studies have concentrated on the presence of ophiolite 
rocks along the AlpineHimalayan orogenic belt, as these 
rocks offer critical support for the existence of oceanic 
lithosphere that has largely been subducted. Evidence 
of this is now seen in the remnants of the Tethys Ocean, 
stretching from the Betics and the Alps in the west (e.g. 
Graciansky et al., 2011b, 2011a; Le Breton et al., 2021),  
through the Balkans (e.g. DimoLahitte et al., 2001; Boro
jević Šoštarić et al., 2014), the Hellenides (e.g. Jones and 
Robertson, 1991; Rassios and Moores, 2006; Rassios and 
Dilek, 2009), the Taurides and Pontides (e.g. Karaoğlan 

et al., 2013; Parlak et al., 2019), and extending to Iran and 
Oman in the east  (Fig. 1; e.g. Garfunkel, 2006; Dilek et al., 
2007; Dilek and Furnes, 2019).

Since the early stages of the development of the the
ory of plate tectonics, the study of ophiolite belts posed 
significant challenges regarding the mechanisms and 
the processes that operate during their emplacement or 
obduction (Dewey, 1976; Moores, 1982). This is because 
the negative buoyancy of oceanic lithosphere is a dom
inant force driving plate tectonics (Forsyth and Uyeda, 
1975), and it is quite natural that, in active margins, the 
cold and dense oceanic lithosphere tends to get sub
ducted (Cloos, 1993).  However, in many places oceanic 
lithosphere is obducted. For example, in the European 
Alps,  much of the Mesozoic Penninic ocean lies on top 
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of the European plate presenting  a series of unresolved 
problems (McCarthy et al. 2018). The subduction of oce
anic lithosphere is a process that will erase most of the 
evidence documenting the former presence of the ocean 
(Dewey, 1976). Thus, despite their scarcity, ophiolites can 
help us unravel the processes related to oceanic subduc
tion and mountain building. 

The ideal stratigraphic sequences of ophiolites involve 
(from top to bottom) oceanic sediments, pillow lavas, 
sheeted dikes, gabbros and ultramafic rocks (Anony
mous, 1972, Philpotts and Ague 2022, p. 430). This ideal 
stratigraphy is mostly not found completely, and differ
ent parts of the sections are observed in the Alps or in the 
Eastern Mediterranean ophiolites (e.g. Bernoulli and Jen
kyns, 2009; Rassios and Dilek, 2009). In many cases, crust
al metamorphic rocks of mafic or pelitic composition can 
also be found below the ophiolite complexes (Williams 
and Smyth, 1973; Whitechurch and Parrot, 1974, 1978; 
Woodcock and Robertson, 1977; Malpas, 1979; Jamieson, 
1980). These rocks are commonly known as metamor
phic soles or aureoles (Williams and Smyth, 1973; Malpas, 
1979) and are characterized by hightemperature meta
morphism in a narrow (tens to hundred meters in thick
ness) region (Williams and Smyth, 1973; Wakabayashi and 
Dilek, 2003). The metamorphic conditions that are com
monly reported for the soles are amphibolite to granulite 
facies (e.g. Jamieson, 1980; ElShazly and Coleman, 1990; 

Pomonis et al., 2002; Myhill, 2011), and in particular they 
range between 600–800 °C and 0.5–1.0 GPa. 

The pressure and temperature range of the metamor
phic conditions have long been a matter of investigation 
since the metamorphic pressures in the sole rocks typ
ically exceed the burial estimates from geological con
straints (Wakabayashi and Dilek, 2000; Garfunkel, 2006). 
One way to reconcile such discrepancies is to realize that 
the pressure in the deforming metamorphic sole does 
not always correspond to the lithostatic value (Moulas et 
al., 2013). In fact, numerical models for the onset of ob
duction suggest that the pressure can be up to twice its 
lithostatic value (Duretz et al., 2016; Fig. 2). Since struc
tures related to exhumation are typically missing (Gar
funkel, 2006), nonlithostatic pressure models do not 
need to explain the missing exhumed structures or the 
missing eroded material. Nevertheless, the highgrade 
metamorphic rocks are also thought to have formed in
verted metamorphic gradients where the temperature 
deceases with structural depth (Spray, 1984). In addition, 
the older isotopic ages from the metamorphic sole rocks 
are almost indistinguishable from the youngest “mag
matic” ages of the ophiolite (Spray and Roddick, 1980; 
Hacker et al., 1996; Liati et al., 2004; Rioux et al., 2016; 
Guilmette et al., 2018; Garber et al., 2020). Such observa
tions lead previous authors to conclude that both shear 
heating and the heat from the young (and hot) mantle 

Figure 1: Simplified map showing the distribution of ophiolites in the Mediterranean region. The Oman ophiolite is shown in the lower, right part of 
the map. Data mostly after Dilek et al. (2007; and references therein).
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lithosphere contributed to the formation of these rocks 
(Williams and Smyth, 1973; Woodcock and Robertson, 
1977; Malpas, 1979).

Extensive thermochronological analysis performed on 
metamorphicsole rocks from Oman has revealed that 
the cooling of hornblende, amphibole and biotite sep
arates from the sole rocks occurred very fast (Hacker et 
al., 1996). These cooling rates are variable and range be
tween 100–400 °C per million years for the temperature 
range of 500–800 °C (Hacker et al., 1996). Such high cool
ing rates are difficult to be explained using regional exhu
mation models and suggest the presence of small, local 
heat sources (Stüwe and Ehlers, 1998; Burg and Moulas, 
2022). Thus, the consideration of heat production during 
the irreversible deformation of rocks may be the reason 
for the local heat production adjacent to shear zones.

The irreversible deformation of all materials leads to 
the generation of heat as a consequence of the conserva
tion of energy (Joule and Faraday, 1850; Landau and Lif
shitz, 1987; Young, 2015). Indeed, for the Eastern Alps, it 
has been argued that shear heating provides a contribu
tion to the eoalpine heat budget of the entire Austroal
pine nappe pile (Stüwe 1998). This energy can either be 
diffused away from the main zone of deformation, or can 
be used to increase the temperature in zones of localized 
deformation (Gruntfest, 1963; Brun and Cobbold, 1980; 
Burg and Gerya, 2005; Braeck and Podladchikov, 2007). 
The local temperature increase leads to the reduction 
of rheological parameters such as the effective viscosity 
(e.g. Kaus and Podladchikov, 2006) and critical friction co
efficient (e.g. Vardoulakis, 2002). Thus, the local decrease 
in rheological parameters can result in higher deforma
tion rates and additional weakening of the rock. In gen
eral, the heat production per unit volume is proportional 
to the stress and the strain rate of the deformed materi
al. Thus, many studies have used predefined values for 
stress and strain rate in shear zones of prescribed (finite 
or not) thickness (e.g. Reitan, 1968; Graham and England, 

1976; Mako and Caddick, 2018). Such models have been 
very useful since they have been corroborated with nat
ural geologic data (Barton and England, 1979; Petroccia 
et al., 2022). However, a different category of models can 
be used that solves for all the thermomechanical param
eters needed (c.f. Yuen et al., 1978). In the latter approach 
one only needs to specify the kinematic boundary con
ditions (velocity at the boundaries) and it is not required 
to specify the thickness of the shear zone and its stress. 
During the simulation, the stress values and the thickness 
of the shear zone are computed, allowing for the selfreg
ulation of heat generation (Kiss et al., 2019).

To test the feasibility of shear heating models, we have 
built upon previous thermomechanical models that si
multaneously solve for the stresses and the temperature 
in a region deforming by simple shear (Yuen et al., 1978; 
Fleitout and Froidevaux, 1980; Kiss et al., 2019). Our mod
el considers the initial emplacement of a hot mantle rock 
atop a colder oceanic crustal rock (Fig. 2). More details for 
the development of the thermomechanical model are 
given in section 2 (Methods). The initial geothermal gra
dient used in our model is consistent with the emplace
ment of a young (and hot) mantle rock on cold crustal 
lithologies following Hacker et al. (1996). In agreement 
with previous studies (Hacker, 1990), our results show 
that the initial shear zone progressively migrates from 
the upper to the lower plate. This is particularly of inter
est since it provides a natural mechanism for the incorpo
ration of the metamorphic sole, even if the initial thrust 
zone was at the lithological boundary. In addition, our re
sults predict that the peak temperature experienced by 
the sole rocks is a function of the boundary velocity and 
it is within the range of the observed values for Oman 
(ElShazly and Coleman, 1990; Garber et al., 2020) assum
ing realistic shearing velocities (1–10 cm/yr). Considering 
this velocity range, a simple scaling relationship can be 
established based on the systematic results of our study. 
Last but not least, our model is able to predict a cooling 
history for the metamorphicsole rocks that is in excellent 
agreement with the available thermochronology data 
from Oman (Hacker et al., 1996).

2. Methods
We begin by considering the deformation along a ver

tical section following the approach of Yuen et al. (1978) 
that is described in detail in Burg and Moulas (2022; their 
Appendix 4). We consider that x1 is the direction parallel 
to an initially horizontal shearing plane (and the shearing 
direction) and x3 is the direction normal to the shear zone 
(vertical orientation in our case; Fig. 3). Note that the x3 di
rection is pointing upwards whereas depth (z) is pointing 
downwards (Fig. 3). For this particular orientation of the 
shear zone and model assumptions, conservation of mo
mentum in the vertical direction reduces to the lithosta tic 
formula (Burg and Moulas, 2022). Therefore, we will not 
consider pressure effects further since the pressure evo
lution is a function of the shearzone orientation (Mou

Figure 2: Simplified sketch redrawn to scale after the numerical mod
els of Duretz et al. (2016; their Fig. 3). Our focus region is shown using a 
thin vertical line. The red cross shows the contact region between the 
mantle (upper domain) and the crust (lower domain). The inset shows 
the pressure and temperature conditions of that point (metamorphic 
sole) at 1.5 Myr after the onset of obduction.
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las et al., 2014, 2022) and its investigation is beyond the 
scope of this study. Symbols and material constants used 
in this study are given in Table 1 and Table 2, respectively. 

Due to problem’s symmetry, all derivatives in the x1 

and x2 direction vanish. We assume that our material is 
incompressible and, therefore, the continuity equation 
reduces to the following form:

where, in our case, ε.13 is given by equation (4):

Figure 3: Thermomechanical model configuration. A righthand co
ordinate system is also shown (x1,  x2,  x3). It is assumed that the upper 
plate has mantle rheology whereas the lower plate has a strong crustal 
rheology. The initial temperature distribution is shown on the plot on 
the right as a function of depth (z). Note that the vertical coordinate 
and the depth are related via z = L – x3, where L is the total length of 
the model. The points P1 and P2 on the right plot serve to track tem
perature fluctuations at the base of the upper plate and at the top of 
the lower plate, respectively.

where v3 is the velocity in the x3 (vertical) direction. 
The flow is assumed to be slow (inertial terms are neg
ligible) and viscous, this reduces the momentum conser
vation along x1 (parallel to the shearing plane) as follows 
(Fleitout and Froidevaux, 1980, p. 160):

where τ13, is the shear stress within the shear zone. 
Equation (2) implies that τ13 remains constant in the shear 
zone during deformation. Note however that τ13 is con
stant in space, but not in time. Under these assumptions, 
the temperature in the shear zone can be given as fol
lows:

(adjusted	for	stress	tensor	 invariant	forms)	as	𝜎𝜎]	 for	both	olivine	and	anorthite	since	their	𝜎𝜎]	189 

parameters	 are	 very	 similar	 (Evans	 and	 Goetze,	 1979;	 Azuma	 et	 al.,	 2014).	 Since	 our	model	190 

consists	of	two	different	regions	(Fig.	3),	we	consider	two	flow	laws	of	the	form	shown	in	Equation	191 

6	consistent	with	olivine	rheology	(above)	and	dry	anorthite	(below).	The	rheological	parameters	192 

are	taken	from	Ranalli,	(1995;	for	olivine)	and	Rybacki	and	Dresen,	(2004;	for	anorthite).	193 

To	solve	the	system	of	equations	we	assume	an	initial	temperature	distribution	and	we	substitute	194 

Equation	6	in	Equation	5.	The	result	reads	(see	Tab.	2	for	details	regarding	the	symbols	used):	195 
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The	resulting	equation	can	be	used	to	calculate	stress	(𝜏𝜏"#).	To	perform	this	calculation,	we	utilize	198 

Newton	iterations.	The	estimated	stress	(𝜏𝜏"#)	is	then	substituted	back	into	Equation	6	to	obtain	199 

the	strain	rate	distributions	for	the	two	domains.	Both	stress	and	strain	rate	distributions	are	200 

then	 be	 substituted	 into	 Equation	 3	 to	 solve	 for	 the	 temperature	 update.	 The	 temperature	201 

distribution	is	solved	via	the	forward-Euler	method	using	Dirichlet	boundary	conditions	at	the	202 

top	(fixed	temperature	at	0	ºC)	and	Neumann	boundary	conditions	(heat	flux	is	prescribed)	at	203 

the	bottom.	Due	to	the	non-linear	nature	of	the	problem,	the	timestep	of	the	Euler	method	is	204 

adapted	 (reduced)	 automatically	 in	 the	 case	 of	 fast	 temperature	 rise	 to	 avoid	 numerical	205 

instabilities.	 The	 bottom	 heat	 flux	 is	 constrained	 by	 our	 initial	 temperature	 distribution	 that	206 

assumes	that	the	temperature	in	each	domain	follows	a	half-space	cooling	model	with	different	207 

“thermal	ages”	(𝜗𝜗;	2	Myr	at	the	top	and	25	Myr	at	the	bottom).	The	half-space	cooling	is	given	208 

by	(e.g.	Stüwe,	2007):	209 
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where	𝑧𝑧	is	the	original	depth	before	the	duplication	and	𝜅𝜅 = 𝜆𝜆/(𝜌𝜌𝐶𝐶])	is	the	thermal	diffusivity.	213 

The	temperature	profile	 that	 results	after	an	 instantaneous	duplication	has	been	criticised	as	214 

being	unphysical	(Burg	and	Moulas,	2022,	p.	9).	This	is	because	it	requires	initially	infinitely	fast	215 

velocities	(to	achieve	instantaneous	duplication)	and,	at	the	same	time,	it	neglects	shear	heating	216 

(7)
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At	this	point,	we	can	integrate	the	previous	equation	with	respect	to	𝑥𝑥#	to	obtain:	168 
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where	𝐿𝐿’	is	the	coordinate	of	the	lithological	boundary	and	𝐿𝐿	is	the	vertical	coordinate	of	the	top	172 

surface.	 The	 velocity	 difference	 between	 the	 top	 surface	 (𝑥𝑥# = 𝐿𝐿)	 and	 the	 bottom	boundary	173 

(𝑥𝑥# = 0)	of	our	model	domain	is	Δ𝑉𝑉.	174 

Compared	to	previous	work	(Yuen	et	al.,	1978;	Fleitout	and	Froidevaux,	1980;	Burg	and	Moulas,	175 

2022),	we	considered	the	following	approximation	for	the	non-linear,	viscous	rheology	(creep)	of	176 

rocks	(Tsenn	and	Carter,	1987,	p.	5;	Renshaw	and	Schulson,	2017,	p.	15).	Note	that	the	following	177 

formula	is	a	combination	of	dislocation	and	exponential	(Peierls)	creep:	178 
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𝜀𝜀"# = 𝐴𝐴Ksinh 𝛽𝛽𝜏𝜏"# Qexp −
𝑄𝑄
𝑅𝑅𝑅𝑅

6 	180 

	181 

where	𝐴𝐴,	𝛽𝛽,	𝑛𝑛	and	𝑄𝑄	are	material	parameters.	The	previous	formula	places	a	limit	on	the	high	182 

stress	obtained	in	the	case	of	fast	deformation	in	a	way	consistent	with	exponential	creep.	The	183 

advantage	of	Equation	6	is	that	the	transition	from	low-stress	creep	to	exponential	creep	occurs	184 

gradually	 in	 agreement	with	 rheology	 experiments	 (Renshaw	 and	 Schulson,	 2017).	 It	 can	 be	185 

shown	 that	 by	 choosing	𝐴𝐴K = 𝐴𝐴/𝛽𝛽Q	 and	𝛽𝛽 = 𝑄𝑄/(𝑅𝑅𝑅𝑅𝜎𝜎]𝑛𝑛)	 one	 recovers	 the	 power-law	 limit	186 

𝜀𝜀"# = 𝐴𝐴𝜏𝜏"#Q exp −𝑄𝑄/(𝑅𝑅𝑅𝑅) 	at	low	stress	conditions.	Note	that	𝜎𝜎]	is	a	material	parameter	with	187 

units	of	stress	for	the	exponential	flow	creep	(Renshaw	and	Schulson,	2017).	Here,	we	use	9	GPa	188 
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where	𝐿𝐿’	is	the	coordinate	of	the	lithological	boundary	and	𝐿𝐿	is	the	vertical	coordinate	of	the	top	172 
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(5)
scaling	relationship	can	be	established	based	on	the	systematic	results	of	our	study.	Last	but	not	131 

least,	our	model	 is	able	 to	predict	a	cooling	history	 for	 the	metamorphic-sole	 rocks	 that	 is	 in	132 

excellent	agreement	with	the	available	thermochronology	data	from	Oman	(Hacker	et	al.,	1996).	133 

	134 

2.	Methods	135 

We	begin	by	considering	the	deformation	along	a	vertical	section	following	the	approach	of	Yuen	136 

et	al.	(1978)	that	is	described	in	detail	in	Burg	and	Moulas	(2022;	their	Appendix	4).	We	consider	137 

that	 𝑥𝑥"	 is	 the	 direction	 parallel	 to	 an	 initially	 horizontal	 shearing	 plane	 (and	 the	 shearing	138 

direction)	and	𝑥𝑥#	is	the	direction	normal	to	the	shear	zone	(vertical	orientation	in	our	case;	Fig.	139 

3).	Note	that	the	𝑥𝑥#	direction	is	pointing	upwards	whereas	depth	(𝑧𝑧)	is	pointing	downwards	(Fig.	140 

3).	 For	 this	 particular	 orientation	of	 the	 shear	 zone	 and	model	 assumptions,	 conservation	of	141 

momentum	in	the	vertical	direction	reduces	to	the	lithostatic	formula	(Burg	and	Moulas,	2022).	142 

Therefore,	we	will	not	consider	pressure	effects	further	since	the	pressure	evolution	is	a	function	143 

of	the	shear-zone	orientation	(Moulas	et	al.,	2014,	2022)	and	its	investigation	is	beyond	the	scope	144 
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where	𝐿𝐿’	is	the	coordinate	of	the	lithological	boundary	and	𝐿𝐿	is	the	vertical	coordinate	of	the	top	172 
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scaling	relationship	can	be	established	based	on	the	systematic	results	of	our	study.	Last	but	not	131 
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where	𝜏𝜏"#,	is	the	shear	stress	within	the	shear	zone.	Equation	(2)	implies	that	𝜏𝜏"#	remains	158 

constant	in	the	shear	zone	during	deformation.	Note	however	that	𝜏𝜏"#	is	constant	in	space,	but	159 

(1)

At this point, we can integrate the previous equation 
with respect to x3 to obtain:

where L’ is the coordinate of the lithological boundary 
and L is the vertical coordinate of the top surface. The 
velocity difference between the top surface (x3 = L) and 
the bottom boundary (x3 = 0) of our model domain is ΔV.

Compared to previous work (Yuen et al., 1978; Fleitout 
and Froidevaux, 1980; Burg and Moulas, 2022), we con
sidered the following approximation for the nonlinear, 
viscous rheology (creep) of rocks (Tsenn and Carter, 1987, 
p. 5; Renshaw and Schulson, 2017, p. 15). Note that the fol
lowing formula is a combination of dislocation and expo
nential (Peierls) creep:

where Ah, β, n and Q are material parameters. The pre
vious formula places a limit on the high stress obtained in 
the case of fast deformation in a way consistent with ex
ponential creep. The advantage of Equation 6 is that the 
transition from lowstress creep to exponential creep oc
curs gradually in agreement with rheology experiments 
(Renshaw and Schulson, 2017). It can be shown that by 
choosing Ah = A/βn and β = Q/(RTσPn) one recovers the 
powerlaw limit [ε.13 =Aτn

13exp(–Q/(RT))] at low stress con
ditions. Note that σP is a material parameter with units 
of stress for the exponential flow creep (Renshaw and 
Schulson, 2017). Here, we use 9 GPa (adjusted for stress 
tensor invariant forms) as  for both olivine and anorthite 
since their σP parameters are very similar (Evans and Goe
tze, 1979; Azuma et al., 2014). Since our model consists of 
two different regions (Fig. 3), we consider two flow laws 
of the form shown in Equation 6 consistent with olivine 
rheology (above) and dry anorthite (below). The rheolog
ical parameters are taken from Ranalli, (1995; for olivine) 
and Rybacki and Dresen, (2004; for anorthite).

To solve the system of equations we assume an initial 
temperature distribution and we substitute Equation 6 in 
Equation 5. The result reads (see Tab. 2 for details regard
ing the symbols used):
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The resulting equation can be used to calculate stress 
(τ13). To perform this calculation, we utilize Newton itera
tions. The estimated stress (τ13) is then substituted back 
into Equation 6 to obtain the strain rate distributions for 
the two domains. Both stress and strain rate distribu
tions are then be substituted into Equation 3 to solve for 
the temperature update. The temperature distribution 
is solved via the forwardEuler method using Dirichlet 
boundary conditions at the top (fixed temperature at 
0 oC) and Neumann boundary conditions (heat flux is pre
scribed) at the bottom. Due to the nonlinear nature of 
the problem, the timestep of the Euler method is adapt
ed (reduced) automatically in the case of fast tempera
ture rise to avoid numerical instabilities. The bottom heat 
flux is constrained by our initial temperature distribution 
that assumes that the temperature in each domain fol
lows a halfspace cooling model with different “thermal 
ages” (ϑ; 2 Myr at the top and 25 Myr at the bottom). The 
halfspace cooling is given by (e.g. Stüwe, 2007):

ture initially grows with time (Fig. 4a). This temperature 
growth is attributed to the increased dissipative heating 
within the upper plate. The zone of increased dissipative 
heating is the zone of fastest deformation (Fig. 4d), which 
generally does not stay fixed in space. As time progress
es, the main zone of heat production moves towards the 
lower plate. This can be deduced by the fact that the 
temperature and the strain rate peaks are now below the 
lithological boundary (Fig. 4b,e). Since the shearing lasts 
for only 1.4 Myr, there is no heat production beyond this 
point. Thus, the temperature distribution relaxes follow
ing a purely conductive behaviour (Fig. 4c). This is also 
shown by the fact that the strain rate after 1.4 Myr is zero 
(Fig. 4f). The maximum temperature (Tmax) experienced 
by the rocks in the whole modelled history is shown with 
a blue, solid line in Figure 4c. The results show that the 
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The	resulting	equation	can	be	used	to	calculate	stress	(𝜏𝜏"#).	To	perform	this	calculation,	we	utilize	198 

Newton	iterations.	The	estimated	stress	(𝜏𝜏"#)	is	then	substituted	back	into	Equation	6	to	obtain	199 

the	strain	rate	distributions	for	the	two	domains.	Both	stress	and	strain	rate	distributions	are	200 

then	 be	 substituted	 into	 Equation	 3	 to	 solve	 for	 the	 temperature	 update.	 The	 temperature	201 

distribution	is	solved	via	the	forward-Euler	method	using	Dirichlet	boundary	conditions	at	the	202 

top	(fixed	temperature	at	0	ºC)	and	Neumann	boundary	conditions	(heat	flux	is	prescribed)	at	203 

the	bottom.	Due	to	the	non-linear	nature	of	the	problem,	the	timestep	of	the	Euler	method	is	204 

adapted	 (reduced)	 automatically	 in	 the	 case	 of	 fast	 temperature	 rise	 to	 avoid	 numerical	205 

instabilities.	 The	 bottom	 heat	 flux	 is	 constrained	 by	 our	 initial	 temperature	 distribution	 that	206 

assumes	that	the	temperature	in	each	domain	follows	a	half-space	cooling	model	with	different	207 

“thermal	ages”	(𝜗𝜗;	2	Myr	at	the	top	and	25	Myr	at	the	bottom).	The	half-space	cooling	is	given	208 

by	(e.g.	Stüwe,	2007):	209 
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where	𝑧𝑧	is	the	original	depth	before	the	duplication	and	𝜅𝜅 = 𝜆𝜆/(𝜌𝜌𝐶𝐶])	is	the	thermal	diffusivity.	213 

The	temperature	profile	 that	 results	after	an	 instantaneous	duplication	has	been	criticised	as	214 

being	unphysical	(Burg	and	Moulas,	2022,	p.	9).	This	is	because	it	requires	initially	infinitely	fast	215 

velocities	(to	achieve	instantaneous	duplication)	and,	at	the	same	time,	it	neglects	shear	heating	216 

(8)

Parameter Symbol Units 
Temperature T °𝐶𝐶 𝑜𝑜𝑜𝑜 𝐾𝐾 
Deviatoric stress tensor  τij Pa 
Velocity νi m s−1 
Density ρ kg m−3 
Spatial coordinate (measured from bottom) xi m 
Depth (measured from top) z m 
Total length of model L m 
Peierls stress 𝜎𝜎𝑃𝑃 Pa 
Specific heat Cp J kg−1 K−1 
Thermal conductivity λ J  m−1 s−1 K−1 
Thermal diffusivity κ m2 s−1  
Material constant (used in viscous flow law) A0 Pa−n  s−1 
Stress exponent (used in viscous flow law) n − 
Activation energy (used in viscous flow law) Q J mol−1 
Gas constant R J mol−1K−1 

 

Parameter Symbol Value 
Total length of model 𝐿𝐿 20000 
Peierls stress 𝜎𝜎𝑃𝑃 9.9 ∙ 109 ∙ 3−

1
2

Specific heat (upper domain) 𝐶𝐶𝑝𝑝2 1050 
Specific heat (lower domain) 𝐶𝐶𝑝𝑝1 1050 
Thermal conductivity (upper domain) 𝜆𝜆2 3.0 
Thermal conductivity (lower domain) 𝜆𝜆1 2.2 
Thermal diffusivity (upper domain) 𝜅𝜅2 8.4 ∙ 10−7 
Thermal diffusivity (lower domain) 𝜅𝜅1 7.9 ∙ 10−7 
Material constant (used in viscous flow law) 
(upper domain) 𝐴𝐴02 2.5 ∙ 10−21 
Material constant (used in viscous flow law) 
(lower domain) 𝐴𝐴01 5.01 ∙ 10−6 
Stress exponent (used in viscous flow law) 
(upper domain) 𝑛𝑛2 3.5 
Stress exponent (used in viscous flow law) 
(lower domain) 𝑛𝑛1 3.0 
Activation energy (used in viscous flow law) 
(upper domain) 𝑄𝑄2 5.32 ∙ 105 
Activation energy (used in viscous flow law) 
(lower domain) 𝑄𝑄1 6.56 ∙ 105 
Gas constant 𝑅𝑅 8.314 

Table 2: Values of parameters that have been used in this study.

Table 1: Symbols and units of quantities used in this study.

where  is the original depth before the duplication and  
κ = λ/(ρCP) is the thermal diffusivity. The temperature 
profile that results after an instantaneous duplication has 
been criticised as being unphysical (Burg and Moulas, 
2022, p. 9). This is because it requires initially infinitely fast 
velocities (to achieve instantaneous duplication) and, at 
the same time, it neglects shear heating (that is propor
tional to shearing velocity). For this reason, we calculate 
the duplicated temperature distribution by assuming an 
initial temperature diffusion for a period of 1000 years. 
This initial diffusion step ignores the contributions from 
shear heating during the initial stage of the duplication.

To be able to compare our results with the observed 
cooling rates, we considered that the shearing operates 
only for a given amount of time, after which the tempera
ture just diffuses. In our case, we consider that the shear
ing lasted for 1.4 Myr. This choice was made since numer
ical models have shown that the initial duplication and 
the formation of metamorphic sole occurred within 1.5 
Myr (Duretz et al., 2016; their Fig. 3). Overall, the tempera
tures calculated by the model are calculated until 4.4 Myr.

3. Results
We have performed 5100 simulations to determine the 

effects of boundary velocities and boundary conditions. 
However, we have chosen a specific model as our ref
erence to provide a detailed description. The reference 
model results are given in Figures 4–6.

3.1 Temperature of the shear zone
Our results show that, with the initiation of shearing, 

there is a region at about 8 km depth where tempera
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Figure 4: Temperature (T) evolution (a,b,c) and strain rate (ε.13) distribution (d,e,f) with time. The horizontal, black dashed line indicates the position of 
the lithological boundary. (a) Temperature distribution 0.3 Myr after the shearing initiation, (b) at the end of shearing (1.4 Myr), (c) at a time of 4.3 Myr. 
The initial temperature distribution is given with a green dashed line. The maximum temperature (Tmax) recorded by every point of the whole profile 
is shown using a blue solid line. (d) Strain rate distribution at the onset of shearing (0.3 Myr), (e) at 1.4 Myr, (f) at 4.3 Myr.

A thermo-mechanical model of the thermal evolution and incorporation of metamorphic soles in Tethyan ophiolites
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Figure 5: Finite shear strain evolution as a function of time after the shearing initiation. Shear strain has been calculated as the time integral of the 
shear strain rate (∫ ε.13dt). The horizontal, black dashed line indicates the position of the lithological boundary. (a) Finite shear strain at 0.3 Myr, (b) at 
0.7 Myr, (c) at 1.4 Myr (end of shearing).

Figure 6: (a) Depth of the active shear zone with 
time. The depth of the shear zone is taken as the 
maximum of the strain rate (ε.13) distribution at 
each time. The horizontal, dashed line indicates 
the position of the lithological boundary. (b) 
Temperature history of markers in the vicinity 
of the lithological boundary. The cooling history 
that has been inferred by Hacker et al. (1996) is 
shown using a dashed black line.

Iskander IbragImov et al.
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rocks in the vicinity of the lithological boundary experi
enced temperatures in the order of 800 °C. More specif
ically, the maximum temperature in the reference mod
el was about 783 °C. We note that the (Tmax) distribution 
does not correspond to the temperature of a particular 
time instance.

3.2 Shear zone migration
The migration of the temperature maximum with 

time shown in Figure 4 is attributed to the migration of 
the main shear zone as time progresses (Fig. 5). The rea
son for this migration is the heat conduction from the, 
initially hotter, upper plate towards the lower plate. To 
be more specific, as the upper plate cools and the low
er plate heats up simultaneously, this process gradually 
decreases the lower plate’s effective viscosity. This vis
cosity reduction is responsible for the localization of the 
shear zone at different depths. The distribution of the fi
nite shear strain after 0.3, 0.7 and 1.4 Myr shows that the 
shear zone developed first in the upper plate and finally 
migrated in the lower plate (Fig. 5). In fact, the migration 
of the active shear zone occurs in a progressive manner 
as it is shown in Figure 6a. Such migration of the shear 
zone would be responsible for the accretion of the upper 
part of the oceanic upper plate at the base of the former 
upper plate.

3.3 Cooling-rate constraints
One extraordinary feature from the metamorphicsole 

rocks of Oman is the very high cooling rates inferred for 
the metamorphic minerals (Hacker et al., 1996, p. 1242). 
This shape of cooling path and the high cooling rates are 
characteristic for the rapid cooling of shearzone rocks 
(Burg and Moulas, 2022, p. 11). For this reason, we have 
considered that the shearing occurs only for a finite pe
riod of time. As it was mentioned earlier, the shearing 
in the reference model occurred only for a period of 1.4 
Myr. This value is consistent with values of ophiolite ob
duction and metamorphic sole formation (Duretz et al., 
2016). However, we would like to note that it is not nec
essary for the velocity to be zero after this initial period 
of 1.4 Myr. Smaller values of velocity could still operate 
and the material could shear but without a significant 
heat production. Thus, this value should be viewed as a 
period of intense shearing and not as the total period of 
shearing. The temperature evolution of rocks found in 
the vicinity of the initial lithological boundary is shown in 
Figure 6b. Our thermalhistory results (solid lines; Fig. 6b) 
show an exceptionally good fit when compared to the 
thermal histories (dashed black line; Fig. 6b) inferred us
ing thermochronology data (Hacker et al., 1996, p. 1242). 
These results also show that the highest cooling rates are 
expected immediately after the cessation of shearing.

3.4 Systematic investigations
Since the maximum temperature in our results is al

ways found in the region close to the lithological bound
ary (e.g. Fig. 4c), we have performed systematic investi
gations to get more insights on the thermal evolution 
of the rocks in that region. In these investigations, the 
shearing duration is assumed to be fixed at 1.4 Myr and 
we report the average temperature within 10 m from 
the lithological boundary (above and below). Our results 
show that there is a strong dependence of the maximum 
temperature on the initial age of the ocean, especially for 
oceanic lithosphere that is younger than 2 Myr (Fig. 7a). 
This is probably because the oceanic crust is still too hot 
to localize deformation and most of the heating of the 
lower plate occurs via conduction from the upper do
main. Beyond the age of 2 Myr, our results show that the 
age of the ocean in the upper plate is not an important 
parameter regarding the maximum temperature of the 
shearzone rocks (Fig. 7a). In contrast, the shearing veloc
ity plays the most dominant role in the rising of the max
imum temperature (Fig.7a). It is noted that only 2.5 cm/
yr shearing velocity is sufficient to bring the temperature 
above 700 °C (Fig. 7a). For the reference model, the max
imum temperature is around 783 °C (red star; Fig. 7a). In
creasing the shearing velocity beyond this level does not 
bring a dramatic increase on the maximum temperature 
value.

The relatively simple dependence of the maximum 
temperature on the shearing velocity allows us to de
duce a simple relation from our results. By using bilin
earleast squares fitting, the maximum temperature (T) 
data shown in Figure 7a can be described by the follow
ing relation:
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where (Ao) is the age of the ocean in Myr and ΔV is the 
velocity of shearing in cm/yr. This simple formula applies 
for velocities larger than or equal to 1.5 cm/yr and for 
ocean ages older than 2 Myr. Equation 9 can reproduce 
the data of Figure 7a within 19 °C (maximum error). The 
mean absolute error of Equation 9 is only 3.6 °C.

Finally, to see the effect of shear heating on the ther
mal model, we have also plotted the difference between 
the maximum temperature obtained using a thermome
chanical model and the maximum temperature of a pure 
thermal (i.e. conductive) model (Fig. 7b). All other param
eters (initial conditions, thermal parameters) remain the 
same as in the reference model. The results show that 
for our reference conditions, a purely thermal model 
predicts about 335 °C lower peak metamorphic tempera
tures, which is much lower than what is observed in the 
metamorphic sole of the Oman ophiolite.

A thermo-mechanical model of the thermal evolution and incorporation of metamorphic soles in Tethyan ophiolites
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4. Discussion
For many years, researchers have considered shear 

(viscous or frictional) heating as a mechanism for gen
erating the necessary temperature conditions required 
for the metamorphism of ophiolite soles (Woodcock and 
Robertson, 1977). One of the challenges for this interpre
tation, however, is that most of the ophiolite soles are 
almost contemporaneous with the crustal sequence of 
the ophiolites above them. This relationship has been in
terpreted to reflect the fact that the oceanic lithosphere 
must be young (and hot) to be able to be obducted on 
the continent (Spray, 1984; Wakabayashi and Dilek, 2003; 
Parlak et al., 2019). Recent thermomechanical models 
support that it is possible to obduct a hot and young 
oceanic lithosphere on the continental margin (Duretz 
et al., 2016; Ibragimov and Moulas, 2024). Therefore, the 
heat conducted from the young oceanic plate can be suf
ficient to explain the hightemperature metamorphic au
reole beneath the ophiolite (England and Molnar, 1993). 
One of the problems of the previous interpretation is re
lated to the fact that the obducted oceanic lithosphere 
must be hot at the time that it is positioned on top of 
the crustal sequence. This requires that the tectonic 
movements are fast, and since shear heating scales pro
portional to the shearing velocity, shear heating cannot 
be excluded in modelling this process (DupratOualid 
et al., 2015). Thus, models that include shear heating are 

needed to quantify the heating from the overriding plate 
towards the footwall during obduction. Then, for each 
case, the importance of shear heating would be a model 
result and not an apriori assumption.

One of the main assumptions in our work is the incor
poration of a strong, crustal rheology (Rybacki and Dre
sen, 2004). We have modified the highstress limit of this 
rheology by employing a hyperbolicsine flow law that 
approximates exponential creep at high stresses (Tsenn 
and Carter, 1987; Renshaw and Schulson, 2017). This mod
ification is needed to maintain reasonable levels of stress 
that would not grow beyond the strength of the material 
for the given shear velocities. It is possible however that 
the material of the hanging wall had a relatively softer 
rheology that would not allow the localization of defor
mation due to thermal softening. In such a case, the peak 
temperatures obtained would be significantly lower (Kiss 
et al., 2019).

When using a strong crustal rheology, as in our case, 
our models (Fig. 7a) revealed that velocities larger than 
2  cm/yr are sufficient to generate metamorphic condi
tions that are in agreement with the values and the ap
parent metamorphic gradients reported in Oman and in 
other ophiolites in general (e.g. ElShazly and Coleman, 
1990; Jamieson, 1980). In fact, if shear heating was not 
considered, then the maximum temperature in the same 
region would be approximately 335 °C lower (Fig. 7b), 

Figure 7: (a) Maximum temperature at the vicinity of the lithological boundary (±10 m) as a function of the age of the ocean (in Myr) and of the 
shearing velocity (in cm/yr). The red star indicates the parameters of the reference model (Figs. 4–6). The value in parentheses indicate the maximum 
temperature value of the reference run. (b) Temperature difference from a purely thermal model as a function of the same parameters as in (a). The 
reference run is indicated by a red star and the value in the brackets indicates the temperature difference from the purely thermal model.

Iskander IbragImov et al.
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and therefore it would not fit geological data. The fact 
that both the peak temperatures and the cooling rates 
are in agreement with the published data (Fig. 6b) sug
gests that our choice of conditions and parameters is re
alistic for the case of Oman ophiolite.

One limitation of our model is that it did not consider 
the effects of shear heating during the initial duplication 
stage (first 1000 years). This is because it is not possible to 
create a duplication out of a vertical section in a 1dimen
sional model. Our model is thus conservative when it 
comes to the net amount of shear heating. However, our 
value of 1.4 Myr of intense shearing is very close to the 
time instance of 1.5 Myr presented in Duretz et al. (2016; 
their Fig. 3, top panel). In their model, the formation of 
the hightemperature metamorphic sole takes place be
fore 1.5 Myr (Duretz et al., 2016, p. 5).

The fact that shear heating is important in our models, 
does not exclude the fact that heat is conducted from the 
hot, overriding plate towards the relatively cold footwall. 
This is, in fact, the reason for the migration of the active 
shear zone at depths lower within the footwall (Fig. 6a). 
As a result of the shear zone migration, the hanging wall 
incorporates parts that were originally at the uppermost 
levels of the initial footwall (crustal domain). Therefore, 
we suggest that the combination of shear heating and 
heat conduction of a hot upper plate responsible for: i) 
the hightemperature metamorphic conditions, ii) the 
apparent metamorphic inversion observed along the 
section, iii) the large cooling rates inferred in those rocks, 
and iv) the occurrence of the metamorphic sole below 
the mantle sequence. 

5. Conclusions
In this study, we introduced new thermomechanical 

models that are pertinent to the study of ophiolite ob
duction. These models calculate stress, strain rate, and 
temperature distributions within a rock segment subject
ed to simple shear, consisting of two distinct lithologies. 
Our findings indicate that integrating shear heating in 
a selfconsistent manner yields maximum temperature 
and coolingrate predictions that align with natural data. 
Focusing on Oman as an example, our analysis supports 
the notion that the high cooling rates deduced from ther
mochronological data are compatible with the fast cool
ing following the end of deformation. Additionally, our 
results demonstrate that thermal softening in the foot
wall during obduction triggers the shift of the primary 
shear zone into the footwall material. This shift ultimately 
leads to the incorporation of the metamorphicsole rocks 
at the base of the ophiolite. We suggest that our results 
may have implications to the Paleogene metamorphism 
of the rocks underneath the Penninic units in the Tauern 
window.
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