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A B S T R A C T

Increased energy demand and rapid environmental changes triggered by global greenhouse gas emissions have
forced numerous countries to consider renewable energy sources (RES) as possible alternatives to conventional
fossil-fuel energy sources. Due to the inherent uncertainty, intermittency, and generally uncontrollable power
generation by single-source renewable power plants, hybrid power plants (HPPs) incorporating several
mutually complementary RES have lately gained much interest. Integrating battery storage systems with such
HPPs has the potential to run them more similarly to conventional fossil-fueled power plants, providing
controllable power generation, and reducing its variability. Given such a future scenario and the lack of
existing detailed studies, this paper investigates the profitability potential for a viable business case for
battery storage integration with utility-scale hybrid hydropower–solar photovoltaic (PV) plants. The study
presented here is based on a hypothetical, two-reservoir cascaded hydropower plant in Sub-Saharan Africa.
The role of the battery is assessed by considering the overall profitability of the HPP when participating in
capacity markets, ancillary services, and energy arbitrage. The relationship between the value stacking of
battery services and its impact on battery life has been critically examined. This study provides estimates
on increased profitability, cost-optimal battery capacities, battery degradation estimates, and the HPP-battery
interoperability aspects under various hydropower and electricity market operating scenarios. Batteries will
likely increase cost-effectiveness by co-optimization with PV-system as well as power market contracts. In this
case, adding a battery increased the profitability by about 2% when combining revenues from capacity markets
and ancillary services.
1. Introduction

Over the past decade, major economies of the world have increas-
ingly focused on the utilization of renewable energy sources (RES) to
fulfill their ever-rising energy demand. This has also been particularly
necessary owing to climate change, the recent global energy crisis, and
the sharp rise in electricity prices [1]. However, with more integration
of RES into the existing grid system, uncertainty over power supply
security has become a concern. Hybrid power plants (HPPs) provide
a way forward in such a context by incorporating mutually comple-
mentary RES and suitable energy storage systems which substantially
reduce power generation uncertainty. In addition, integrating battery
storage systems into a RES-based hybrid power plant could increase the
overall profitability by reducing energy losses, increasing the average
value of the energy sold, and usually receiving incentives through tax
credit [2].
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Hydropower has historically been a significant source of renewable
energy. In addition to providing clean energy, the added benefits of
the hydropower plants are to provide a sustained water supply from
the associated water reservoirs for irrigation and drinking, even during
dry seasons. HPPs consisting of hydropower and floating photovoltaics
(FPVs) have gained considerable interest in both research and indus-
try [3–5]. The primary arguments for such hybrid plants are typically
resource complementarity and better transmission equipment utiliza-
tion that minimize costs [6]. For example, during the summer months
when there are usually low water levels in the reservoirs resulting in
lower hydropower production, PV power generation is high due to
high solar irradiance. Conversely, during the winter while hydropower
generation is high due to higher water levels in the reservoirs, PV power
generation is low due to low solar irradiance [7]. This results in a
more stable power output throughout the year for a hybrid hydro-FPV
power plant. Conflicts arising from significant land usage by large
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Index of Abbreviations and Notations:

Most of the important abbreviations and notations used in this
study are provided here for quick reference. The others are
described suitably in the remaining part of the text for ease of
reading.

Abbreviations

PV Photovoltaic
RES Renewable energy sources
HPP Hybrid power plants
FPV Floating photovoltaic
GW Gigawatt
LP Linear programming
Li Lithium
SoC State of charge of a battery
USD United States dollar
MUSD Million USD
kWh Kilowatt-hours
SEI Solid electrolyte interface
DoD Depth of discharge
PPA Power purchase agreement
MW Megawatts
MWp Megawatts peak
ACp Alternating current peak
HT Hydro turbine
SoH State of health of the battery
IQR Interquartile range
chrg Battery charging
dischrg Battery discharging
Str Battery stress

Notations

𝑍 Total cost involved
(𝑖) Index for the investment period
(𝑜) Index for the operating period
(𝐼𝐶𝑖) Investment cost for the period (i)
(𝑂𝐶𝑖) Operating cost for the period (i)
(𝑥𝑖) Investment variables for the period (i)
(𝑦𝑖𝑜) Operational variables for the period (i) and

(o)
(𝜁𝑖) Discount factor for the period (i)
(𝜆) Discount rate
(𝜎) Years in between each investment period
(𝛾) Discount factor for the operating costs
(𝐴𝐶𝑖) Cost of an asset for the period (i)
(𝑀) Asset lifetime
(𝐶𝑤𝑎𝑣𝑔) Weighted average cost of capital
(𝐶𝐴𝑃𝐸𝑋𝑖) Annual capital expenditure of the asset
(𝑂𝑃𝐸𝑋𝑖) Annual operational expenditure of the asset
(𝜂) Efficiency of the respective equipment
(𝜌) Density of water
(𝑔) Gravitational constant
(𝑏) Index for the battery
(𝑤𝑠𝑡𝑜𝑟) Energy stored in the battery
(𝑣𝑠𝑡𝑜𝑟𝐸𝑁

𝑏 ) Battery storage capacity (energy)
(𝑣𝑠𝑡𝑜𝑟𝑃𝑊𝑏 ) Battery storage capacity (power)
(𝐿) Life of the battery
2

(𝑑𝑒𝑔) Battery degradation

ground-based renewable energy projects [8], and consequent rises in
the project costs [9] may also be mitigated by using FPVs that utilize
the unused spaces on the reservoir surface of the hydropower plants.
It has also been shown in some existing studies that enhanced cooling
effects of the water bodies and reduced water evaporation may result
in a higher heat loss coefficient [10] and better performance of FPVs
compared to their ground-based counterparts [11]. However, the stud-
ies conducted by the authors in [12,13] show that FPVs only sometimes
experience substantial water cooling, and the effect is extremely de-
pendent on the system topology/technology and location. Nonetheless,
hybrid hydro-FPV power plants have a great potential for development
as only 25% coverage of the reservoir surfaces worldwide with FPVs
shall result in 4400 GW of power [14].

Although there are many advantages to RES-based HPPs with bat-
tery storage, only a few studies have analyzed the role of batter-
ies in hydro-PV plants. Nonetheless, as early as 2012, the efficacy
of the battery and pumped hydro storage in hydro-PV plants was
evaluated using a failure index, i.e. the number of times the power
supply was not met [15]. In [16], the authors modeled a pumped
storage hydropower plant and conducted a stability analysis of the
plant integrated with a hybrid power system consisting of solar and
wind power. Another research conducted a techno-economic analysis
of an off-grid PV/wind/hydro system in Canada and concluded that
pumped hydro was more cost-effective than batteries [17]. The authors
in [18] analyzed the role of batteries for day-ahead scheduling of
utility-scale hydro-wind-PV plants. Here, three objective functions were
employed: minimization of operational risk, minimization of residual
load deviation, and maximization of power delivery. Although cost-
effectiveness was not determined, it was demonstrated that batteries
could reduce operational risk, improve peak shaving performance,
and boost daily power delivery. On a larger scale, the integration of
battery and pumped hydro storage in the future Greek power system
was studied, and it was determined that the combination of both
short-term battery storage and long-term pumped hydro storage was
cost-optimal [19]. A similar investigation for the Indian case [20] de-
termined that batteries were not cost-effective when ‘‘round-the-clock’’
tender compliance was being designed.

The sizes of batteries for various markets and production tech-
nologies were evaluated in several studies, despite a lack of specific
hydro-FPV-battery cases. The author in [21] conducted a qualitative
and quantitative analysis of the value of energy storage in electricity
generation and determined that storage in utility-scale plants could
provide the following services: energy arbitrage, peaking capacity,
transmission and distribution benefits, contingency reserves, load fol-
lowing, regulation reserve, frequency response, and black start. These
eight services could be further categorized into three fundamental
groups: energy arbitrage, capacity market, and ancillary services. It was
determined that, among these services, ancillary services were the most
valuable. The same three service categories were presented in a review
of existing PV-battery hybrids in the United States [22]. In general,
value stacking by participating in the wholesale market, that is, hybrid
plants operating in merchant mode and engaging in energy arbitrage
was found to be not the most profitable business model. Private busi-
ness models centered on capacity markets (such as peak-load reductions
and resiliency premiums) were more profitable but did not necessarily
align with grid quality indicators. Value-stacking battery operations
were found to increase battery profitability. However, to accomplish
this, the battery must be designed to serve multiple markets, such
as energy arbitrage, capacity markets, and ancillary services. A grid-
connected British case demonstrated that value-stacking was required
for profitability [23]. The authors also emphasized the significance of
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Fig. 1. System sketch of hybrid hydro-FPV-battery power plant.
Source: Modified from an image by Norconsult

evaluating the compatibility between various value-stacking services.
This necessitates the consideration of diverse power/energy ratio re-
quirements, as energy arbitrage can be designed for several hours,
whereas some ancillary services only require a few minutes, often with
a minimum power requirement. The timing of services must also be
considered in terms of synergy to avoid situations in which two or more
markets must be satisfied simultaneously.

It is observed from the literature review that over the last decade
there has been much interest in the operation of hybrid hydro-FPV
plants. A growing interest could also be observed in the recent mapping
of methodologies and business models for battery storage in utility-
scale power plants. However, to the best of the authors’ knowledge,
despite the battery energy storages having great potential for business
cases in utility-scale hybrid hydro-FPV plants, none of the existing pub-
lications have analyzed such a scenario. The research study conducted
here aims to bridge this knowledge gap. Therefore, the purpose of this
study is to determine the potential for batteries to improve the cost-
effectiveness of a hydro-FPV hybrid power plant. This is accomplished
by examining a case in Sub-Saharan Africa and focusing on base load
functionality and the relationship between the value stacking of battery
services and battery aging. A mathematical optimization model based
on multi-period linear programming (LP) formulation is used that
simultaneously provides the cost-optimal FPV and battery capacities as
well as the cost-optimal hydropower and battery system scheduling for
each operating hour in a year.

1.1. Paper structure

The paper is organized as follows: Section 1 introduces the reader to
the background of this study, reviews the existing research literature,
provides the novelty and motivation for this study, and presents the
paper’s structural overview. Details of the hybrid power plant studied
in this paper are provided in Section 2. Section 3 presents the results
by comparing a base case (hydro-FPV) to a battery case (hydro-FPV-
battery). The battery case results are subdivided into five subsections
covering (1) profitability based on capacity market participation, (2)
battery degradation, (3) value stacking capacity market with ancillary
service, (4) profitability with energy arbitrage, and (5) a section on
how the results are impacted by uncertain input data. Finally, Section 4
provides the concluding remarks.

2. Materials and methods

2.1. Optimization model

In this work, the role of battery energy storage systems in hy-
brid hydro-FPV power plants is evaluated based on a hypothetical
hydropower plant in Sub-Saharan Africa, where the climatic condi-
tions fall within the As zone of the Køppen climate classification. The
3

hydropower plant consists of two cascaded reservoirs and two hydro
turbines, with the proposed FPV installation on the reservoir surfaces,
as depicted in Fig. 1. Since this work assumes that FPV and battery
systems are added to an existing hydropower plant, both hydropower
and power grid capacities were fixed and restricted to 126 MW. The
mathematical optimization model based on multi-period linear pro-
gramming (LP) formulation simultaneously provides the cost-optimal
FPV and battery capacities as well as the cost-optimal hydropower and
battery system scheduling for each operating hour in a year. Hence,
the operation strategy of the hybrid power plant is a result of the cost-
optimization model. The two flexible assets, hydro turbines and battery,
operate according to the schedule that results in the lowest yearly
total cost. The model is implemented in the JuMP framework [24]
with Julia programming language [25] and is thoroughly described
in [26]. The authors would like to refer the reader to [26] for the details
of the optimization model. However, the abstract formulation of the
optimization problem is presented in Eqs. (1)–(4). The objective here
is to minimize the annual discounted system capital and operational
expenditures of the hybrid power plant and maximize the revenues
from selling electricity to the market. This can be formulated as a
combined minimization problem:

min
𝑥,𝑦

𝑍 =
∑

𝑖∈𝐼
𝜁𝑖

(

𝐼𝐶 𝑖𝑥𝑖 + 𝛾
∑

𝑜∈𝑂

(

𝑂𝑃 𝑖 − 𝑝𝑖𝑜
)

𝑦𝑖𝑜

)

(1)

Here, 𝑍 represents the total cost comprising of investment cost 𝐼𝐶 𝑖
and operating cost 𝑂𝑃 𝑖. 𝑖 ∈ 𝐼 , where 𝐼 is the total number of investment
periods and 𝑜 ∈ 𝑂, where 𝑂 is the total number of operational periods.
𝜁𝑖 converts all future costs to the first investment period, with an annual
discount rate of 𝜆 during 𝜎 years in between each investment period.
It is defined as follows:

𝜁𝑖 = (1 + 𝜆)−𝜎(𝑖−1) (1a)

Similarly, 𝛾 is defined as:

𝛾 =
𝜎−1
∑

𝑜=0
(1 + 𝜆)−𝑜 (1b)

The solution of the optimization problem provides the user with the
investment variables in terms of generation, storage, and grid capacity.
Thus, considering the asset’s lifetime as 𝑀 during the model horizon
|𝑃 | (𝑝 ∈ 𝑃 ), 𝐼𝐶𝑖 is given as:

𝐼𝐶𝑖 =
1 − (1 + 𝜆)−𝑚𝑖𝑛(𝜎|𝑃 |−𝑝+1, 𝑀)

1 − 1
1+𝜆

𝐴𝐶 𝑖 (1c)

𝐴𝐶 𝑖 =
𝐶𝑤𝑎𝑣𝑔

1 + 𝐶𝑤𝑎𝑣𝑔 −
(

1 + 𝐶𝑤𝑎𝑣𝑔
)1−𝑀

𝐶𝐴𝑃𝐸𝑋𝑖 + 𝑂𝑃𝐸𝑋𝑖 (1d)

Here, 𝑂𝑃𝐸𝑋𝑖 is assumed to be fixed.
The constraints for the objective function (1) are as follows:

𝛼𝑖𝑥𝑖 ≤ 𝛽𝑖 (2)

𝑦𝑖𝑜 − 𝜙𝑖ℎ𝑥𝑖 ≤ 𝐷𝑖𝑜 (3)

𝑥𝑖, 𝑦𝑖𝑜 ≥ 0 (4)

Constraint (2) is an inequality constraint that ensures that the life-
time of the asset is considered across the investment periods. Constraint
(3) ensures that the operation of the asset is bounded by the investment
decision, its availability, and for balancing the demand 𝐷𝑖𝑜. 𝜙𝑖𝑜 provides
the availability of the asset for the investment period 𝑖 and operational
period 𝑜. Lastly, constraint (4) ensures non-negative values of the
investment variables.

It is to be noted here that in this paper, the optimization is carried
out for a single investment period of 1 year, but the mathemati-
cal model is formulated as a generalized tool to handle multi-period
optimization as per the user requirement.
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Table 1
Hydropower plant parameters.
Parameter Unit System A System B

Turbine power MW 36 90
Reservoir capacity Mm3 1169 12
Flow min Mm3/h 0 0.11
Flow max Mm3/h 0.58 0.72
Average head m 20.5 50

2.2. Hydropower modeling

In this paper, the characteristics of the hydropower plants are con-
sidered constant throughout the simulation period and are described
in Table 1. This work also assumes a constant efficiency of 90% for
the hydro turbines and generators combined. In addition, a constant
head level, which is the average of the maximum and minimum head
levels is assumed for each of the respective reservoirs. Thus, the power
production from turbine 𝑗 in plant 𝑘 is:

𝑦𝑘𝑜 =
∑

𝑗

(

𝑑𝑘𝑜𝑗 𝜂̄
𝑘
𝑗
(

ℎ̄𝑘𝑜 − ℎ𝑘𝑡𝑎𝑖𝑙 − ℎ𝑘𝑙𝑜𝑠𝑠
)

)

𝜌𝑔 (5)

Here, 𝑑𝑘𝑜𝑗 is the water discharge from the 𝑗th turbine in 𝑘th plant
at the 𝑜th operating period. Similarly, 𝜂̄𝑘𝑗 is the corresponding turbine
efficiency, ℎ̄𝑘𝑜 is the average water head level, ℎ𝑘𝑡𝑎𝑖𝑙 is the tail head level
and ℎ𝑘𝑙𝑜𝑠𝑠 is the lost head level.

It should be noted that the efficiency of the turbine and generator,
which is treated as constant in our model, theoretically varies with
discharge and head levels. The constant efficiency has been chosen
to correspond to the average efficiency over a typical Francis turbine
and generator set’s common discharge ranges, but this simplification
will alter the optimal hydro discharge schedule. However, the overall
energy output from the hydropower plant is presumed to be only
marginally affected by this approximation, thus negligibly affecting
the valuation of the battery storage. Implementing this simplification
significantly reduces the simulation runtime.

Three historical hydro inflow years on monthly resolution are used
to model the hydropower resource availability for a median, dry and
wet year. Since the hydropower plant is designed to operate in Sub-
Saharan Africa with prevailing tropical to arid climatic conditions,
evaporative water loss from its reservoirs plays a vital role in the overall
operation of the plant. Substantial amounts of water are lost due to
evaporation, especially during the dry years, affecting power produc-
tion. To account for this effect, the product of the reservoir areas during
operation and the corresponding monthly evaporation rate (available
for one weather year) is deducted from the water inflow in the median,
dry, and wet weather years. Consequently, the simulation obtains much
more realistic results than situations where water evaporation is not
considered. Regarding reservoir level restrictions, the model dictates
that the water levels in the reservoir at the end of the simulation match
those at the beginning.

2.3. FPV modeling

To select the cost-optimal FPV capacity, capacity factors for the
median, dry, and wet hydro inflow years are modeled with PVGIS-
SARAH2 irradiance data on hourly resolution using the Photovoltaic
Geographical Information System (PVGIS) tool version 5.2 [27] The
modeled FPV system is assumed to be south oriented, with a 13
degree fixed tilt, consisting Cryst-Si PV modules having 19.9% module
efficiency, and with total system losses of 13%. The cost-optimal FPV
inverter size (dc-ac ratio) and corresponding clipping losses are selected
when solving the optimization model. It is also assumed that the FPV
installation reduces water evaporation from the reservoir area it covers
by 60% [28]. The water balance equation is formulated to capture the
changes in reservoir volume and water flow between the hydropower
plants. Water evaporation from the reservoir surfaces is modeled in a
similar way as described in [26]. Key assumptions and the important
4

parameters for the FPV are stated in Table 2. m
Table 2
Floating PV parameters, partly adopted from [29].
Parameter Unit Value

FPV
Capital cost USD/kWp 1220
Operational cost USD/kWp/year 15.5
Lifetime years 25
Module efficiency % 19.9
Panel tilt degrees 13
System losses % 13
Inverter
Capital cost USD/kW 40
Lifetime years 15

Table 3
Battery system parameters.
Parameter Unit Value

Capital cost USD/kWh 326
Operational cost USD/kWh/year 0.35
Lifetime years 15
Round-trip efficiency % 85
Available SoC % 80
Maximum cycles – 4500
C-rate – 1

2.4. Battery modeling

In this paper, the proposed hybrid hydro-FPV-battery power plant
is assumed to employ Li-ion LFP battery components. The initial input
conditions for the battery unit are shown in Table 3. Using the model’s
energy balance, the battery component monitors the state of charge
(SoC) and energy throughput to meet the boundary conditions. The
battery storage balance Eq. (6) is set as a difference between the
storage content in the previous hour minus the net discharge taking
into account the charging/discharging efficiency (𝜂𝑐ℎ𝑟𝑔∕𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏 ),

𝑤𝑠𝑡𝑜𝑟
𝑜−1,𝑏 + 𝜂𝑐ℎ𝑟𝑔𝑏 𝑦𝑐ℎ𝑟𝑔𝑜𝑏 −

𝑦𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑜𝑏

𝜂𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑏

= 𝑤𝑠𝑡𝑜𝑟
𝑜𝑏 (6)

𝑆𝑂𝐶𝑏,𝑚𝑖𝑛𝑣
𝑠𝑡𝑜𝑟𝐸𝑁
𝑏 ≤ 𝑤𝑠𝑡𝑜𝑟

𝑜𝑏 ≤ 𝑆𝑂𝐶𝑏,𝑚𝑎𝑥𝑣
𝑠𝑡𝑜𝑟𝐸𝑁
𝑏 (7)

≤ 𝑦𝑐ℎ𝑟𝑔∕𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑜𝑏 ≤ 𝑣𝑠𝑡𝑜𝑟𝑃𝑊𝑏 (8)

In (7), the storage content (𝑤𝑠𝑡𝑜𝑟
𝑜𝑏 ) is constrained by the minimum

nd maximum SOC levels, which are defined as percentage of the bat-
ery storage capacity (energy). In (8) the battery charging/discharging
ower rate, 𝑦𝑐ℎ𝑟𝑔∕𝑑𝑖𝑠𝑐ℎ𝑟𝑔𝑜𝑏 is constrained between zero and the bat-
ery storage capacity (power). The energy output is used to calculate
he maximum number of full equivalent charging–discharging cycles
henceforth described as cycles), which is considered as 4500. In
ddition, the model stipulates that the SoC at the end of the modeling
eriod must equal the SoC at the beginning of the period. It is assumed
hat the battery has a SoC level of 50% at the beginning of the
imulation period. The input conditions are shown in Table 3 and were
dopted from [30,31]. These input data will undoubtedly influence the
et present cost calculations, so, sensitivity analyses were conducted
o show how capital cost, round-trip efficiency, maximum cycles, and
-rate influence profitability.

Even though a battery lifetime of 15 years is a reasonable estimate,
n additional degradation model was used to validate this assumption
nd determine if the specific charging and discharging cycles of the
odeled case would have a significant impact on the battery’s life-

ime. The deployed model can be found at [32] and was based on
he work of [33]. The battery degradation was modeled using two

odels: a linear and a non-linear model. The nonlinear model is defined
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by a combination of two exponential decay processes according to
Eqs. (9)–(10).

𝐿 = 1 − 𝛼sei 𝑒
−𝑡𝛽seideg𝑡

− (1 − 𝛼sei) 𝑒−𝑡deg𝑡
(9)

𝐿 = 1 − 𝛼sei 𝑒
−𝑁𝛽seideg𝑐

− (1 − 𝛼sei) 𝑒−𝑁deg𝑐
(10)

𝐿 denotes the life of the battery and therefore equals 0 for a new
battery, 𝛼sei and 𝛽sei are parameters of the solid electrolyte interface
SEI) model, 𝑡 is the time period, 𝑁 is the number of cycles, 𝑑𝑒𝑔𝑡

represents the battery degradation per time period and 𝑑𝑒𝑔𝑐 is the
attery degradation per cycle.

N in Eq. (10) is determined using a rainflow cycle counter, that
rocesses the input data set containing SOC data, and calculates the
OD and average SOC of each unique cycle, as well as the number
f occurrences of such cycles in the SOC dataset. This data is subse-
uently utilized together with the other stress models to calculate cycle
egradation. Differentiating between the magnitude DOD and average
OC is important since the cycles can have various paths and might
lso remain at specific SOC levels for some time before the cycle is
onsidered completed.

The linear degradation model calculates both the calendar and
ycling degradation of the battery based on different stress models.
alendar degradation (11) is calculated based on time, average state
f charge, and temperature. Cycling degradation (12) is calculated for
ach battery cycle by factoring in the stress due to depth of discharge
DoD), SoC, and temperature.

𝑒𝑔𝑡 = 𝑇 𝑖𝑚𝑒𝑆𝑡𝑟 × 𝑆𝑜𝐶𝑆𝑡𝑟 × 𝑇 𝑒𝑚𝑝𝑆𝑡𝑟 (11)

𝑒𝑔𝑐 = 𝐷𝑜𝐷𝑆𝑡𝑟 × 𝑆𝑜𝐶𝑆𝑡𝑟 × 𝑇 𝑒𝑚𝑝𝑆𝑡𝑟 (12)

These stresses are multiplied for each cycle to determine the cu-
ulative cycling degradation. In this context, 𝐷𝑜𝐷𝑆𝑡𝑟 represents the
egradation caused by how much of the battery’s capacity has been
sed in each cycle, 𝑆𝑜𝐶𝑆𝑡𝑟 represents the effect of the battery’s charge
evel, and temperature stress represents the impact of high operating
emperatures on the battery. The different stress models are illustrated
n (13)–(16).

𝑖𝑚𝑒𝑆𝑡𝑟 = 𝑘𝑡𝑡 (13)

𝑜𝐶𝑆𝑡𝑟 = 𝑒𝑘𝑆𝑜𝐶 (𝑆𝑜𝐶−𝑆𝑜𝐶𝑟𝑒𝑓 ) (14)

𝑒𝑚𝑝𝑆𝑡𝑟 = 𝑒𝑘𝑇 (𝑇−𝑇𝑟𝑒𝑓 ) (15)

𝑜𝐷𝑆𝑡𝑟 = 𝑘𝑑1 𝐷𝑜𝐷 𝑒𝑘𝑑2𝐷𝑜𝐷 (16)

The coefficients used in the specific stress models: 𝑘t, 𝑘soc, 𝑘T, 𝑘d1,
and 𝑘d2 are extracted from experimental data by separating each stress
factor. As an example, 𝑘t is determined by comparing degradation at a
eference temperature with the degradation from another temperature
oint. The variables 𝑇ref and 𝑆𝑜𝐶𝑟𝑒𝑓 are reference values and are used

to designate significant conditions or levels within the model. The vari-
ables 𝑡, 𝑇 , 𝑆𝑜𝐶, and 𝐷𝑜𝐷 represent time, temperature, state of charge
condition, and discharge depth, respectively. In summary, experimental
data for parameter fitting were obtained from the study [32], and
battery 𝑆𝑜𝐶-data from simulations were utilized to estimate the degra-
dation according to the different stress models. Table 4 summarizes the
model parameters used in this work.

The rationale for having the degradation model split into calendar
nd cycling, as well as the choice for having the specific stress models
overing 𝑆𝑜𝐶, 𝐷𝑜𝐷, time, and temperature, is explained in [33].
5

Table 4
Model parameters for battery degradation model.
𝛼𝑠𝑒𝑖 𝛽𝑠𝑒𝑖 𝑘𝑡 𝑘𝑠𝑜𝑐 𝑆𝑜𝐶𝑟𝑒𝑓

5.75E−2 1.21E2 4.11E−10 1.01 0.5

𝑘𝑇 𝑇𝑟𝑒𝑓 𝑘𝑑1 𝑘𝑑2
6.71E−2 25 9.05E−6 1.40

2.5. Cost assumptions

The FPV-system’s techno-economic parameters are displayed in Ta-
ble 2, [34]. Similar battery parameters are displayed in the Table 3.
Using data from [30,31], the total system cost for a battery with C-rate
1 in the year 2030 was calculated. Additionally, sensitivity analyses
were conducted to determine the effect of lower/higher capital costs
on profitability.

It is presumed that the hybrid power plant participates in a power
purchase agreement (PPA) setting. In terms of price, technology, shape,
and duration, PPA formulations vary significantly. In this study, a
two-level configuration is assumed to represent a scenario in which
electricity is more valuable during daytime. In this scenario, the high
price level (100 USD/MWh) is in effect for 12 h, from 06:00 to 18:00,
whereas the low-price level (60 USD/MWh) is in effect for the remain-
ing hours. The same two-level shape persists throughout the entire
year. The structure in terms of firm peak and off-peak hours for the
hypothetical PPA scheme was provided by a local renewable power
producer. The tariff price levels were estimated based on the average
spot prices during the peak and off-peak hours using the historical
spot price data from 2014 to 2021. Due to lack of data availability
for the location of the case study, the used data is based on historical
Southern African Power Pool (SAPP) spot price market data [35].
The optimization model calculates the fixed power levels, i.e., how
many megawatts (MW) are to be produced within the two respective
price levels, and excess power is sold on the wholesale market at 50
USD/MWh, which is slightly less than the low PPA level to encourage
this hybrid plant to function as a base load plant. The purchase of
electricity from the grid to cover the PPA commitments was prohibited.

3. Results and discussions

3.1. Base case

This paper’s base case consists of one 36 MW (hydro turbine A: HTA)
and one 90 MW (hydro turbine B: HTB) hydro turbine, as well as a 143
MWp floating PV with a 105.3 MW converter. The FPV capacity for
the base case is determined through cost-optimization considering no
battery storage and initial PPA schedule. It is described later in more
detail in Section 3.2. As stated earlier, the grid capacity is based on
the total rated hydro capacity which is 126 MW, and the hybrid power
plant with FPV results in an excess installed power generation capacity
of 84%, which helps in the better utilization of the grid [6]. The water
reservoir inflows and FPV production are depicted in Fig. 2 and exhibit
a pronounced dry and rainy season seasonal pattern. However, FPV
production is consistent throughout the year.

With the assumed resource inflows and techno-economic assump-
tions, the cost-optimal PPA power levels were 12.7 MW (PPA2 at 60
USD/MWh) and 118.6 MW (PPA1 at 100 USD/MWh), as depicted
in Fig. 3 alongside the FPV production profile for the first day in
April in the dry season. A similar production profile for the first
day of November, which corresponds to the wet season is shown in
Fig. 4.

The water flow through HTB was restricted to 0.11 M m3/h and
the load factor was consequently kept over 14%, while HTA was
allowed to be shut down. The hydropower turbines were simulated
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Fig. 2. Annual correlation between FPV production and hydro reservoir inflow.

Fig. 3. Load factor for generators and PPA power levels for one day in the dry season
(1 April).

Fig. 4. Load factor for generators and PPA power levels for one day in the wet season
(1 November).

with constant efficiency and without restrictions on ramping rates.
With these assumptions, Fig. 3-Fig. 4 show the load factor of the three
6

Table 5
Monthly average load factor of generators.
Month Turbine A Turbine B FPV

1 0.32 0.31 0.28
2 0.36 0.29 0.28
3 0.38 0.31 0.25
4 0.35 0.28 0.29
5 0.36 0.29 0.28
6 0.39 0.31 0.25
7 0.40 0.32 0.24
8 0.42 0.34 0.22
9 0.49 0.45 0.20
10 0.68 0.91 0.21
11 0.68 0.89 0.23
12 0.86 0.85 0.23

Table 6
System design and profitability with different PPA structures. Annual profit increase is
compared against the base case.

PPA1 Battery FPV PPA1 PPA2 Annual profit
schedule (MWh) (ACp) (MW) (MW) increase (%)

06–18 0.0 105.3 118.6 12.7 0.0
06–19 10.1 116.8 116.0 10.0 0.7
06–20 64.3 131.2 118.6 7.1 0.6
06–21 32.5 123.4 103.5 9.8 −0.5
05–18 28.3 117.6 117.9 7.6 −1.6

Table 7
Power production volumes and shares for the different markets.

Power market Annual production Fraction of total
market (MWh/year) production (%)

Base Battery Base Battery

PPA1 519 303 605 854 73.4 80.3
PPA2 55 802 26 514 7.9 3.5
Wholesale 132 296 121 780 18.7 16.1

generators during the two different seasons, and Table 5 shows the
monthly average load factor for the turbines.

3.2. Battery case

3.2.1. Profitability in capacity market
For the sake of simplicity and grouping of revenue streams, here

capacity markets are used to describe an extension of PPA contracts
since this enables the power plant to ensure power generation capacity
outside of normal operating hours. The profitability of battery systems
was initially determined by analyzing additional revenue creation in a
capacity market setting by calculating the net present cost for different
PPA configurations. Table 6 illustrates how extending the duration of
the PPA1 schedule affects cost-optimal battery capacity. The 14-hour
duration (06:00–20:00) yielded the greatest battery capacity, whereas
the 13-hour duration (06:00–19:00) yielded the greatest profitability
relative to the base case. Additionally, shifting the PPA1 duration to
the evening was more profitable than extending the morning hours.

The design for 06:00–20:00 PPA is referred to as the ‘‘Battery case’’.
The generated energy volumes for the different markets are presented
in Table 7, and show that volumes in PPA1 increased to greater than
80.3% while PPA2 decreased to 3.5%. Wholesale energy volumes were
4.6 times higher than the PPA2 energy volumes, despite the wholesale
prices being lower than PPA2 prices. The Battery case allowed for a
25% larger FPV system and the PV-share to total production increased
from 32.0% to 36.7%. HTB still remained the major power generator,
as shown in Table 8.

Since the results in Table 6 were based on a co-optimization of
FPV and battery, it is unclear whether the annual profit increase is a
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Table 8
Power production volumes and shares by technology.

Technology Annual production Fraction of total
Technology (MWh/year) production (%)

Base Battery Base Battery

FPV 226 227 277 102 32.0 36.7
HTA 139 635 149 819 19.7 19.9
HTB 344 030 333 743 48.6 44.3

Table 9
Comparison of system and PPA power level design and annual profit increase for
different optimization constraints. Annual profit increase is compared against the base
case.

Case Specifics Bat-
tery
(MWh)

FPV
(MWp)

DC/AC
ratio

PPA1
(MW)

PPA2
(MW)

Annual
profit
increase
(%)

Hydro +
FPV

Base case 0.0 143.0 1.36 118.6 12.7 –

Hydro +
FPV +
Battery

Optimizing
both FPV &
battery sizes

64.3 184.0 1.40 118.6 7.1 0.6%

Hydro +
FPV

Fixed FPV
size as in the
optimized
case

0.0 184.0 1.40 107.8 10.8 −1.3%

Hydro +
FPV +
Battery

Base-case
FPV
size &
optimized
battery size

64.3 143.0 1.36 107.0 7.1 −1.7%

result of increased power production from the FPV plant or flexibil-
ity provided by the battery system. Two additional simulations were
therefore conducted to determine the annual profit increase for other
power plant configurations, and the results are presented in Table 9.
The co-optimized case, in which both battery and FPV are optimized
for cost-efficiency, increases profitability by 0.6% compared to the
base case. When the FPV was constrained to the same dimensions
as in the co-optimized configuration (184 MWp) and the battery was
omitted, the profit decreased by 1.3%; consequently, this case is not
cost-effective. When the FPV was limited to the same size as the base
case (143 MWp), and the battery was limited to the same size as
the co-optimized case (64.3 MW), cost-effectiveness declined by 1.7%.
This suggests that the incorporation of a battery improves the cost-
effectiveness of the hybrid plant by supporting the implementation of
a larger FPV plant. The value of co-optimization of PV-battery systems
has been discussed previously [36] and was shown here to produce
a more favorable PPA with an increase in PPA1 production. Thus,
the incorporation of a battery into hybrid hydro-FPV power plants
facilitates the creation of more lucrative contracts for the capacity
market.

3.2.2. Battery degradation
Since the optimization model did not account for battery degrada-

tion, an additional lifetime assessment was conducted using a separate
degradation model. The SoC profiles of the battery cases have been
run through the degradation model to determine how different input
power conditions affect the assumption of a 15-year life expectancy.
Fig. 5 displays the Battery case results from Table 6 and indicates that
the assumption is plausible if temperatures are kept under control. The
remaining capacity after 15 years at a temperature of 25 °Celsius is
about 83%. It is generally accepted that batteries are defined to have
reached their End-of-Life when their state of health reaches 80% [37],
still in some cases, they can continue to operate if performance and
safety conditions are sufficient.
7

Fig. 5. Remaining capacity in the battery at different temperatures for the case with
fixed power price.

Fig. 6. Battery state-of-charge for the full year presented as hourly values in a heat
map.

3.2.3. Value stacking with ancillary service market
The potential for value stacking was assessed by analyzing patterns

in battery operation. Fig. 6 shows an overview of the state-of-charge
for the entire year and displays that the battery is cycled less during
the autumn. By comparing the battery SoC, as depicted in Fig. 6,
with the inflow of hydro resources, as illustrated in Fig. 2, it becomes
evident that the battery undergoes significant cycling during the dry
period, whereas its activity is comparatively reduced during the wet
period. The high hydro inflow during the autumn is sufficient to both
uphold PPA power levels without the need for a battery and still fill
reservoirs before the year-end, which is a condition to be met in the
optimization model. Based on Fig. 6 it seems reasonable to assume
that the battery could be made available for ancillary services for 3–4
months (September to November/December) when hydro inflows are
high.

During the dry season, the battery is used twice daily, both during
the first and last hour of the high PPA. Charging occurs both during the
day with excess PV production and during the evening and night at low
PPA prices. The battery is therefore unavailable for other services from
05:00 to 21:00, as PPA1 is active from 06:00 to 20:00 and requires 1 h
of charging before and after its operation. Based on the hybrid plant’s
schedule, it seems reasonable to assume that the battery could be made
available for ancillary services during dry season nights (21:00–05:00)
and full days during September–November/December. More details
around the battery discharging events can be seen in Fig. A.20.

As there is no market for ancillary services in the Sub-Saharan
Africa, market conditions from other regions were used to estimate how
value-stacking could enhance the profitability of batteries in this spe-
cific case. One such example is the DS3-market in Ireland [38], where
the authors estimated revenues for a 1 MW battery to be about 319 000
e/year, or 36 e/MW/h. The specific ancillary service products used to
generate revenue in [38] originated from Fast Frequency Reserves as
well as Primary, Secondary, and Tertiary Reserves, which all adhere to
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Fig. 7. Annual revenue generated by three configurations of hybrid power plants. The
base case is compared to the battery case with and without ancillary service revenues.

a frequency drop curve and are designed to provide power in time in-
tervals ranging from seconds to twenty minutes. Using the same hourly
rate (36 e/MW/h) but reducing the available hours as per the previous
discussion, the battery in our case would generate approximately 11
MUSD annually. This assumption also requires the grid connection
capacity to accommodate full power supply from the battery system,
hence the hydro turbines cannot operate at nominal power. Fig. 7
shows the revenue streams and demonstrates that ancillary services
could potentially contribute significantly to the total annual revenue of
the power producer. The cost of ancillary services is 48% greater than
the sum of PPA2 and the wholesale market. In comparison to the base
case, the battery case with ancillary services generates nearly 18 MUSD
more in total revenue. Although the conditions for the Irish ancillary
service market do not necessarily comply with the Sub-Saharan market,
this calculation shows the principles behind determining the potential
for value stacking

But since the battery state of health (SoH) is assumed to reach
approximately 83% after 15 years of operation in the PPA setting and
80% is generally regarded as the replacement threshold, there is little
space for additional cycling before the battery must be replaced. Since
the degradation estimation in Fig. 5 only incorporates cycling according
to the PPA schedule and does not account for additional wear from
frequency regulation, a supplementary analysis was necessary. This is
accomplished using frequency regulation data [39]. The per-unit signal
of the data is depicted in Fig. 8 and the corresponding battery SoC is
depicted in Fig. 9. The data set has a duration of 24 h, and the per-
unit value changes every four seconds. As shown in Table 10, a full
day of frequency regulations required 233 cycles with 12% DoD as
the highest value, but a vast majority of cycles at 1.5% DoD. Since
the battery is required to be scheduled for PPA service the majority
of the time, frequency regulation can only be scheduled for 8 h, from
21:00 to 05:00, to allow for one hour of battery charging before and
after frequency regulation. Hence, it is assumed that the simultaneous
provision of ancillary services and discharge in capacity markets is
not feasible, an assumption that seems to be true for the majority of
markets. In the scenario where a battery is generating nominal power
to the capacity market, the battery cannot provide power during an
event for frequency response. One could argue that occurrences of this
nature are infrequent, and the potential revenue generated from battery
systems could potentially offset any penalties incurred as a result of
failing to meet contractual power obligations. This study did not take
into account such possibilities. Table 11 displays the number of cycles
with each DoD for the reduced hours, which totals 84 cycles with
approximately 8% DoD. This would add approximately 31,000 cycles
per year, or 460,000 cycles over 15 years. According to Fig. 10, a DoD
8

Fig. 8. Frequency regulation signal expressed as the per-unit value during 24 h.

Table 10
Number of cycles and their re-
spective DoD during a full day of
frequency regulation for the battery
case.
DoD (%) Cycles (–)

1.5 145
3.0 44
4.5 19
6.0 12
7.5 0
9.0 10
10.5 1
12.0 2

of 10% results in a cycle lifetime of 198,000 cycles. Consequently,
value stacking frequency regulation with PPA operations would have
a significant impact on the assumed battery longevity in this instance.
As the battery input data indicated 198,000 cycles (10% DoD) until
80% SoH, this implies that an additional 29,700 cycles are conceivable
before reaching 80% SoH. 29,700 cycles are 6% of 460,000, which
means that a value stacking capacity market (PPA-generation) with an
ancillary market would increase annual revenue by 660,000 USD (6%
of 11 MUSD) for 15 years. Adding this revenue to the total annual
cost in Table 6 improves the annual profit increase from 0.6% to
2.0%. Despite being a somewhat synthetic and overarching calculation,
this example showcases both the potential profitability increase from
ancillary services as well as the challenges with value stacking and
battery wear from excessive cycling.

The potential for value stacking in this instance is therefore not
only dependent on the duration and timing of events, i.e. when during
the day and year the battery is available for providing supplementary
services, but also on the battery degradation from additional cycling.
Since the cost optimization model’s objective function did not account
for revenues from ancillary services, it was not feasible to optimize the
battery based on revenues from both ancillary services and capacity
markets. It is possible that the cost-optimal battery size would increase
if both value streams were included, given that a larger battery capacity
would also extend the battery’s lifetime, thereby allowing for more
cycling and revenue generation. For a more detailed understanding of
the wear from value stacking services with such distinctly different
cycling characteristics, it would be useful to conduct battery aging
experiments at small DoD windows at various SoC levels, given that
the majority of cycles occur within a few percent of DoD.

3.2.4. Profitability of energy arbitrage
Energy arbitrage is usually defined as the market for electricity
trading, i.e. the purchase and sale of electricity based on spot price



Journal of Energy Storage 77 (2024) 109827J. Fagerström et al.

s
p
t
p
d
i
t
b
n
d
w

Fig. 9. Battery state-of-charge during charging/discharging according to the frequency
signal.

Table 11
Number of cycles, timing of cycles, and their respec-
tive DoD during value stacking with capacity market
for battery case.
DoD (%) Cycles (–) Cycles (–)

Hour 21-24 Hour 00-05

1.0 17 32
2.1 4 8
3.1 3 5
4.2 3 3
5.2 0 0
6.3 1 3
7.4 1 0
8.4 2 2

Fig. 10. Cycle lifetime as function of depth-of-discharge for LFP battery.

ignals. The wholesale market has a significant impact on the design of
ower plants, and spot prices are likely the most uncertain input data in
hese analyses. In this work, the profitability of energy arbitrage market
articipation was analyzed by including a variable spot price at three
ifferent price levels. Figs. 11–13 depicts the spot price statistics that
llustrate the monthly temporal fluctuations. The difference between
he low and high spot prices is not only linked with the average values,
ut also with the monthly spread, as the high price show a greater
umber of outliers. These figures do not, however, account for the
ynamics of price fluctuations within shorter time intervals, such as
9

ithin a single day, which are typically important to energy arbitrage.
Fig. 11. Boxplot showing wholesale market prices representing the high spot price.
The boxes show the interquartile range (IQR), the median is the horizontal line within
each box, the whiskers are 1.5 times IQR, and the outliers are denoted by dots.

Fig. 12. Boxplot showing wholesale market prices representing the low spot price. The
boxes show the interquartile range (IQR), the median is the horizontal line within each
box, the whiskers are 1.5 times IQR, and the outliers are denoted by dots.

Fig. 13. Boxplot showing wholesale market prices representing the median spot price.
The boxes show the interquartile range (IQR), the median is the horizontal line within
each box, the whiskers are 1.5 times IQR, and the outliers are denoted by dots.

Unless otherwise specified, the purchase of electricity was not allowed,
implying that the potential increased profitability from this market is
gained from a redistribution of production volumes in PPA1, PPA2, and
wholesale markets.

The outcomes of the power plant and PPA design for various spot
prices are presented in Table 12, which demonstrates that batteries
are not profitable at low and median wholesale prices. In the scenario
with high wholesale prices, a smaller battery is optimal from a cost
perspective, but the PV capacity to be installed is significantly reduced
and is likely included for battery charging. If the battery and FPV
capacities are fixed to 64.3 MWh and 184.0 MWp, as in the battery
case with the fixed price, and median spot prices are used, profitability
is marginally increased, but the likelihood of stacking with ancillary

services decreases due to heavy cycling. More details on the frequency
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Table 12
Power plant and PPA design for different wholesale market scenarios. Annual profit
increase compared against the battery case with fixed price. A positive value denotes
an increase in profitability.

Wholesale Annual Battery FPV DC DC/AC PPA1 PPA2 Annual
market average price capacity (MWp) ratio (MW) (MW) profit

(USD/MWh) (MWh) increase (%)

Fixed price 50 64.3 184.0 1.40 118.6 7.1
Spot Low 49 0.0 155.3 1.37 104.4 12.7 −1.9%
Spot Median 66 0.0 138.1 1.37 94.4 12.7 4.1%
Spot High 94 29.7 50.2 1.35 0.0 0.0 45.3%
Spot Median * 66 64.3 184.0 1.40 112.7 8.6 2.2%

* battery and FPV sizes are fixed in simulation.

Fig. 14. Comparison of annual battery discharging events for a case with fixed
holesale market price (50 USD/MWh) and median spot price (66 USD/MWh).

f battery discharging events is shown in Fig. A.19. During the months
f October to December, the battery is cycled both at night and in
he evening, reducing the time available for participation in providing
ncillary services. Fig. 14 summarizes the two cases’ annual discharge
vents. Note that due to the unavailability of a wholesale market in Sub-
aharan Africa, the current prices used here are examples from specific
ears on the wholesale market in South Africa [35]. Nevertheless, the
esults here indicate that value stacking of battery operations for more
aluable PPA design and ancillary services is a more stable long-term
olution than energy arbitrage on the wholesale market. However, if
he power market matures to include dynamic spot prices, it is probable
hat batteries will continue to be profitable based on this data set. This
spect should however be analyzed in more detail. In order to reach a
roader understanding of the general profitability of batteries in hybrid
ydro-PV power plants, more studies focusing on revenue generation in
ature power markets would be valuable.

Battery degradations for the three different wholesale market prices
ere assessed with the degradation model and did not indicate any
ajor differences. This can also be seen in Table 13 where the cycle

ounts for the three cases are presented.

.2.5. Sensitivity analyses
mpact of resource inflow on system design: The water resource inflows

vary from year to year, and Table 14 illustrates how the hybrid plant
would be designed for dry and rainy year conditions. In both extreme
instances, batteries are cost-effective, but battery capacity and PPA
levels vary. The median year produced the greatest PV-battery systems
and the most aggressive PPA contracts. Furthermore, we investigated
how PPA levels could be maintained with the use of batteries assuming
that the hybrid plant is designed based on median-year conditions.
Table 15 presents results for dry-year conditions and indicates that a
battery of 241.6 MWh and an FPV-system of 264.6 MWp would be
required if power purchases are prohibited. Moreover, if purchased
10
Table 13
Number of cycles at different DoD during the 15-year lifetime for different wholesale
market prices compared to number of cycles in battery specifications. Fixed price
denotes the Battery case; Median and High prices imply hourly spot prices at the
median and high price levels.

DoD Cycles (–) Cycles (–) Cycles (–) Cycles (–)
(%) Fixed price Median price High price Battery specs

10 2295 2880 5100 198 000
20 270 255 405 85 100
30 601 151 256 47 200
40 210 91 181 30 900
50 121 135 675 23 200
60 105 150 180 16 300
70 285 2250 60 12 000
80 5430 4020 5340 8 870

Table 14
System and PPA power level design and annual profit increase for extreme resource
inflow conditions. Annual profit increase is compared against the median year.

Battery FPV DC/AC PPA1 PPA2 Annual profit
(MWh) (MWp) ratio (MW) (MW) increase (%)

Dry 2.9 164.3 1.44 82.4 12.7 −35%
Median 64.3 183.9 1.40 118.6 7.1
Wet 20.2 156.9 1.36 115.0 11.0 11%

Table 15
System design for dry-year conditions and varying electricity purchase prices. PPA levels
were maintained at 118.6 and 7.1 MW, and annual profit increased relative to the
median resource inflow. Positive values indicate profitability growth.

Electricity cost Battery FPV DC DC/AC Grid Annual
(USD/MWh) (MWh) (MWp) ratio purchase profit

(MWh) increase (%)

190 241.6 264.6 1.52 0.0 −39%
170 218.4 250.6 1.51 11 118 −39%
150 169.4 225.8 1.47 34 220 −38%
130 36.0 197.6 1.57 89 892 −35%
110 0.0 182.9 1.61 111 503 −31%
110 * 64.3 183.9 1.40 91 361 −32%

* Battery and FPV sizes are fixed in simulation.

electricity was used to offset the production shortfall, the results in-
dicate that it would be more profitable to purchase electricity from
the grid than invest in a battery. To withhold the PPA levels for the
Battery case (64 MWh battery), the facility would need to purchase 91
361 MWh or approximately one-third of the FPV production. Similarly,
Table 16 presents results for wet-year conditions and demonstrates that
PV-battery systems can be significantly smaller to meet the PPA levels
without power purchases from the grid and that if power purchases are
permitted, smaller quantities are required to compensate for production
deficits.

Overall, this demonstrates that withholding PPA levels during dry-
year conditions necessitates the modification of PPA contracts, compen-
sation through power purchases, or the installation of larger battery
systems. Compensation through the procurement of electricity was
more cost-effective.

Impact of PPA price spread: Both the annual price and the difference
between the highest and lowest PPA prices may vary based on factors
such as the type of power production technology, geographic location,
duration of the contract, the volume of purchased energy, market con-
ditions, and creditworthiness [40]. To determine how the price spread
of such time-of-use PPAs affects the profitability of batteries, sensitivity
analyses are conducted according to Table 17. In these instances, the
annual average price is approximately 83 USD/MW, which falls within

the range specified by [40]. It is, however, marginally higher than the
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Table 16
System design for wet-year conditions and varying electricity purchase prices. PPA
levels were maintained at 118.6 and 7.1 MW, and annual profit increased relative to
the median resource inflow. Positive values indicate profitability growth.

Electricity cost Battery FPV DC DC/AC Grid Annual
(USD/MWh) (MWh) (MWp) ratio purchase profit

(MWh) increase (%)

210 32.5 166.9 1.36 0 11%
190 31.1 166.5 1.36 414 11%
170 10.0 161.4 1.37 7417 11%
150 0.2 161.0 1.42 10 163 11%
130 0.0 159.5 1.41 11 175 12%
110 0.0 151.8 1.36 16 596 12%
110 * 64.3 183.9 1.40 0 8%

* Battery and FPV sizes are fixed in simulation.

Table 17
Impact of PPA price split on power plant design and profitability. Annual profit increase
compared against Battery case. Positive numbers denote increase in profitability.

PPA1/PPA2 Battery FPV DC DC/AC PPA1 PPA2 Annual
prices capacity (MWp) ratio (MW) (MW) profit
(USD/MWh) (MWh) increase (%)

105/55 88.2 191.6 1.40 122.7 3.3 6.2%
104/56 87.9 191.7 1.40 122.7 3.3 4.9%
103/57 71.1 185.4 1.40 119.6 6.4 3.7%
102/58 68.3 184.8 1.40 119.2 6.8 2.4%
101/59 64.7 183.9 1.40 118.6 7.1 1.2%
100/60 64.3 183.9 1.40 118.6 7.1
99/61 50.0 177.2 1.39 115.4 8.6 −1.2%
98/62 18.5 164.7 1.38 108.8 12.0 −2.3%
97/63 11.0 159.5 1.38 106.9 12.3 −3.4%
96/64 3.3 155.9 1.38 105.1 12.7 −4.4%
95/65 0.0 152.9 1.38 104.2 12.7 −5.4%

price used in an India study [20], where the base case was 70 e/MW (≈
(75 USD/MW), and sensitivity analyses ranged from 30–130 e/MW. As
predicted, the profitability and optimal battery size increase with the
spread, as shown in Table 17. At a spread of 30 USD/MWh, the battery
system becomes unprofitable when used exclusively for PPA operations.

Impact of battery parameters: The simulations used a battery cost of
326 USD/kWh, and Fig. 15 illustrates how both higher and lower costs
affect the cost-optimal battery capacity. The high cost (500 USD/kWh)
is comparable to the cost of batteries today, and batteries are not cost-
effective at these prices without additional value stacking. At lower
prices though, installed battery capacity doubles and the annual profit
increases by about 2%–5%. Although a bit hypothetical, its interesting
to see that while the annual profit increases from 2% at 200 USD/MWh
to 5% at 100 USD/MWh, the cost-optimal capacity remains fairly
stable.

Fig. 16 illustrates the relationship between battery system efficiency
and battery capacity, demonstrating a dramatic decrease in capacity
when system efficiency declines to lower than 85%. In this investiga-
tion, 85% was utilized, which appears achievable in battery systems if
the temperature is controlled [41] and power flows are kept greater
than 10% of nominal power to avoid converter losses [42]. While the
cost-optimal battery capacity wont increase much at higher system
efficiencies than 85%, the annual profit increases by 0.2–0.3% if higher
system efficiencies are achieved.

The impact of battery cycle lifetime on profitability was also ana-
lyzed by testing five different cycle lifetimes (7500, 6000, 4500, 3000,
1500). It was found that 4500 cycles are required for profitability,
whereas 3000 cycles or less are insufficient. A certain number of cycles
are thus required to fulfill the PPA requirements for the entire year.

Another sensitivity parameter that was evaluated was the C-rate.
Five C-rates were evaluated (2, 1, 0.5, 0.25, and 0.1), and it was found
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Fig. 15. Cost-optimal battery capacity and annual profit increase at different battery
installation costs. The installation cost represents batteries with C-rate 1 and the profit
increase is relative to the battery base case with an installation cost of 326 USD/kWh.

Fig. 16. Cost-optimal battery capacity and annual profit increase at different battery
system efficiency levels. The profit increase is relative to the battery base case with a
system efficiency of 85%.

that only a C-rate of 1 was profitable. In comparison to other studies,
this C-rate is relatively high. A study of utility-scale PV-battery systems
determined that for energy systems with PV shares lower than 12.5%,
a C-rate of 0.5 was the most cost-effective, whereas a C-rate of 0.17
was the most cost-efficient for energy systems with PV shares over
25% [43]. The same study also found that the cost-optimal battery
power rating was 25% of PV capacity. Following these numbers, our
system would be cost-optimal with 46 MW battery converter and 276
MWh battery storage capacity. However, higher C-rates pair well with
value stacking with ancillary services that typically prioritize power
over capacity, as demonstrated in [44], where it was found that a C-
rate value of 3.5 was the most cost-effective. Since it sounds somewhat
confusing to find the ‘‘optimal’’ C-rate, future work on battery system
design should include more details on C-rate. It might even be reason-
able to investigate hybrid battery systems, where one energy battery
(low C-rate) and one power battery (high C-rate) are connected to
one converter. This could reduce total installation cost and increase
efficiency and lifetime since specific flexibility demands of the power
plant can be served by two different batteries. Besides more in-depth
quantifications of possible cost-savings, there is additionally a need for
testing the more sophisticated integration between energy management
system of the converter and the two battery management systems.

4. Conclusion

This paper has analyzed the profitability of battery systems in
hybrid hydro-PV power plants in the context of a conceptual hybrid
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Fig. A.17. Historical water inflow rate of Reservoir A.

Fig. A.18. Historical water inflow rate of Reservoir B.

hydro-FPV power plant by determining the revenue generated from
capacity markets, ancillary services, and energy arbitrage. A case study
in Sub-Saharan Africa was utilized and the power plant functionality
was geared towards base load functionality. Emphasis was placed on
value stacking of battery functions for improved revenue generation,
but excessive battery wear and life expectancy were also considered.

The intention of this paper was thus to answer the general question
‘‘Are batteries profitable for hydro-PV plants?’’, using a specific case
study. This obviously implies that certain assumptions are necessary
and that it is impossible to cover every aspect of power plant eco-
nomics. However, based on the findings, the following conclusions are
highlighted:

• The addition of batteries increased the cost-effectiveness of the
power plant by 0.6% at a battery cost of 330 USD/kWh when
operating solely in capacity markets.

• Value stacking capacity markets with ancillary services further
improved the cost-effectiveness and made the power plant 2.0%
more cost-effective than the base case without batteries.

• Battery cycle lifetime restricted full value stacking of capacity
market and ancillary services.

• The power plant was more cost-efficient with batteries because
of co-optimization benefits, i.e. the battery enabled installation of
higher PV capacities in addition to increased flexibility resources.

• Energy arbitrage provided economic benefits for the hydro-FPV
power plant, but batteries were not necessary, and variable spot
prices make predictability and value stacking difficult.

The findings of this work are relevant to hybrid plants situated in
regions where capacity markets dominate over wholesale markets and
where the power plant is connected to the grid via a single point of
connection. In these settings, carefully considering a battery system will
likely have a positive impact on cost-efficiency by co-optimization of
the PV-capacity as well as contracts related to PPAs and ancillary ser-
vice markets. To achieve a higher degree of generality regarding battery
profitability in hybrid hydro-PV plants, future work is encouraged to
focus on hybrid plants situated in wholesale markets, where PPA con-
tracts are non-existing and the plant operates in a multi-market setting
where scheduled power generation should be coordinated with ancil-
lary service markets, all through the constraints set by the single point
of connection to the power grid. A more sophisticated hydropower
model should also be developed to incorporate the reservoir volume
and head relationship, as well as the dynamic turbine and generator
efficiency dependencies. With these model features, it would be feasible
to assess how a battery system might enhance cost-effectiveness by
maintaining the hydropower turbines at a more efficient operational
set-point.
12
Fig. A.19. Number of monthly discharge events each hour for the case with variable
median spot price.

Funding

This research was funded by the Research Council of Norway (RCN),
Norway, project number 328640 and the APC was funded by RCN,
Norway.

CRediT authorship contribution statement

Jonathan Fagerström: Conceptualization, Methodology, Formal
analysis, Writing – original draft. Soumya Das: Writing – original
draft, Writing – review & editing, Supervision. Øyvind Sommer Klyve:
Validation, Investigation. Ville Olkkonen: Software. Erik Stensrud
Marstein: Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Jonathan Fagerstrom reports financial support was provided by Re-
search Council of Norway. Soumya Das reports financial support was
provided by Research Council of Norway. Oyvind Sommer Klyve re-
ports financial support was provided by Research Council of Norway.
Ville Olkkonen reports financial support was provided by Research
Council of Norway. Erik Stensrud Marstein reports financial support
was provided by Research Council of Norway.

Data availability

Data will be made available on request.

Acknowledgment

All authors have read and agreed to the published version of the
manuscript.



Journal of Energy Storage 77 (2024) 109827J. Fagerström et al.
Fig. A.20. The number of monthly discharge events each hour during a full year for
the Battery case operating in the capacity market.

Appendix. Historical water inflow rates of the reservoirs and
monthly discharge events

Fig. A.17 and Fig. A.18 show historical water inflow to reservoirs
from year 1970 to 2017. This raw data was used to construct the dry,
wet, and median years used in the optimizations.
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