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Abstract
The Internet of Things (IoT) has garnered considerable attention from academic and industrial circles as a pivotal technology
in recent years. The escalation of security risks is observed to be associated with the growing interest in IoT applications.
Intrusion detection systems (IDS) have been devised as viable instruments for identifying and avertingmalicious actions in this
context. Several techniques described in academic papers are thought to be very accurate, but they cannot be used in the real
world because the datasets used to build and test the models do not accurately reflect and simulate the IoT network. Existing
methods, on the other hand, deal with these issues, but they are not good enough for commercial use because of their lack of
precision, low detection rate, receiver operating characteristic (ROC), and false acceptance rate (FAR). The effectiveness of
these solutions is predominantly dependent on individual learners and is consequently influenced by the inherent limitations
of each learning algorithm. This study introduces a new approach for detecting intrusion attacks in an IoT network, which
involves the use of an ensemble learning technique based on gray wolf optimizer (GWO). The novelty of this study lies in the
proposed voting gray wolf optimizer (GWO) ensemble model, which incorporates two crucial components: a traffic analyzer
and a classification phase engine. The model employs a voting technique to combine the probability averages of the base
learners. Secondly, the combination of feature selection and feature extraction techniques is to reduce dimensionality. Thirdly,
the utilization of GWO is employed to optimize the parameters of ensemble models. Similarly, the approach employs the most
authentic intrusion detection datasets that are accessible and amalgamates multiple learners to generate ensemble learners.
The hybridization of information gain (IG) and principal component analysis (PCA) was employed to reduce dimensionality.
The study utilized a novel GWO ensemble learning approach that incorporated a decision tree, random forest, K-nearest
neighbor, and multilayer perceptron for classification. To evaluate the efficacy of the proposed model, two authentic datasets,
namely, BoT-IoT and UNSW-NB15, were scrutinized. The GWO-optimized ensemble model demonstrates superior accuracy
when compared to other machine learning-based and deep learning models. Specifically, the model achieves an accuracy rate
of 99.98%, a DR of 99.97%, a precision rate of 99.94%, an ROC rate of 99.99%, and an FAR rate of 1.30 on the BoT-IoT
dataset. According to the experimental results, the proposed ensemble model optimized by GWO achieved an accuracy of
100%, a DR of 99.9%, a precision of 99.59%, an ROC of 99.40%, and an FAR of 1.5 when tested on the UNSW-NB15
dataset.
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1 Introduction

The Internet of Things (IoT) is experiencing rapid growth
and assuming an increasingly significant role in our every-
day existence. IoT nodes can establish a connection with
the Internet using an Internet Protocol (IP) address [1]. The
past decade has witnessed a significant surge in the level of
interconnectivity among individuals,machines, and services,
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ultimately leading to the emergence of a novel communica-
tion paradigm referred to as the IoT [2]. The proliferation
of self-configured smart nodes is fueling the development
of a wide range of innovative applications, including but
not limited to home automation, process automation, smart
automobiles, health-care systems, decision analytics, smart
grids, industrial development, and autonomous cars [3]. It is
predicted by analysts that in the future, the number of inter-
connected devices will surpass that of the human population
on Earth. As per the International Data Corporation’s projec-
tions, by the year 2025, a total of 41.6 billion interconnected
IoT devices are expected to generate a staggering amount of
79.4 zettabytes of data, in contrast with the anticipated global
population of 8.1 billion individuals [4].

The IoT is vulnerable to a range of security threats and
presents significant security challenges for end-users, par-
ticularly as it continues to expand into various aspects of
communal life, as shown in Fig. 1. The IoT is a complex sys-
tem of various networks that include security measures for
sensor data, Internet and mobile network connectivity, pri-
vacy protection, network authentication, access control, and
informationmanagement, as noted in the source [5]. In recent
years, the occurrence of anomalies and security breaches on
IoT devices has become increasingly prevalent. The Internet
of Things infrastructure framework is becoming increasingly
complex, which is resulting in the introduction of undesired
vulnerabilities into its systems. The IoT has the potential to
facilitate the seamless integration of physical objects into
networks, thereby providing advanced information services
to individuals. A multitude of IoT services and applications
that utilize ML have emerged across various domains such
as security, surveillance, health care, transportation, con-
trol, and object monitoring. Preventative security measures
are often limited by inadequate planning and implementa-
tion, and given the inevitability of attacks, machine learning
systems can offer essential services and resilient security
strategies for safeguarding IoT devices [6].

The attack detection system is classified as either a
signature-based or an anomaly-based system. Signature-
based system attacks compare certain patterns, such as bytes
or harmful instruction sequences, in malware-infected net-
work traffic to known attack types stored in a database [7].
Systemsbased on anomalies detect unknown threats or devia-
tions from the typical flow. Unlike signature-based detection
systems,machine learning-based solutions have the potential
to detect unknown attacks. However, theMLmodels must be
sufficiently precise to maximize high accuracy, increase the
detection rate (DR), have a high ROC, and minimize false
alarms [6]. They must be trained and assessed on genuine
datasets to demonstrate their efficacy in real-world deploy-
ments. The basic strategy is to utilize ML to create a model
of legitimate action and then analyze new behavioral attacks
against the ML model.

As a result, numerous approaches and strategies such as
data encryption, firewalls, and user verification via the fog
computing model have been created and implemented to
defend the IoT platform. These attack channels and risks
continue to evolve, rendering traditional security solutions
inefficient and ineffective at addressing the IoT safety chal-
lenge, paving the way for a new wave of IDS based on ML.
A substantial amount of work and study has been undertaken
to determine the optimum intelligent IDS for various types
of applications in IoT-based environments [8]. As IDS is one
of the key remedies used to ensure IoT security, there is a
propensity to employ multiple techniques concurrently [9].
Alharbi et al. [10] proposed an IoT security proof-of-concept
system built into the fog computing layer. Each unit defends
against a specific type of attack. The IDS of traffic analyzer
components was employed to spot DDoS and DoS attacks
with a classification engine based on the decision tree ML
technique. To authenticate the IDS’s answer, the challenge-
response component sends a challenge communication in
the event of intrusion detection. As a result of the system’s
failure to respond to this message, the firewall unit dis-
ables the connection. Pajouh et al. [11] introduced a unique
layered IDS for IoTmainstay networks that use a two-tier (2-
tier) dimensionality reduction and classification phase. The
dimension reduction engine is built of component analysis
and LDA units, while the classification engine is composed
of NB and a cascaded version of the CF-KNN units. The NB
was utilized to classify attack records, which were further
improved using the CF-KNN algorithm as a secondary filter
layer. Using the NSLKDD [12] dataset, the suggested model
demonstrated modest uncovering performance for difficult-
to-catch attacks, specifically those belonging to the U2R and
R2L classes. Zhang et colleagues [13] used the UNSW-NB
[14] standard dataset to illustrate the efficacy of ML-based
intrusion detection using a full depiction of modern IoT
attack scenarios. They employed a new feature selection
engine that applied DAE founded on a biased loss function,
despite using a simple MLP as an algorithm. This unique
feature selection technique resulted in an increased empha-
sis on attack-representative features. Koroniotis et al. [15]
proposed an IoT network forensic framework consisting of
C4.5, ARM, NB, and ANNML approaches to recognize and
spot novel and complex forms of present botnet attacks as
another application of the UNSW-NB dataset.

Traditional ML techniques and approaches have been
widely used due to their high accuracy for attack detection
and low false alarms, but they have been disapproved for
their inability to detect innovative threats. Traditional ML
techniques are incapable of identifying composite and new
attacks. The mainstream of mutation attacks is minor alter-
ations known as cyberattacks in modern times. The prior
logic and conceptions serve as the basis for the novel attacks.
This means that typical ML models will fail to recognize
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Fig. 1 The Internet of Things scenario

minute mutations because they are incapable of abstract-
ing information to discern novel threats [16]. Hence, a more
robust, intelligent method for IoT attack detection is needed.
Therefore, this paper proposes an ensemble learningmethod.
Ensemble learning for resilient IoT security is a strategy for
solving a specific artificial intelligence-based challenge by
combining different models or expertise. Ensemble learning
enhances generalization, simplification, and voting among
the various ensemble strategies in the intrusion detection
problem, resulting in a higher detection performance than
individual models [17]. The paper’s primary contributions
are as follows:

• Propose a new voting ensemble learning approach for IoT
intrusiondetection (To thebest of our knowledge, this is the
first voting GWO-optimized ensemble model for intrusion
detection in the IoT).

• Analyze themodel using feature extraction (principal com-
ponent analysis) and feature selection (information gain)
for dimensionality reduction. We created a hybrid IG +
PCA technique for feature selection, feature extraction,
and GWO-optimized ensemble models for classification
tasks.

• Based on network traffic characteristics, low-cost and
mountable cyber intrusion detection for IoT are proposed.

• Suggest several realistic datasets for IDS in the IoT envi-
ronment.

• Develop a voting ensemble model based on the average of
probability to increase the detection accuracy and decrease
the false alarm rate to detect cyberattacks in the IoT.

• Leverage the realistic BoT-IoT and UNSW-NB15 datasets
that reflect modern-day attacks and are representative
of real-world attack scenarios in IoT which also satisfy
IoT protocol requirements as against outdated and non-
representative datasets used in some previous studies.

The paper is divided into seven sections. The literature
and existing works are presented in Sect. 2. The proposed
methodology is detailed in Sect. 3. Section 4 presents the
GWO-optimized ensemble models, and Sect. 5 presents the
experimental setup. The findings and discussions are given
in Sect. 6. Section 7 contains the conclusion and recommen-
dations for future work.

2 Related work

The study [18] employed bloom filtering for signature
matching and offered a dynamic coding mechanism for con-
structing a decentralized signature-based IDS in IP-USN.
The study [19] created a virtual test platform to mimic an
actual network environment, installing a Snort IDS for traf-
fic control and attack discovery by reflecting traffic to the
server and constructing a stream-based IDS intelligent sys-
tem using ML developed a specification-based IDS capable
of identifying a novel sort of danger—the topology attack.
They suggested an IDS architecture built on top of a network
monitor and explained its monitoring techniques using an
RPL FSM. Roy et al. [20] presented the use of a Bi-LSTM
RNN for intrusion detection to spot a binary categorization
of normal and malicious attacks. The model was trained on
the UNSW-NB15 dataset and had a detection accuracy above
95% in IoT attacks. The work [21] devised an approach for
detecting resource-constrained deep packet anomalies that
distinguish between regular and anomalous payloads. Xu
et al. [22] presented a unique IDS that examined the realiza-
tion of several basic hybrid RNNmodels andMLP to protect
against IoT threats. Both the NSL-KDD and KDD Cup 99
datasets are utilized for training and assessing the described
models. The study [23] developed a several-layered RNN
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Table 1 Summary of existing IoT attack detection using machine learning and deep learning

Authors Methodology Dataset Results/strengths Gaps

[39] Single-layered ANN N-BaIoT Accuracy � 99 Building ten ANN
models to identify an
attack is a
resource-intensive
and time-consuming
procedure

[40] SMOTE and ANN BoT-IoT Accuracy � 100 Focus solely on
detecting DDoS
attacks.
Additionally, a
simple ANN with
only one hidden
layer was deployed

[41] CNN System call graph Accuracy � 97% and
F-measure � 98.33%

No experiment was
conducted to
determine the
presence of other
harmful lines on IoT
devices

[20] Bi-LSTM UNSW-NB15 Accuracy � 95% There was no
optimization of
parameters with long
training time

[23] RNN NSLKDD Probe � 97.35%; DoS:
98.27%; R2L: 77.25%; and
U2R: 64.93%

It examined a single
dataset without
elucidating the
tuning of the
hyperparameters

[42] K-NN, Gaussian Naive
Bayes, and random
forest

Capture live network KNN: accuracy � 94.44,
precision � 92.0, recall �
100, and F-measure � 96;
Gaussian Naive Bayes:
accuracy � 77.78, precision
� 75, recall � 100, and
F-measure � 86; and
random forest: accuracy �
88.8, precision � 86, recall
� 100, and F-measure � 92

The suggested
approach is
policy-based and
relies on known
attack signatures,
signatures are
upgraded

[24] GRU, LSTM, BLS, and
Bi-LSTM

NSLKDD BLS performs better with an
accuracy reaching 84.14%
and F-measures � 84.68%

They considered only
a single basic
network data

[43] GRU + MLP,
BGRU-MLP, BLSTM +
MLP,
GRU, MLP, DLSTM +
MLP, and LSTM

KDD Cup 99,
NSLKDD

Accuracy � 99.24% Several general attacks
were discovered
while examining a
single dataset

[44] SVM, RF, DT, and logistic
regression

Capture live network SVM � 98.06; RF accuracy
� 99.17;
DT � 98.34
LR � 97.50

It is difficult to
replicate the
research. The
implementation
details of the ML
model are absent

123



A voting gray wolf optimizer-based ensemble learning models…

Table 1 (continued)

Authors Methodology Dataset Results/strengths Gaps

[25] SVM, J48, NB, MLP, NB,
RF, RF, RNN-IDS, and
ANN

NSLKDD RNN-IDS accuracy � 95.2% For performance
comparisons, only
machine learning
models and outdated
dataset were used for
the experimental
analysis

[27] DJ, DF, DNN, LSTM,
DBN, and GRU

NSLKDD, KDD Cup, and
CICIDS

DBN gave an accuracy of
96.9% outperforming others

There are no realistic
IoT datasets
examined

Proposed GWO
ensemble models

RF, DT, MLP, and KNN BoT-IoT
UNSW-NB15

Improved accuracy,
F-measure, and ROC

We used multiple base
classifiers, including
RF, DT, MLP, and
KNN, and designed
a voting GWO
ensemble model

model for IoT gadgets that might be deployed. The identifi-
cation rates of attacks were determined to be DoS at 98.27
percent, the probe at 97.35 percent, U2R at 64.93 percent,
and R2L at 77.25 percent, respectively, using the NSL-KDD
dataset. Li et al. [24] used the NSLKDD dataset to build
GRU, LSTM, BLS, and Bi-LSTM algorithms for several
known intrusion classification tasks. According to the per-
formance study, the BLS significantly reduces training time
while maintaining an accuracy of 72.64% and 84.15 per-
cent for the KDDTest-21 and KDDTest + data, respectively.
The author [25] demonstrated an accuracy of 85.5 per-
cent–95.25 percent for RNN-IDS using a heuristic technique
for intrusion detection. The IDS is initially trained using
the gradient descent approach and then retrained and tested
using the KDD20 + and KDDTest + datasets. RNN-IDS out-
performs various applied algorithms, including SVM, J48,
NB, MLP NB tree, RF, ANN, and RF tree. In ref. [26], a
DoS detecting design for 6LoWPAN was presented. This
design incorporated an IDS into the ebbits framework cre-
ated under the EUFP7 program. The paper [27] conducted
an experimental investigation on intrusion detection utilizing
DJ, DF, DNN, LSTM-RNN, DBN, GRU-RNN, and RNN
of ML and deep learning models. Four datasets, namely,
KDD Cup 99, NSLKDD, CICIDS2017, and CICIDS, were
used to evaluate the algorithms’ effectiveness in detecting
and classifying anomalies using 22 distinct evaluation mea-
sures. However, the experiment results indicate that whenDL
models are combined withmachine learningmodels, notably
DBN, the detection accuracy rate increases from 5 to 10%.
The study [26] set out to spot DoS attack protocols against
CoAP and 6LoWPAN communication and to offer an IDS
architecture for detecting and blocking attacks in an internet-
connected environment. Jiang et al. [28] experimented with
a mixed sampling-based intrusion detection method using

the UNSW-NB15 and NSL-KDD datasets separately. The
OSS and SMOTE are combined to create balanced data for
training models built with CNN, AlexNet, BiLSTM, LeNet-
5, and RF algorithms. According to the statistical result,
CNN-BiLSTM surpassed other classifiers with an accuracy
of 83.58%. Hasan et al. [29] addressed many paradigmatic
machine learning strategies for spotting intrusions into IoT
nets that result in system failure. On the DS2OS data, five-
fold cross-validation was performed using LR, SVM, DT,
RF, and ANN. Cheng et al. [30] developed an HS-TCN
for detecting anomalous communication in the Internet of
Things. The experiment was controlled using two variants of
the unique dataset DS2OS: data collected over eleven (11)
days and the DS2OS-UA. For both adjusted datasets, the
HS-TCN model outperforms the LSTM and SVM models.
The author [31] suggested an intrusion detection approach
founded on node usage analysis in 6LowPAN. Sahu et al.
[32] developed another machine learning-based method for
detecting anomalies by combining LR and ANN classifica-
tion methods. Both the ANN and LR achieve approximately
99.4 percent accuracy when the entire dataset is used and
99.99 percent accuracy when approximately 105,952 data
points are omitted from the unique data. In both situations,
the data are divided into 75 percent and 25% subsets. In ref-
erence [33], an event-processing IDS architecture based on
CEP technologywas described.Kalis [34], an adaptive expert
IDS that can supervise several protocols without modifying
existing IoT software, is a thorough approach for detecting
IoT intrusions. Reddy et al. [35] described a DNN archi-
tecture for securing the apps of future smart cities. The
findings demonstrate that this DNN technique achieves an
accuracy of approximately 98.26 percent when compared to
standard machine learning classifiers with a variable layer
and neurons. The authors [36] developed a novel method for
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detecting network intrusions in IoT networks that are built
on a conditional variational autoencoder with a specialized
design that incorporates intrusion tags. To detect malicious
activity, ref. [37] employed a single-class SVM equipped
with characteristics such as memory utilization and CPU
utilization. The study [38] examined the efficacy of many
community detection methods for detecting P2P bots, partic-
ularly when only incomplete information is available. They
demonstrated that the approach may be used with approxi-
mately half of the nodes, presenting their connection graphs
with only a slight upsurge in detection mistakes. Table 1
summarizes the assessed studies on IoT security as per their
datasets, models, best accuracy results, and gaps.

As seen from the review of the existing studies, the focus
of some of the research is solely on detecting DDoS attacks.
Other sizable attacks are not taken into account. Also, a sim-
ple ANN with only one hidden layer was deployed in one
case with no optimization techniques applied. The majority
of the work also lacks comparative analysis with other ML
and DL models. In another study, it was difficult to repli-
cate the research work. The implementation details of the
machine learning model are absent, with obsolete datasets
that do not reflect contemporary IoT attacks. Finally, the sug-
gested approach is policy-based and relies on known attack
signatures; hence, it will not be up-to-date with the most
recent attack trends until signatures are upgraded.

Unlike the past efforts, we investigate intrusion detection
for IoT resource-constrained devices in the network in this
research. The difference is that our technique is divided into
three stages. The first is hybrid dimensionality reduction,
which involves using PCA and IG to choose the relevant
attributes. The proposed GWO ensemble intrusion detection
model includes two important engines in the second phase:
a traffic analyzer and a classification phase engine. In the
third phase, voting was utilized to merge the base learners’
probability averages.

2.1 Motivation for the intelligent threat model
on the Internet of Things

As IoT grows, so does the number of cybersecurity threats
that investigators must address and examine to develop a
reliable IDS. Numerous forms of malevolent action attempt
to compromise the privacy and security of IoT gadgets, and
all smart appliances connected to the Internet are potentially
vulnerable. For a variety of reasons, the IoT is vulnerable
to cyberattacks. For starters, IoT appliances are frequently
unattended (for example, sensors located in remote places),
making it relatively uncomplicated for an assailant to get
admittance to them physically. Second, the vast majority
of data transfers are wireless, making eavesdropping easier.
Finally, most IoT devices have limited storage and comput-
ing capabilities [45]. Additional anti-virus protection, for

example, cannot be deployed on IoT gadgets. Using numer-
ous hacking tactics, hackers can disrupt or manipulate the
functionality of smart gadgets [46]. In light of the physi-
cally insecure nature of a large number of IoT gadgets, some
hacking approaches require active access to smart gadgets,
making an attack more difficult but not impossible. Other
attacks could be carried out remotely over the Internet. Table
2 shows the main kinds of attacks targeting smart devices.

The intrusion attacks can affect an IoT bot network com-
prised of unsecured IoT gadgets such as electrical gadgets,
security systems, automobiles, thermostats, lights in-home
or marketable locations, speaker systems, and wall timers.
These attacks give a cybercriminal the ability to take control
of the sensors. Unlike traditional botnets, compromised IoT
devices actively seek to propagate their hateful behavior to
a cumulative range of gadgets. While a traditional bot net-
work may consist of hundreds of bots, IoT bot malware is
far larger in scope, involving a large number of connected
gadgets [51]. For instance, on October 21, 2016, cybercrimi-
nals targeted a prominent DNS firm named Dyn. This attack
was initiated by a massive flood of DNS lookup queries from
millions of IP addresses [52]. The bot network demands it
infect a significant number of devices linked to the Inter-
net, including printers, camcorders, and other gadgets. This
IoT bot network attack was initiated by malevolent software
known as Mirai. As a result of the Mirai contagion, com-
puters continually search the Internet for susceptible gadgets
and log in using the default usernameandpassword, attacking
them with malicious programs. Researchers in the security
field described how they targeted the Chrysler Jeep Chero-
kee at Black Hat 2015. While hacking the Jeep’s IoT device
and sensor network, one could remotely access the vehicle
as it drove down the motorway [53]. The specific secu-
rity challenges addressed in this research, which involves
developing an IDS for the IoT using a hybrid approach of
feature extraction via PCA, feature selection via IG, and
parameter optimization using GWO for ensemble models,
are related to the cybersecurity aspects of IoT environments.
Firstly, about vulnerabilities in IoT devices, it is important
to note that these devices frequently have limited resources
andmay lack comprehensive securitymeasures. The primary
objective of the IDS suggested in this study is to identify
and address vulnerabilities present in these devices, hence
thwarting unauthorized access and control. Furthermore, it
is imperative to periodically upgrade the firmware and soft-
ware of IoT devices to ensure their security. The suggested
approach has the potential to facilitate monitoring and ensure
the timely implementation of changes. Authentication and
access control play a vital role in safeguarding IoT systems,
as they are responsible for ensuring that solely authorized
individuals or devices are granted access. The proposed IDS
has the potential to effectively detect and identify unautho-
rized access attempts.
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Table 2 Common types of
attacks against smart IoT devices References IoT types of attack Examples Description

[47] Attack on cloud
infrastructure

Numerous cloud services
contain a logical fault,
which allows a
cybercriminal to get
delicate customer
information as well as
contact with the device
without verification. These
services also feature
common management
console susceptibilities

IoT devices connect to
cloud services on the
back end. Clients of IoT
cloud services may be
able to choose easy
passwords

[48] Attack on device In the case of intelligent IoT
devices such as surveillance
cameras, a cybercriminal
may gain direct knowledge
of the equipment, allowing
them to change the design
settings

An attack is when
someone exploits a
defect or weakness in the
IoT infrastructure to get
access to it

[48] Man-in-the-middle
attack

Eavesdropping attacks such
as man-in-the-middle are a
sort of snooping attack. The
attacker might use this
approach to relay and
possibly change
interactions between two
IoT devices invisibly

The attackers analyzed
network traffic using a
network packet analyzer,
namely, Wireshark. IoT
gadget interacts with
additional IoT
appliances. This link is
neither encoded nor even
authorized. This is the
reason an attacker may
easily target network
access, allowing them to
mount attacks such as
ARP poisoning

[22] Denial of service An adversary can disable the
sensors’ capacity to
transmit and receive data.
Additionally, battery
misuse, device disabling, or
device botching are
examples

A cybercriminal can
disable or alter electronic
equipment and its
associated gadgets via
physical or virtual access
to the IoT sensors

[45] IoT botnet attack Mirai is regarded as a
watershed moment in the
latest threats because it
leverages security flaws in
IoT systems to launch
attacks [49]

The term "IoT botnet"
refers to a collection of
compromised
computers, smart
gadgets, and utilities
linked to the Web; these
gadgets are the targets of
attacks. They are mostly
interested in attacking
internet clients and
devices, such as IP
cameras and edge routers

[50] Reconnaissance This can be accomplished
through the use of network
port scanners and packet
sniffers

The objective is to collect
data on an IoT base,
comprising network
facilities and connected
gadgets
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Fig. 2 The framework of the
proposed GWO ensemble
models for IoT

3 Methodology

This section discusses our proposed method’s framework,
philosophy, and design ideologies. In this research, a hybrid
IG-PCA-based feature selection and extraction method
employing optimized voting gray wolf optimizer-based
ensemble learning models was proposed for intrusion detec-
tion in IoT. The general design of our suggested model is
portrayed in Fig. 2, which is made up of three phases. The
first phase is dimensionality reduction utilizing PCA and
IG to control the relevant attributes. In the second phase,
two key engines comprise the proposed ensemble intrusion
detection model: a traffic analyzer and a classification (RF,
DT, MLP, KNN, and voting ensemble) phase engine. The
GWOevolutionary-based optimizationwas used for optimiz-
ing the parameters of the ensemble models. Preprocessing
of traffic connection records in the circulation processing
unit results in traffic data in a format appropriate for pro-
cessing by the ensemble models of the classification phase,
with these connections classed as normal or attacked by the
GWOensemble intrusion detection. In the third phase, voting
was utilized to combine the average of the probability of the

base classifiers. The new votingmethodology employsGWO
ensemble models to improve the legitimate/intrusion classi-
fication’s prediction capacity. A probability average offers
rapid reply and effective immediate safety management for
the IoT system. Voting is a critical phase of the proposed
classification-based traffic analysis; it analyzes network traf-
fic that seeks to reach the IoT scheme and generates a security
alert if an intrusion is identified. In the provided frame-
work illustrated in Fig. 2, the data are trained using the IG
approach, where the IG entropy is estimated. Following this,
we proceed to calculate the eigenvalue of the PCAcovariance
matrix. During the testing phase, the voting process is con-
ducted by calculating the average of probabilities obtained
from the GWO-optimized ensembles, namely, RF, DT, MLP,
and KNN. The voting mechanism is further enhanced by
the utilization of vectors alpha, beta, and gamma, which are
responsible for updating the voting process. In the context
of an IoT setting, the process of data collecting encompasses
not only the reception of data from IoT devices, but also
the transmission of commands, updates, or responses back
to these devices. The bidirectional flow of information is of
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utmost importance in facilitating real-time interactions and
control inside IoT devices.

3.1 Data preprocessing

Normalization is a technique for scaling attributes in which
the goal is to have all attribute values on the same scale
normalization techniques include the standardized approach,
min–max normalization, and z-score normalization [54, 55].
We selected the min–max normalizing technique since the
majority of the features had a normal distribution to prevent
information from leaking in the test data.

3.2 Normalization technique

The min–max approach [56] modifies a feature so that all of
its values lie inside the interval [0,1]. Equation 1 depicts the
fundamental formula for min–max normalization.

Ynew � y − min (y)

max (y) − min (y)
(1)

where yi represents the value of a certain feature, y min rep-
resents its minimum value, and ymax represents its highest
value.

3.3 Feature selection

The IoT ecosystem comprises intelligent devices with lim-
ited computing power, energy, communication range, and
memory. Among the issueswith IDSs are handling numerous
irrelevant features, which might result in system overhead.
Thus, the objective of feature evaluation is to discover key
attributes that may be employed in the IDS to detect a vari-
ety of attacks efficiently. The characteristics are examined for
both normal and pathological behaviors using the retrieved
labels to select themost important features.We used an infor-
mation gain (IG) strategy and principal component analysis
(PCA) for feature extraction for feature selection.

3.4 Feature selection with IG

IG is a frequently used entropy-based feature evaluation
approach in ML [57]. The information gain techniques were
rapid to execute, and this strategy extracted the model’s opti-
mal feature set. IG was frequently used in the literature to
determine how successfully each different attribute distin-
guished the assumed data. The first phase in this research is to
use IG plus ranked as a filtering strategy to lower the datasets’
dimensionality. The primary idea behind this method is to
evaluate subgroups of features by estimating their IG entropy
in decreasing order. Frommost relevant to least relevant, each
feature receives a score. The attributes with the best scores

are used as the input set of attributes for the next dimension-
ality reduction stage. The author [58] describes the overall
entropy “K” of a given dataset “D” as follows:

K � (D) � −
∑

i�1

pi Log2Pi (2)

where “e” signifies the total class size, and “pi” denotes the
percentage of cases belonging to class u. The reduction in
entropy in information is estimated for each feature using
the following formula:

IG (D, M) � K (D) −
∑

wεA

|DA, w|
|D| K (Dw) (3)

3.5 Feature extraction with PCA

The IG method’s specified attributes can be utilized directly
for categorization.However, one of themost typical IG issues
is a preference for traits with various possible numbers [59].
These features have a close-zero eigenvalue in this scenario,
which improves their gain more than another attribute. As
a result, the full importance of these attributes to the train-
ing examples may not be represented in their ranking. To
overcome this constraint, features from the attribute selec-
tion phasewill be presented for additional reduction using the
PCA method to identify the best subgroup of features. This
allows the PCA to narrow the search area from the whole
subspace to the features that have been pre-selected [60].
The purpose of using PCA is to minimize dimensionality
by retaining important attribute information in the data. It
decreases the number of variables by employing orthogonal
combinations with significant variance. Table 3 shows the
proposed hybrid dimensionality reduction for our suggested
models.

Two techniques are employed to reduce the dimen-
sionality of features from m dimensions to j dimensions:
preprocessing and dimensionality reduction. During the pre-
processing phase, the mean and variance of the data are
standardized using Eqs. (3) and (4) (steps 1 via 4 below).
During the second phase (steps 5–8), the covariance matrix
Covn, eigenvectors, and eigenvalues are constructed using
Eqs. (5) and (6).

1 Standardize the initial input feature values by their mean
and standard deviation using Eq. (4), where n is the num-
ber of cases, and Y (i) is the data points.

μ � 1

n

n∑

i�1

Y(i) (4)

2. Substitute Y (i) with Y (i)−μ.
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Table 3 Hybrid feature dimensionality reduction

3. Using Eq. (5), transform each vector Yk(i) to have unit
variance.

σ 2
i � 1

n

∑

i

(
Yk(i)

)2 (5)

4. Substitute each Yk(i) with
Yk(i)

σ
.

5. Computation of the covariance matrix Covn:

Covn � 1

n

∑ (
Y(i)

)
Y(i))

T (6)

6. Covn eigenvectors and eigenvalues are calculated.
7. Set eigenvectors by diminishing eigenvalues and select j

eigenvectors with the greatest eigenvalues to produce S.
8. Using S and Eq. 7, convert the data to the novel subspace.

Y � S × X (7)

where Y is a 1 × e vector on behalf of one sample, and y is
the converted j × 1 sample in the new subspace.

The computational difficulty of performing the specified
PCA is proportional to the number of attributes F represent-
ing each point of data.

O
(
F3

)
(8)

In this study, PCA is utilized to reduce the dimensionality
of the BoT-IoT and UNSW-NB15 datasets by compressing
the attribute space with ten (10) selected features and nine
(9) high-rank features, respectively. The ten (10) and nine
(9) top-ranked features were considered for the BoT-IoT and
UNSW-NB15 datasets. To identify the most effective fea-
tures, we employed information gain, used in our feature

Table 4 Design principles of PCA

Parameter Values

Parameter ranking True

Num to select 6

Threshold 0.5

Variance 1.832

selection process, which quantifies the importance of each
feature based on its ability to discriminate between different
classes (e.g., normal and intrusions). Features with higher
information gain were considered more effective in distin-
guishing between classes. The design principle of PCA is
given in Table 4.

Parameter ranking typically refers to the process of
assessing and ranking the importance or influence of dif-
ferent parameters or hyperparameters on a machine learning
model’s performance. These parameters are settings or con-
figurations that can be adjusted to influence how a model
learns from data and makes predictions. In our research, the
parameter ranking in the settings is set to true. The num to
select parameter in PCA is set to the value 6. The threshold
value is set to 0.5, and the variance is set to 1.832. The design
principle revolves around finding a new set of orthogonal
axes, called principal components, that capture themaximum
variance in the data while reducing its dimensionality.

Ten (10) new features were selected from the BoT-
IoT dataset, and nine (9) features were chosen from the
UNSW-NB15 which are subsequently fed and passed to
the GWO-optimized ensemble models (RF, DT, MLP, and
KNN). The information gain efficiently identifies the most
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relevant features based on their contribution to the target vari-
able, while PCA optimally captures the variance within the
dataset to create a reduced set of orthogonal features. By
combining these two methods, we achieve a balanced fea-
ture reduction approach that maximizes the preservation of
informative features while minimizing computational over-
head.

PCA aims to transform the original high-dimensional fea-
ture space into a lower-dimensional space while retaining
as much of the variance in the IoT network traffic data as
possible. This dimensionality reduction can lead to several
benefits:

i. Curse of DimensionalityHigh-dimensional IoT network
traffic data can suffer from the "curse of dimensionality,"
where the number of features greatly exceeds the num-
ber of samples. This can lead to increased computational
complexity, overfitting, and difficulty in visualization.
PCA helps mitigate these issues by reducing the dimen-
sionality.

ii. Noise Reduction High-dimensional IoT network data
often contain noise and irrelevant features. PCA helps
remove and down-weight such noisy dimensions by
identifying and emphasizing the dimensions with the
most significant information.

iii. Improved Model PerformanceReducing dimensionality
leads to faster training and inference times for machine
learning models, as well as potentially reducing overfit-
ting.

3.6 Handling the class imbalance problem

Addressing class imbalance is a prevalent issue encountered
in the field of machine learning, particularly in the context
of intrusion detection systems. This challenge arises due
to the substantial disparity between the abundance of nor-
mal instances and the scarcity of attack instances. In this
research, we employed the synthetic minority oversampling
technique (SMOTE) as a method to tackle the aforemen-
tioned concern. The SMOTE is a method that produces
artificial cases for the underrepresented class by interpolat-
ing between the available data points. We ensure that the
data are preprocessedproperly, including removing irrelevant
features, handling missing values, and encoding categorical
variables. Subsequently, we divide the datasets into features
(x) and corresponding labels (y) for both training and test-
ing datasets. Thus, we create an instance of the SMOTE and
apply it to the training data. The mathematical representation
is given in Eq. (9).

(9)

x_ synthetic � x_ minority + random_ number

∗ (
n − x_ minority

)

Assume there exists a dataset with features x and labels
y. For each minority instance x_minority, there is a need
to find its K-nearest neighbors from the minority class.
The distance metric used for finding neighbors (such as
Euclidean distance) can vary. Assume we denote the set of
k-nearest neighbors asN(x_minority). For each neighbor n in
N (x_minority), a synthetic instance x_synthetic is generated
as Eq. (9).

At this juncture, random_number is a random value
between 0 and 1, controlling the interpolation between
x_minority and n. The formula in Eq. (9) is applied to each
feature of x_minority and n to generate the corresponding
feature of x_synthetic.

3.7 Optimization of the ensemble learningmodels
(ELM) with gray wolf optimizer

The GWO methodology is a metaheuristic algorithm that
replicates the initiative chain of importance and pursues the
method of dark posers [61]. In the numerical method for the
GWO, the optimal configuration is denoted by the symbol
alpha α. The beta (β) and delta (δ) are optimized according
to the second- and the third-best configurations, respectively.
It is believed that the remaining application setups are known
as omega (ω). These three applicants are being pursued by
β,δ, and ω using GWO tactics and α as a hunting guide.

For the pack to pursue prey, they immediately encircle it.
The following Eqs. (10)–(13) are applied to mathematically
model surrounding behavior.

−→
Z (r + 1) � −→

Z p(r) +
−→
B .

−→
E (10)

−→
Z p is the position of the prey,

−→
Z is the graywolf position,−→

B and
−→
D are coefficient vectors, and r is the number of

iteration number E as shown in Eq. (11)

−→
E �

∣∣∣
−→
D .

−→
Z p(r)−−→

Z (r)
∣∣∣ (11)

−→
D � 2b. −→

t 1− b (12)

−→
D � 2−→t 2 (13)

b is lowered linearly from 2 to 0 throughout the emphasis
span, while t1 and t2 are random vectors in the interval [0,
1]. Typically, the alpha leads the pursuit. Moreover, the beta
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and the delta may occasionally be interested in chasing. To
scientifically emulate the chasing behavior of gray wolves,
the alpha (the best candidate solution), beta (the second-best
rival solution), and delta (the third-best optimistic solution)
are accepted to obtain more information regarding the likely
prey position. The initial three best application configura-
tions have reached this stage, necessitating that the other hunt
operators change their situations to match those of the best
pursue experts. Therefore, the replenishment of the positions
of the wolves is provided by Eq. (14):

−→
Z � (r + 1) �

−→
Z 1 +

−→
Z 2 +

−→
Z 3

3
(14)

−→
Z 1 �

∣∣∣
−→
Z α − −→

B 1.
−→
E a

∣∣∣ (15)

−→
Z 2 �

∣∣∣
−→
Z β − −→

B 2.
−→
E β

∣∣∣ (16)

−→
Z 3 �

∣∣∣
−→
Z δ − −→

B 3.
−→
E δ

∣∣∣ (17)

where
−→
B 1,

−→
B 2, and

−→
B 3 are defined as Eq. (14) and−→

Z α,
−→
Z β , and

−→
Z δ are the leading three best solutions in

the assumed iteration r,
−→
B 1,

−→
B 2, and

−→
B 3 are expressed in

Eqs. (15–17), and
−→
E α and

−→
E δare expressed as Eqs. 18–20,

respectively.

−→
E α �

∣∣∣
−→
D 1.

−→
Z 1 − −→

Z
∣∣∣ (18)

−→
E β �

∣∣∣
−→
D 2 − −→

Z β − −→
Z 1

∣∣∣ (19)

−→
E δ �

∣∣∣
−→
D 3.

−→
Z δ − −→

Z 1

∣∣∣ (20)

−→
D 1,

−→
D 2, and

−→
D 3 are given as in Eq. (13)

A final observation regarding the GWO mediator is the
updating of the parameter that regulates the investigation-
abuse tradeoff. The stricture is continuously updated each
cycle to range from 2 to 0 following Eq. (21).

b � 2 � r
2

Maxlter
(21)

where MaxIter is the full number of allowable optimization
iterations, and r is the number of optimization iterations. The
hunting and pursuit positions of gray wolves are required to
be updated by binary {1, 0}. The gray wolf optimization
pseudocode is described in Table 5.

We chose GWO to optimize the parameters of the ensem-
ble algorithms because of three significant merits; explo-
ration and exploitation, convergence speed, and handling
constraints, which it has over other algorithms. GWO has
gained a significant amount of prominence among other

Table 5 Pseudocode of gray wolf optimization

1 Initialize values for the population size s, the
Maxitrcoefficient parameter, and the D and B vectors

2 Create an initial population sample at random Zj(r)

3 Using f (zj) to evaluate each search agent’s fitness

4 Z α, Z β, and Z δ to determine the values of the 1st,
2nd, and 3rd optimal solutions

5 Repeat

6 For (j � 1: j ≤ s) do

7 Applying Eq. (21) to restore each population agent

8 End for

9 The vector has been updated by Z α, Z β, and Z δ

accordingly

10 Set r � r + 1

11 As soon as, the termination criteria are met till (r ≥
Maxitr)

12 Lastly to produce the optimal solution Za

swarm intelligence methodologies due to its various charac-
teristics such as fine-tuning parameters, simplicity and ease
of use, scalability, and most notably its ability to just provide
convergence speed by maintaining the right balance between
exploitation and explorationduring the search.GWOexhibits
a better balance between exploration (searching the solution
space) and exploitation (exploiting promising solutions). It
uses the concept of alpha, beta, gamma, and delta wolves to
strike a balance between exploration and exploitation which
can lead to more efficient optimization compared to other
algorithms. GWO tends to converge faster to a global opti-
mum compared to several other algorithms in some cases.
The nature-inspired hunting behavior of gray wolves, such as
encircling prey, mimicked in GWO can lead to more efficient
exploration and faster convergence. GWO promotes diverse
solution exploration due to its hierarchical structure and the
hunting behavior of gray wolves. This can help avoid getting
stuck in local optima and facilitate a more comprehensive
search of the solution space.

In our research, theGWOisutilized to optimize the param-
eters of RF, DT, MLP, and n for KNN. Gray wolf optimizer
(GWO) is a nature-inspired optimization algorithm that sim-
ulates the hunting behavior of gray wolves to find optimal
solutions. We utilized the pseudocode of GWO to optimize
the hyperparameters of ensemble learning models; random
forest, decision tree, multilayer perceptron (MLP), and K-
nearest neighbor (KNN) [62]. Here’s a high-level overview
of how we integrated GWO with ensemble models:

1. Initialize a population of gray wolves with random
hyperparameter settings for the ensemble models.

2. Define a fitness function that evaluates the performance
of the ensemble model with the given hyperparameters.
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The fitness function used appropriate evaluation met-
rics.

3. In each iteration of the GWO loop, evaluate the fitness
of each wolf (hyperparameter set) using the ensemble
model. Update the positions of the alpha, beta, and delta
wolves based on their fitness values. These wolves rep-
resent the best solutions found so far.

4. Update the positions of the other wolves using prede-
fined formulas that simulate the hunting behavior of
gray wolves. This step helps explore the search space
efficiently.

5. Apply boundary constraints to ensure that hyperpa-
rameters remain within valid ranges for the ensemble
models.

6. After a certain number of iterations or when a stopping
criterion is met, select the best solution found so far
based on fitness values.

7. Perform cross-validation to assess the performance of
the ensemble model with the selected hyperparameters
on a validation set.

8. If the new solution (hyperparameters) is better than the
previous best solution, update the best solution.

9. Continue the optimization process until the stopping
criterion is met.

10. Finally, return the best solution, which represents the
optimal hyperparameters for the ensemble learning
models.

By integrating GWO with ensemble models in this way,
we effectively search for the best hyperparameters to max-
imize the ensemble’s performance, improving its accuracy
and effectiveness in real-world applications.

3.8 Mathematical formulation of the ensemble
method for classification

Let {y(u)} for u� 1,…,m be a randomized data containing its
associated examples and characteristics with a mean of zero.
Equation (22) shows the covariance matrix of y(u). Algo-
rithm 1 summarizes the hybrid IG-PCA approach’s selection
procedure.

Z � 1

m − 1

m∑

u�1

[
y(t) × (u)U

]
(22)

In PCA, the transformation function from y(u) to x(v) is
calculated as follows;

x(u) � Nu × (u) (23)

The jth column of the covariance sample matrix Z is equal
to the jth eigenvector, and N denotes an m × m orthogonal

matrix. The eigenvalue problem stated in Eq. (24) is initially
fixed through PCA.

β j k j � Z k j (24)

where β j signifies an eigenvalue of Z (say β1 > β2 > ... >
βm), and kj is the corresponding eigenvector. The PCA is
obtained using Eq. (25) as follows:

x j (u) � k j × (u), j � 1, 2, . . . , m. (25)

The jth principle component is denoted by xj(v). The com-
putation to project a fresh sample y(u) onto the main space
is given in Eq. (26). Let

y(u) �
∑q

j�1
b jU × (u)aj , (26)

where A� {ej: ej � kj, j � 1,…, g}. Equation (27) calculates
the distance f from y(u) and (t) to determine the projection
inaccuracy of y(u) and Ý (u):

b � f

(
y(u),

′
Y (u)

)
(27)

3.9 Ensemblemodel

Ensemble methods are effective ways of improving the
prediction outcome of the overall model by developing
numerous self-reliantmodels and integrating them to provide
results with improved, enhanced accuracy [63]. Ensemble
learning approaches include boosting, bagging, Bayesian
parameter averaging, and stacking [64]. This work proposes
a unique ensemble classifier to improve intrusion detection
accuracy in IoT that employs RF, DT, MLP, and KNN learn-
ers. These algorithms were utilized in a voting algorithm and
were combined using the average of probabilities method. To
accelerate the performance of each of the models, the GWO
was used to optimize the parameters of each of the ensemble
(RF, DT, MLP, and KNN) models.

Assume we have φ ’classifiers A � {A1, A2,… A φ} and
l labels � {h1, h2,…, hl}. According to the classifiers given
above, φ � 4, and l� 2 (that is, non-attack and attack) for the
datasets analyzed in this work. Aj: Zm → [1,0]l is a classifier.
l takes an object y ZM and returns a vector [JAj (h1|y),…, JAj

(h|y)], where JA (h|y) represents the probability given by Ai

to the assumption that entity y corresponds to class i. Where
ni becomes the average of the probabilities provided by the
different classifiers for every class hi,

ni �
1

φ

∑φ

j�1
Jaj(h/y) (28)
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Let N denotes the collection of mean probability for each
category (n1, n2,…, nc). Object y is classified correctly in N
with the highest mean, i.e., y is allocated to class g if and
only if

ng � max N (29)

The proposed ensemble approach’s performance is eval-
uated using two famous intrusion detection assessment data
that are ideally suited for IoT, namely, BoT-IoT and UNSW-
NB15.

3.10 Ensemble learning strategy

Ensemble learning is a powerful technique that combines
multiple individual learning algorithms to create a stronger,
more accurate predictive model. Voting-based ensembles
are a popular approach within ensemble learning. In this
research, we performed the average of probabilities from
multiple models for intrusion detection in the IoT using the
BoT-IoT and UNSW-NB15 datasets. Here’s a step-by-step
explanation of how we achieved this:

Step 1: Data Preparation We preprocess and split the
datasets (BoT-IoT and UNSW-NB15) into training and test-
ing subsets with the target labels (intrusion or non-intrusion)
and the corresponding features for each dataset.

Step 2: Individual Learning AlgorithmsChoose a set of
individual learning algorithms RF, DT, MLP, and KNN that
we want to ensemble.

Step 3: Train Individual Models For each selected indi-
vidual learning algorithm RF, DT, MLP, and KNN. We
trained all these algorithms on training data from both
datasets (BoT-IoT and UNSW-NB15). This gave us a set of
trained models, each capable of making intrusion detection
predictions.

Step 4: Probability Prediction For each trained model,
we use it to make predictions on our testing data. Instead of
just obtaining the final prediction label, we are interested in
the predicted probabilities of intrusion (class attack) for each
instance.

Step 5: Ensemble Voting For each instance in our testing
data, we calculated the average of the predicted probabilities
from all the individualmodels. This average can be computed
for class 1 (intrusion).

Step 6: EvaluationWe evaluated the performance of our
voting ensemblemodels using standardmetrics such as accu-
racy, DR, precision, ROC, and FAR on our testing data. We
also compare these resultswith the performance of individual
models to assess the effectiveness of the ensemble.

3.11 Benefits of the proposed voting-based
ensembles model

• Reduced Bias Combining multiple models can help
reduce bias present in any individual model.

• Improved Generalization Ensembles often perform bet-
ter on unseen data compared to individual models.

• Robustness Ensemble methods are more robust against
overfitting, especially if the individual models are diverse.

• Model Diversity Using different learning algorithms
ensures that the ensemble captures different aspects of the
data.

4 Experimental setup with the software
and hardware requirements

The simulations are executed on a laptop with an Intel Core
(TM) i5-8250U processor clocked at 1.60 GHz and 8 GB of
RAM. To demonstrate the efficacy of the proposed approach,
four GWO ensemble models (RF, DT, MLP, and KNN) with
an average probability are chosen. The algorithms are used to
classify and identify threats and anomalies across all theBoT-
IoT and UNSW-NB15 datasets. Scikit learning was utilized
in the implementation of the models.

4.1 Metrics used for performance evaluation

This study evaluated the performance of the proposed system
using multiple performance measures, including precision,
recall, dtection rate (DR), and accuracy (Acc), as well as the
time required to create the model. These metrics’ definitions
are provided below. True positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) determine the
metrics (FN).

Detection rate (DR): TheDR is the proportion of identified
attacks relative to the total number of attack events in the
dataset. Equation (30) can be utilized to estimate DR.

DR � TP

TP + FN
(30)

Accuracy is the measure of the classifier’s ability to cor-
rectly classify an object as normal or as an attack. The
accuracy is defined by Eq. (31).

Accuracy � TP + TN

TP + FN + FP + TN
(31)

Precision is the ratio of positive predictions to the total
number of positive anticipated class values. It considered a
measure of the classifier’s precision. A low value represents a
high number of FP. The precision is computed using Eq. (32).
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Precision � TP

TP + FP
(32)

The recall is calculated by dividing the number of TP
by the number of TP and FN. The recall is regarded as a
measure of a classifier’s completeness,with a low recall value
resulting in a large number of FN [65]. Using equation, recall
is estimated (33).

Recall � TP

TP + FN
(33)

4.2 Description of the dataset

One of the primary challenges encountered in the domain
of anomaly detection research revolves around obtaining or
generating a suitable dataset for experimental endeavors.
In this study, we analyzed pre-existing datasets to identify
the dataset that is most appropriate for further exploration.
The authors delineated the dataset prerequisites identifying
anomalies in the IoT by the following four criteria:

C1 The acquisition of the dataset ought to be conducted
from the IoT;

C2 It is recommended that the dataset includes anomalies;
C3 The dataset must be appropriately labeled to distin-

guish between normal and abnormal data;
C4 It is recommended that the dataset utilized in the

study closely approximates real-world data, specifically data
derived from authentic or partially authentic systems.

C5 It is recommended that the datasets encompass a
diverse range of attack scenarios and network conditions.
A key criterion was the inclusion of a wide variety of attack
types and patterns to ensure a comprehensive evaluation of
our intrusion detection system.

C6 Took into account the accessibility and availability of
the datasets to the research community. It was important to
select datasets that are publicly accessible, well-documented,
and readily available for replication and validation by other
researchers.

The datasets that meet the specified criteria, namely,
those that comprise labeled sensors, actuators, and net-
work data, include the recently developed BoT-IoT and the
UNSW-NB15 dataset. These datasets were subjected to a
comprehensive analysis by the authors. The particulars of
each dataset are delineated as follows;

4.2.1 BoT-IoT dataset

The BoT-IoT contains both typical IoT net traffic and a range
of attacks. These data were utilized to test our system. It
was chosen because it accurately depicts an IoT ecosystem
context. DoS, DDoS, data exfiltration, keylogging, service

Table 6 Attack and normal behavior statistics from the BoT-IoT dataset

Attack and normal behavior Values

DDoS 2766

Reconnaissance 298

Keylogging 73

Normal 8945

Table 7 UNSW-NB15 data records

Feature type Number of records

Fuzzers 24,246

Backdoors 2329

Analysis 2677

Exploits 44,525

DoS 16,353

Generic 215,481

Reconnaissance 13,987

Worms 174

Shellcode 1511

Normal 2,218,761

scan, andOS attacks are included in the dataset. TheBoT-IoT
is available at https://www.unsw.adfa.edu.au/unsw-canberra-
cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php. All
of these data were preprocessed to establish network-level
patterns for the varied types of traffic generated by devices
and to use these similarities to spot attack behavior in the IoT
architecture [51]. Table 6 summarizes the amount of benign
and attack samples in the collection.

4.2.2 UNSW-NB15 dataset

The researchers [14] created the UNSW-NB15 dataset at
UNSW Canberra. The researchers used the IXIA perfect
storm to create a mix of benign and malicious traffic, yield-
ing a 100 GB dataset in the form of PCAP files, including
many novel attributes. The generated data were intended
to be utilized for intrusion detection generation and valida-
tion. Nevertheless, the data were created using a simulated
environment to generate attack activity. The UNSW-NB15
dataset record distribution is specified in Table 7.

5 Results and discussion

We present the detailed findings of experiments conducted
utilizing the proposed framework in this section. The sug-
gested approach was tested on the datasets mentioned above.
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Table 8 Confusion matrix

Attack/intrusion Non-attack/legitimate

Attack/intrusion TP FN

Non-
attack/legitimate

FP TN

The oversampling without replacement method was used to
divide each dataset’s selected samples into two distinct sub-
groups for training and testing. As a result, the training subset
can accurately predict model performance on previously
unrecognized data, and the testing sample is reserved for
assessing the model’s performance. In this instance, generat-
ing subgroups for cross-validation evaluation is not essential,
which could be time-consuming with large datasets. Two
tests were conducted to evaluate the efficiency of the pre-
sented technique. The following evaluation metrics were
used according to the confusionmatrix shown in Table 8: pre-
cision, accuracy, detection rate, ROC, and FAR. The authors
[66] explain themathematical computations for themeasure-
ment methods used.

Where TP is the number of current attacks recognized
as attacks, TN is the number of frequent patterns identified
as regular, FN is the series of attacks identified as frequent
patterns, and FP is the number of frequent patterns identified
as threats.

5.1 Experimental analysis based on BoT-IoT dataset

The BoT-IoT dataset was used in the first experiment. To
begin, vital attributes were determined by computing the IG
entropy for every feature in declining order. From the orig-
inal thirty-one (31) potential features, ten (10) were chosen
for the following step. The strategy was seen to create several
FARs by deploying IG alone. To overcome this constraint,
a second additional reduction phase founded on the selected
attributes was done using the PCA as feature extraction. To
evade bias, the PCA was created using only the training set,
ensuring that no information from the test data was leaked
into the training dataset. When genuine new unseen data are
introduced into themodel, themodel will not function aswell
if the complete dataset is used to construct the PCAs. Sim-
ilarly, calculating PCAs on the two sets independently will
result in twomismatched sets of data.We cannot build a clas-
sifier in one domain and then apply it to another. The same
characteristics from the training set were utilized to translate
the testing dataset into the same feature space using the batch-
filtering method. The new datasets were utilized to assess the
efficiency of the presentedmethod, so five separate classifiers
were built utilizing the training data and classified using the
testing dataset. On the BoT-IoT dataset, Table 9 compares

the performance of standard ML models IG + PCA-RF, IG
+ PCA-DT, IG + PCA-MLP, IG + PCA-KNN, and the pro-
posed votingGWOensemblemodel. The results indicate that
the voting GWO ensemble model performs the best, with an
accuracy of 99.98% andDR of 99.97%, precision of 99.94%,
ROC of 99.99%, and FAR of 1.30.

5.2 Experimental analysis based on UNSW-NB15
dataset

Additional tests on theUNSW-NB15 datasetwere carried out
to demonstrate the efficiency of the suggested feature dimen-
sionality reduction (IG + PCA) GWO ensemble model. As
in the first experiment, IG and PCAs were computed dur-
ing the preprocessing step of these datasets. In this second
experiment, nine (9) candidate features were chosen from
UNSW-NB15by computing the entropy of the IG and, subse-
quently, the PCA feature extraction. Table 10 shows the best
results obtained using the reduction of dimension approaches
on the dataset. Our proposedmodel produces promising clas-
sification results, as seen in the result. Table 10 compares
the performance of the IG + PCA-RF, IG + PCA-DT, IG +
PCA-MLP, IG + PCA-KNN, and the proposed GWO ensem-
ble model on the UNSW-NB15 dataset. The voting GWO
ensemble technique outperforms all other approaches, with
an accuracy attaining 100%, DR of 99.99%, precision of
99.59%, ROC of 99.40%, and FAR of 1.15.

5.3 Multiclass experimental analysis on the BoT-IoT
dataset

The initial step was the computation of the IG entropy for
each characteristic, with the resulting values being arranged
in descending order to identify the most significant qualities.
Out of the initial set of thirty-one (31) possible features, a
subset of ten (10) features was selected for the subsequent
stage. The implementation of IG in isolation was observed to
generate several FARs as part of the strategy. To address this
limitation, a secondary reduction phase was implemented,
utilizing the specified features and employing PCA as a fea-
ture extraction technique. To mitigate bias, the PCA was
conducted exclusively on the training dataset, to preventing
any potential leakage of information from the test data into
the training set.

Table 11 shows the performance of the proposed voting
GWO ensemble model on BoT-IoT in a multiclass scenario.
The results indicate that the voting GWO ensemble model
performed on DDoS HTTP achieved an accuracy of 99.87%
and DR of 99.89%, precision of 99.60%, ROC of 99.56%,
and FAR of 1.20.
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Table 9 The performance of standard ML approaches and the proposed voting ensemble model on BoT-IoT

Classifier Accuracy DR Precision ROC FAR

IG + PCA-RF 97.00 99.10 97.0 98.0 2.32

IG + PCA-DT 93.00 98.90 96.0 97.0 3.89

IG + PCA-MLP 95.00 98.0 97.0 98.0 4.83

IG + PCA-KNN 98.30 97.30 98.90 98.40 3.70

Proposed IG + PCA-Voting GWO ensemble Average of probability 99.98 99.97 99.94 99.99 1.30

Values of our proposed model are in bold

Table 10 The performance of standard ML techniques and voting ensemble model on the UNSW-NB15

ML approaches Accuracy DR Precision ROC FAR

IG + PCA-RF 98.14 99.20 99.20 98.10 3.40

IG + PCA-DT 97.00 99.12 98.40 97.81 5.20

IG + PCA-MLP 98.23 98.70 98.80 96.83 4.31

IG + PCA-KNN 97.80 99.70 98.80 98.30 3.79

Proposed IG + PCA-Voting GWO ensemble
Average of probability

100 99.99 99.59 99.40 1.15

Values of our proposed model are in bold

Table 11 Performance of the
voting GWO ensemble model
relative to the different attack
types and benign in terms of DR,
accuracy, and training time on
the BoT-IoT dataset

Type of attack Accuracy DR Precision ROC FAR

Benign 99.82 98.67 99.18 99.90 3.18

OS fingerprinting 98.41 99.86 99.28 99.18 4.28

Service scanning 98.67 98.87 99.68 99.68 3.89

DoS TCP 99.62 99.78 98.81 99.10 1.89

DoS HTTP 99.89 98.77 99.72 98.10 1.01

DoS UDP 98.84 98.89 99.83 98.53 1.10

Data theft 99.99 98.97 99.78 98.05 2.60

Keylogging 98.76 99.45 99.09 99.12 2.80

DDoS UDP 99.56 99.58 98.68 99.68 1.90

DDoS TCP 99.83 99.60 98.10 99.32 1.59

DDoS HTTP 99.87 99.89 99.60 99.56 1.20

Values of our proposed model are in bold

5.4 Multiclass experimental analysis
on the UNSW-NB15

Further experiments were conducted on the UNSW-NB15
dataset to showcase the effectiveness of the proposed ensem-
ble model, which combines feature dimensionality reduction
techniques (IG + PCA) with the GWO. Similar to the initial
experiment, the datasets underwent preprocessing in which
IG and PCAs were generated. In the subsequent experiment,
a total of nine (9) candidate features were selected from the
UNSW-NB15 dataset by evaluating the entropy of the infor-
mation gain (IG) and subsequently applying PCA for feature
extraction. Table 12 shows the performance of the proposed

voting GWO ensemble model on BoT-IoT in a multiclass
scenario. The results indicate that the voting GWO ensemble
model performed on reconnaissance achieved an accuracy
of 99.91% and DR of 99.75%, precision of 97.08%, ROC of
98.80%, and FAR of 1.80.

5.5 Evaluation and comparison of current datasets
suitability for IoT network

To determine the essential qualities of a valuable and realistic
dataset for an IoT network, some of the current IDS datasets
were evaluated in this part.
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Table 12 Performance of the
voting GWO ensemble model
relative to the different attack
types and benign in terms of
accuracy, DR, precision, ROC,
and FAR on the UNSW-NB15
dataset

Type of attack Accuracy DR Precision ROC FAR

Benign 99.99 99.89 98.80 99.89 3.42

DoS 99.09 99.56 99.40 99.53 3.45

Backdoor 99.10 99.87 97.82 98.45 2.77

Worm 99.89 98.10 98.17 98.78 2.99

Shellcode 99.14 98.72 98.32 97.62 3.98

Probe 99.89 98.82 96.88 98.64 1.89

Exploits 99.90 98.67 99.08 99.80 3.79

Fuzzer 99.89 99.90 98.71 99.62 2.89

Analysis 99.78 99.10 98.83 99.84 2.89

Generic 99.69 99.59 98.67 99.89 1.99

Reconnaissance 99.91 99.75 97.08 98.80 1.80

Values of our proposed model are in bold

5.5.1 DARPA

For the goal of analyzing network security, this dataset was
created. Due to problems with the fake injection of attacks as
well as benign traffic, researchers chastisedDARPA.DARPA
covers tasks such as sending and receiving mail, surfing the
web, sending and receiving files via FTP, using telnet to
log into distant systems and carry out work, sending and
receiving IRC messages, and remotely monitoring the router
using SNMP. The aforementioned list comprises various
types of attacks, including but not limited to denial of ser-
vice (DOS), password guessing, buffer overflow, remote file
transfer protocol (FTP), syn flood, network mapper (Nmap),
and rootkit. Regrettably, the dataset under consideration does
not accurately reflect network traffic in real-world scenarios
in IoT and exhibits anomalies such as the lack of erroneous
detections. Furthermore, it is no longer current enough to
provide a comprehensive assessment of IDSs concerning
contemporary network infrastructures and attack modalities.
Furthermore, the absence of factual attack data records is
evident [67].

5.5.2 KDD Cup 99

The dataset known as KDD Cup 1999 was derived by ana-
lyzing the tcpdump component of the 1998 DARPA dataset.
However, it is important to note that the KDD Cup 1999
dataset is not immune to the same issues as its predecessor.
The KDD99 dataset encompasses over twenty distinct types
of attacks, including but not limited to neptune-dos, pod-
dos, smurf-dos, buffer-overflow, rootkit, satan, and teardrop.
The amalgamation of network traffic records of both nor-
mal and attack traffic within a simulated environment yields
a dataset that contains a substantial amount of superfluous
records, which are also tainted with data corruption. This, in

turn, results in testing outcomes that are biased, as reported
in reference [68]. NSL-KDD was developed as a means of
addressing certain limitations of theKDDdataset [68], which
had been identified in the previous research [67].

5.5.3 CDX

The utilization of network warfare competitions for the cre-
ation of contemporary labeled datasets is demonstrated by
the CDX dataset. The dataset reveals that attackers have uti-
lized widely recognized attack tools such as Nikto, Nessus,
and WebScarab to conduct automated reconnaissance and
attacks. Benign network traffic encompasses essential ser-
vices such as web browsing, email communication, DNS
queries, and other necessary functions. According to source
[69], CDX has limitations in terms of traffic diversity and
volume, although it can still serve as a tool for testing IDS
alert rules.

5.5.4 Kyoto

The dataset in question has been generated through the uti-
lization of honeypots, thereby precluding the possibility of
manual labeling and anonymization. However, it is important
to note that the dataset’s scope is restricted to solely those
attacks that were directed toward the honeypots. The current
dataset offers ten additional features, including IDS detec-
tion,malware identification, andAshula detection, compared
to the previous datasets. These features are beneficial for
conducting NIDS evaluation and analysis. As the attacks
repeatedly simulate normal traffic, the resulting DNS and
mail traffic information does not accurately reflect real-world
normal traffic. Therefore, false positives are not present. The
significance of false positives lies in their ability to reduce
the frequency of alerts, as indicated by sources [70].
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5.5.5 Twente

To generate the dataset, three distinct services, namely,
OpenSSH,Apacheweb server, andProftp utilizing auth/ident
on port 113, were deployed to gather information from a hon-
eypot network via netflow. Certain types of traffic, including
auth/ident, ICMP, and irc traffic, may produce side effects
that are neither entirely benign nor malicious. In addition,
the dataset includes alert traffic that is both unidentified and
lacking correlations. The labeled dataset under consideration
is deemed more realistic; however, its deficiency in terms of
the volume and variety of attacks is a conspicuous limitation
as noted in reference [71].

5.5.6 ISCX2012

The authors have presented a valuable recommendation
for producing realistic and useful IDS evaluation datasets
through a dynamic approach. The dataset in question was
generated using this approach. The methodology employed
by the individuals involves a bifurcation into two distinct
components, specifically denoted as the alpha and beta pro-
files. The alpha profile executes multiple stages of attack
scenarios to filter the anomalous segment of the dataset. The
beta profile, a benign traffic generator, produces authentic
network traffic accompanied by ambient noise. Empirical
data are utilized to construct profiles that simulate authen-
tic traffic for various protocols such as HTTP, SMTP, SSH,
IMAP, POP3, and FTP. The dataset produced by thismethod-
ology comprises network traces that include complete packet
payloads and pertinent profiles. Nevertheless, it should be
noted that the dataset in question does not pertain to novel
network protocols, given that a significant proportion of con-
temporary network traffic, approximately 70%, is comprised
ofHTTPS, andno traces ofHTTPSare presentwithin the said
dataset. Furthermore, the allocation of the simulated assaults
is not grounded on empirical data [72]. Table 13 shows some
popular realistic datasets for IoT networks.

As can be seen, only the proposed datasets used in this
study meet all criteria. Tables 13 and 14 list and explain
the dataset’s flaws and strengths based on relevant doc-
uments and research, as well as their suitability for IoT
networks. Some feature values are not presented as a result
of inadequate documentation and a lack of metadata. Here,
we evaluated the proposed model using two well-known
datasets: UNSW-NB15 and BoT-IoT. In contrast with the
datasets used in several existing models, which do not accu-
rately reflect contemporary attacks on IoT networks and
do not adhere to IoT protocol requirements, these chosen
datasets are appropriate and realistic for IoT network traffic.

6 Discussion of findings

6.1 Comparison with the existing studies

In this section,we compared the performance of the proposed
GWOensemblemodelwith the existing state-of-the-artmod-
els in Table 15. The majority of the state-of-the-art model
concentrated on the NSLKDD and KDD Cup 99 datasets.
These data are unrealistic intrusion detection datasets for
the evaluation of IoT systems. They are unsuccessful in
practical uses due to the dataset used to train and eval-
uate the underlying models being non-representative. On
the other hand, several existing techniques address these
issues but provide low accuracy, DR, precision, ROC, and
FAR preventing them from being implemented in com-
mercial systems. Also worthy of mentioning was that the
existing state-of-the-art models paid no attention to fea-
ture dimensionality; this stage of dimensionality reduction
is regarded as the most crucial stage. This phase is partic-
ularly time- and labor-intensive. This paper addressed the
feature dimensionality phase by proposing a hybridized IG
+ PCA for dimensionality reduction and provides a novel
GWO ensemble model for classification. Additionally, this
proposed ensemble model was evaluated on realistic BoT-
IoT and UNSW-NB15 datasets, which made it suitable for
commercial and industrial applications. As shown in Fig. 3,
the best state-of-the-art model provides 100% accuracy on
the BoT-IoT data, while the ROC and F-measure were dis-
regarded. On the comparable BoT-IoT data, the proposed
innovative voting GWO ensemble model achieved an accu-
racy of 99.98%, DR of 99.97%, precision of 99.94%, ROC
of 99.99%, and FAR of 1.30.

6.2 Computational compatibility across IoT devices

When designing a machine learning model for intrusion
detection in IoT environments, it is important to consider
the computational compatibility of the proposedmodel, espe-
cially given the heterogeneity in computational power among
IoT devices. A model that works well on high-power devices
might struggle or be impractical to implement on resource-
constrained IoT devices. Imagine a scenario where our pro-
posedmodel is deployed for real-time anomaly detection in a
smart city environment, where various types of IoT devices
are utilized, ranging from resource-constrained sensors to
more powerful edge devices. In this scenario, the lightweight
nature of our voting GWO ensemble model enables seamless
integration across these devices. Resource-intensive tasks are
offloaded to devise with higher computational power, while
less resource-intensive tasks are managed by lower-powered
devices. Our model’s architecture is designed to dynamically
adjust its computational requirements based on the available
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Table 13 A comparative analysis of the datasets currently accessible for detecting attacks in IoT

DARPA LBNL Kyoto AWID ISCX 2012 KDD’99 CDX Twente

Traffic No Yes No No No No No Yes

Network Yes Yes Yes Yes Yes Yes No Yes

Label Yes No Yes Yes Yes Yes No Yes

Capture Yes Yes Yes Yes Yes Yes Yes Yes

Interaction Yes No Yes Yes Yes Yes Yes Yes

Attacks Brute-force Yes – Yes Yes Yes Yes No Yes

Browser Yes – Yes Yes Yes Yes No No

DoS Yes – Yes Yes Yes Yes Yes No

DNS No – Yes No No No Yes No

Backdoor No – Yes No No No No No

Scan Yes Yes Yes Yes Yes Yes Yes Yes

Others Yes – Yes Yes Yes Yes – Yes

Protocols HTTP No No Yes No No No No No

HTTP Yes Yes Yes Yes Yes Yes Yes Yes

FTP Yes No Yes Yes Yes Yes Yes No

Email Yes No Yes Yes Yes Yes Yes No

Ssh Yes Yes Yes Yes Yes Yes Yes Yes

Heterogeneity No No No No Yes No No –

Anonymity No Yes No No No No – –

Metadata Yes No Yes Yes Yes Yes No Yes

Feature set No No Yes Yes No Yes No No

Table 14 Summary of
representative (realistic) and
non-representative (non-realistic)
datasets for IoT

Dataset/authors Traffic creation
year

Public
availability

Attack
traffic

Normal
traffic

Realistic
network
traffic for
IoT

DARPA [73] 1999 Yes Yes Yes No

LBNL [74] 2005 Yes Yes Yes No

Kyoto 2006 + [70] 2011 Yes Yes Yes No

NSL-KDD [68] 2009 Yes Yes Yes No

SSENET-2011 [75] 2011 n.i.f Yes Yes No

UNIBS [76] 2009 o.r No Yes No

CDX [69] 2009 Yes Yes Yes No

Twente [71] 2009 Yes Yes Yes No

ISCX 2012 [72] 2012 Yes Yes Yes No

Botnet [77] 2014 Yes Yes Yes No

AWID [16] 2015 o.r Yes Yes No

DDoS [78] 2016 Yes Yes Yes No

CIDDS-001 [79] 2017 Yes Yes Yes Yes

N-BaIoT [80] 2018 Yes Yes Yes Yes

UNSW-NB15 2015 Yes Yes Yes Yes

BoT-IoT 2019 Yes Yes Yes Yes

o.r � on request and n.i.f � no information found
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Table 15 Comparison with the state-of-the-art models

Authors Methodology Dataset used Accuracy DR Precision FAR

[44] SVM, RF, DT,
and LR

Capture live
network

SVM � 98.06; RF
� 99.17;
DT � 98.34
LR � 97.50

X x x

[41] CNN System call graph 97 X x 0.034

[20] Bi-LSTM UNSW-NB15 95 X x 0

[42] K-NN, Gaussian
Naive Bayes,
and random
forest

Capture live
network

K-NN � 94.44;
Gaussian Naive
Bayes � 77.78;
RF � 88.8,

KNN � 100;GNB �
100; RF � 100

K-NN � 96; GNB �
86; RF � 92

x

[24] GRU, LSTM,
BLS, and
Bi-LSTM

NSLKDD 84.14 X x x

[43] GRU-MLP,
BGRU-MLP,
BLSTM + MLP,
GRU, MLP,
LSTM-MLP,
LSTM

KDD Cup 99,
NSLKDD

99.24 X x 0.84

[39] Single-layered
ANN

N-BaIoT 99 X x x

[25] SVM, J48, NB,
MLP, NB tree,
RF, RF tree,
RNN-IDS, and
ANN

NSLKDD 95.2 X x 6.3

[40] SMOTE and
ANN

BoT-IoT 100 X x x

[27] DJ, DF, DNN,
LSTM, DBN,
and GRU

NSLKDD, KDD
Cup, and CICIDS

96.9 X x 5.44

[81] MTNN ToN_IoT 87.79 90.69 77.95 x

[82] CNN-CapSA BoT-IoT 99.94 99.93 99.93 x

[83] CNN-MGO BoT-IoT 99.62 99.72 99.52 x

Our proposed
model

Voting GWO
ensemble model

BoT-IoT 99.98 99.97 99.94 1.30

Our proposed
model

Voting GWO
ensemble model

UNSW-NB15 100 99.99 99.59 1.15

resources, ensuring effective and efficient operation across
the heterogeneous IoT landscape.

6.3 Transferable of the proposed research
to real-world IoT applications

Our research is designed with a strong focus on practical
applicability in real-world IoT environments. Here are key
points highlighting the transferability of our research to real-
world IoT applications:

a. IoT-Centric Approach We developed our intrusion
detection systemwith a deep understanding of the unique

characteristics and challenges of IoT networks. This
approach ensures that our research is directly relevant
to the specific requirements and constraints of IoT appli-
cations.

b. Dataset SelectionWe utilized datasets, such as BoT-IoT
and UNSW-NB15, that are representative of real-world
IoT network traffic and intrusions. This dataset selection
ensures that our research is grounded in the realities of
IoT security.

c. Hybrid Approach Our research combines feature
extraction via principal component analysis (PCA), fea-
ture selection via IG, and GWO-based ensemble models.

123



Y. K. Saheed, S. Misra

Fig. 3 Comparison of the
proposed models with the
existing models
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This hybrid approach is designed to enhance the robust-
ness and effectiveness of intrusion detection in real-world
IoT scenarios.

d. Generalization We conducted experiments and evalua-
tions on multiple datasets to ensure the generalizability
of our proposed model to diverse IoT applications. Our
research demonstrates the adaptability and transferability
of our approach across various IoT contexts.

e. PerformanceMetricsWe evaluated our intrusion detec-
tion system using well-established performance metrics,
such as accuracy, DR, precision, and FAR. These met-
rics reflect the real-world effectiveness of our approach
in identifying and mitigating security threats.

f. ScalabilityWeaddressed the scalability challenges often
encountered in IoT environments, ensuring that our
research can handle growing numbers of devices and data
volumes while maintaining effectiveness.

g. Practical Deployment Considerations We discussed
the practical considerations of deploying our intrusion
detection system in real-world IoT applications, includ-
ing the optimization of model parameters and the impor-
tance of network segmentation.

h. Security ChallengesOur research explicitly addresses a
range of security challenges and threats in IoT environ-
ments, making it directly applicable to scenarios where
IoT security is a concern.

This research is built on a foundation that prioritizes real-
world relevance and practicality. We have conducted exper-
iments and evaluations that demonstrate the effectiveness
and transferability of our IDS to various IoT applications.
By addressing the unique challenges of IoT security and
employing a hybrid approach that combines feature extrac-
tion, feature selection, and optimization techniques, we aim
to provide a solution that can be readily applied in real-world
IoT environments.

6.4 Threats to validity

The main danger to validity is random sampling, which
makes it difficult to duplicate the exact experiment. To val-
idate the suggested approach’s reliability, the experiments
were repeated on two separate realistic IoT sets of data
with a substantial sample size. Finally, while the presented
approach performed well in binary-class classification, it
deserves additional investigation in the class ofmultiple clas-
sification issues.

7 Conclusion and future work

This paper proposes a novel voting GWO ensemble learning
model for the detection of attacks in an IoT environment. The
suggested system successfully detects various forms of IoT
threats by leveraging the feature set retrieved from the IoT
ecosystem. The strength of this paper concentrates on the vot-
ing GWO ensemble model, which is the first of its kind, the
hybridization of IG + PCA for dimensionality reduction, and
the leverage of realistic datasets that reflect real-time attacks
in the IoT context. To construct a successful ensemble IDS
for detecting IoT attacks, a collection of relevant featureswas
selected. The experimental findings prove that the detection
accuracy is increased in the voting GWO ensemble model
in the suggested framework using the average probability
technique. Our experimental results indicate that our pro-
posed voting ensemble model outperforms other ML and DL
approaches in terms of overall accuracy, attaining 100%, DR
of 99.99%, precision of 99.59%, ROC of 99.40%, and FAR
of 1.15 on the UNSW-NB15 compared to earlier studies.
This indicates that our presented method will be extremely
beneficial in designing contemporary IDS for the IoT envi-
ronment. The suggested model will be extended in the future
to incorporate multiple class classification problems. Also,
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the deep learning model to classify the additional forms of
attacks may be considered in the future work.
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pp. 55–59, 2018, [Online]. Available: http://anale-informatica.tibi
scus.ro/download/lucrari/16-1-06-Olatunde.pdf.

63. Seni, G., Elder, J.F.: EnsembleMethods inDataMining: Improving
Accuracy Through Combining Predictions, vol. 2, no. 1 (2010)

64. Hung, C., Chen, J.H.: A selective ensemble based on expected
probabilities for bankruptcy prediction. Expert Syst. Appl. 36(3
PART 1), 5297–5303 (2009). https://doi.org/10.1016/j.eswa.2008.
06.068

65. Abdulhammed, R., Musafer, H., Alessa, A., Faezipour, M.,
Abuzneid, A.: Features dimensionality reduction approaches for
machine learning based network intrusion detection. Electron
(2019). https://doi.org/10.3390/electronics8030322

66. Elhag, S., Fernández, A., Bawakid, A., Alshomrani, S., Herrera, F.:
On the combination of genetic fuzzy systems and pairwise learn-
ing for improving detection rates on Intrusion Detection Systems.
Expert Syst. Appl. 42(1), 193–202 (2015). https://doi.org/10.1016/
j.eswa.2014.08.002

67. Mchugh, J.: Testing intrusion detection systems: a critique of the
1998 and 1999 DARPA intrusion detection system evaluations as
performed by Lincoln Laboratory. ACM Trans. Inf. Syst. Secur.
3(4), 262–294 (2000). https://doi.org/10.1145/382912.382923

68. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed
analysis of the KDDCUP 99 data set in computational intelligence
for security and defense applications. Comput. Intell. Secur. Def.
Appl., no. Cisda, 1–6 (2009)

69. Sangster, B. et al.: Toward instrumenting network warfare com-
petitions to generate labeled datasets. In: 2nd Work. Cyber Secur.
Exp. Test, CSET 2009 (2009)

70. Sato, M., Yamaki, H., Takakura, H.: Unknown attacks detec-
tion using feature extraction from anomaly-based IDS alerts. In:
Proc.—2012 IEEE/IPSJ 12th Int. Symp. Appl. Internet, SAINT
2012, pp. 273–277 (2012). https://doi.org/10.1109/SAINT.2012.51

71. Sperotto, A., Sadre, R., VanVliet, F., Pras, A.: A labeled data set for
flow-based intrusion detection. In: IPOperations andManagement:
9th IEEE InternationalWorkshop, IPOM, pp. 39–50 (2009). https://
doi.org/10.1007/978-3-642-04968-2_4

72. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward
developing a systematic approach to generate benchmark datasets
for intrusion detection. Comput. Secur. 31(3), 357–374 (2012).
https://doi.org/10.1016/j.cose.2011.12.012

73. Lippmann, R.P. et al.: Evaluating intrusion detection systems: the
1998 DARPA off-line intrusion detection evaluation. In: Proc. -
DARPA Inf. Surviv. Conf. Expo. DISCEX 2000, vol. 2, pp. 12–26
(2000). https://doi.org/10.1109/DISCEX.2000.821506

74. Ruoming, P., Mark, A., Mike, B., Jason, L., Vern, P., Brian, T.: A
first look at modern enterprise traffic. In: p. Proceedings of the 5th
ACM SIGCOMM conference on I (2005)

75. Vasudevan, A.R., Harshini, E., Selvakumar, S.: SSENet-2011: a
network intrusion detection system dataset and its comparisonwith
KDD CUP 99 dataset. Asian Himalayas Int. Conf. Internet (2011).
https://doi.org/10.1109/AHICI.2011.6113948

76. Gringoli, F., Salgarelli, L., Cascarano, N., Risso, F., Claffy, K.C.,
Rodriguez, P.: GT: picking up the truth from the ground in traffic
classification. ACM SIGCOMM Comput. Commun. Rev. 39(5),
12–18 (2009)

77. Beigi, E.B., Jazi, H.H., Stakhanova, N., Ghorbani, A.A.: Towards
effective feature selection in machine learning-based botnet detec-
tion approaches. In: 2014 IEEE Conf. Commun. Netw. Secur.
CNS2014, pp. 247–255 (2014).https://doi.org/10.1109/CNS.2014.
6997492

78. Alkasassbeh, M., Al-Naymat, G., B.A, A., Almseidin, M.: Detect-
ing distributed denial of service attacks using data mining tech-
niques. Int. J. Adv. Comput. Sci. Appl. 7(1), 436–445 (2016).
https://doi.org/10.14569/ijacsa.2016.070159

79. Sharafaldin, I., Gharib, A., Lashkari, A.H., Ghorbani, A.A.:
Towards a reliable intrusion detection benchmark dataset. Softw.
Netw. 2017(1), 177–200 (2017). https://doi.org/10.13052/jsn2445-
9739.2017.009

80. Meidan, Y., et al.: N-BaIoT-Network-based detection of IoT botnet
attacks using deep autoencoders. IEEE Pervasive Comput. 17(3),
12–22 (2018). https://doi.org/10.1109/MPRV.2018.03367731

81. Ahmed, S.W.,Kientz, F.,Kashef,R.:Amodified transformer neural
network (MTNN) for robust intrusion detection in IoT networks.
In: 2023 Int. Telecommun. Conf. ITC-Egypt 2023, pp. 663–668
(2023).https://doi.org/10.1109/ITC-Egypt58155.2023.10206134

82. Abd Elaziz, M., Al-qaness, M.A.A., Dahou, A., Ibrahim, R.A.,
El-Latif, A.A.A.: Intrusion detection approach for cloud and IoT
environments using deep learning andCapuchin SearchAlgorithm.
Adv. Eng. Softw. 176(December 2022), 103402 (2023). https://doi.
org/10.1016/j.advengsoft.2022.103402

83. Fatani, A., et al.: Enhancing intrusion detection systems for IoT
and cloud environments using a growth optimizer algorithm and
conventional neural networks. Sensors 23(9), 1–14 (2023). https://
doi.org/10.3390/s23094430

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.jnca.2017.04.015
https://doi.org/10.1016/j.eswa.2016.06.004
http://anale-informatica.tibiscus.ro/download/lucrari/16-1-06-Olatunde.pdf
https://doi.org/10.1016/j.eswa.2008.06.068
https://doi.org/10.3390/electronics8030322
https://doi.org/10.1016/j.eswa.2014.08.002
https://doi.org/10.1145/382912.382923
https://doi.org/10.1109/SAINT.2012.51
https://doi.org/10.1007/978-3-642-04968-2_4
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1109/DISCEX.2000.821506
https://doi.org/10.1109/AHICI.2011.6113948
https://doi.org/10.1109/CNS.2014.6997492
https://doi.org/10.14569/ijacsa.2016.070159
https://doi.org/10.13052/jsn2445-9739.2017.009
https://doi.org/10.1109/MPRV.2018.03367731
https://doi.org/10.1109/ITC-Egypt58155.2023.10206134
https://doi.org/10.1016/j.advengsoft.2022.103402
https://doi.org/10.3390/s23094430

	A voting gray wolf optimizer-based ensemble learning models for intrusion detection in the Internet of Things
	Abstract
	1 Introduction
	2 Related work
	2.1 Motivation for the intelligent threat model on the Internet of Things

	3 Methodology
	3.1 Data preprocessing
	3.2 Normalization technique
	3.3 Feature selection
	3.4 Feature selection with IG
	3.5 Feature extraction with PCA
	3.6 Handling the class imbalance problem
	3.7 Optimization of the ensemble learning models (ELM) with gray wolf optimizer
	3.8 Mathematical formulation of the ensemble method for classification
	3.9 Ensemble model
	3.10 Ensemble learning strategy
	3.11 Benefits of the proposed voting-based ensembles model

	4 Experimental setup with the software and hardware requirements
	4.1 Metrics used for performance evaluation
	4.2 Description of the dataset
	4.2.1 BoT-IoT dataset
	4.2.2 UNSW-NB15 dataset


	5 Results and discussion
	5.1 Experimental analysis based on BoT-IoT dataset
	5.2 Experimental analysis based on UNSW-NB15 dataset
	5.3 Multiclass experimental analysis on the BoT-IoT dataset
	5.4 Multiclass experimental analysis on the UNSW-NB15
	5.5 Evaluation and comparison of current datasets suitability for IoT network
	5.5.1 DARPA
	5.5.2 KDD Cup 99
	5.5.3 CDX
	5.5.4 Kyoto
	5.5.5 Twente
	5.5.6 ISCX2012


	6 Discussion of findings
	6.1 Comparison with the existing studies
	6.2 Computational compatibility across IoT devices
	6.3 Transferable of the proposed research to real-world IoT applications
	6.4 Threats to validity

	7 Conclusion and future work
	References


