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A B S T R A C T   

Sustainable and affordable solar energy production is critically dependent on the ability of photovoltaic (PV) 
modules to perform reliably in the outdoor environment over several decades. A suite of accelerated stress tests is 
central in the efforts to qualify the reliability of new module architectures and materials, which are evolving at a 
rapid pace. Complimentary to these, mathematical modelling of PV module degradation phenomena constitutes 
a useful set of tools that has become increasingly relevant in recent years. For certain degradation phenomena, 
modelling is best solved by numerical methods such as using the finite element modelling framework. These 
numerical methods can be computationally expensive, thus the input of longer timeseries of outdoor weather 
data can come at a high computational cost and require significant model simplifications. To alleviate this 
problem, we here present the use of an unsupervised machine learning algorithm to select representative periods 
of historical outdoor weather data (or derivatives thereof). We exemplify the approach by selecting represen
tative daily cell temperature profiles, instead of using the full timeseries, as input to modelling of thermo
mechanical fatigue in soldered ribbon cell interconnects. We explore how a subset of representative daily 
temperature profiles can reproduce key characteristics of the overall distribution of a multi-year dataset, as well 
as differences between datasets for sites in different climates. Such representative datasets could be used as input 
to complex PV module models and drastically reduce the computational costs.   

1. Introduction 

The reliability of the photovoltaic (PV) modules is central to the 
profitability of any PV plant. Stressors present in the outdoor environ
ment, such as temperature, temperature variations, ultraviolet light, 
humidity, and various mechanical loads, can over time provoke failures 
and/or performance degradation [1]. While there is evidence that PV 
modules can maintain performance to and beyond the typical limits in 
current performance warranties [2–4] the observed performance loss 
rates are strongly bill-of-material (BOM) and module design dependent 
[5]. At the same time, module designs and BOMs are constantly expe
riencing incremental changes to cut cost and improve efficiency. Hence, 
the currently available products will always deviate somewhat from the 
products with a proven field-record, and even more substantially so 
from products where long field experience exist [6]. 

To qualify new module designs before field data is available, a suite 
of accelerated stress tests is therefore typically employed. These tests 
have been developed over decades to provoke known types of infant 

field degradation at short testing times [7] thus providing an efficient 
means to quickly uncover quality issues in the design. However, current 
accelerated stress tests are not lifetime tests, thus a quantitative corre
lation between accelerated test results and outdoor performance loss or 
failure does not exist. Also, the tests have typically not been designed to 
provoke wear-out or end-of-life degradation modes. And further, there is 
no guarantee that the current tests can pick up new degradation modes 
arising when introducing new materials and module designs [8]. 

Many strategies are explored to improve the conventional acceler
ated stress testing regime. These include new test strategies such as 
testing with stressors combined and in sequence [9–11] with adapted 
loads for specific climates [12,13] or on material level [14–16]. Com
plimentary to this, interesting possibilities lie in the mathematical 
modelling of the degradation processes. Such models enable more effi
cient module development, where reliability concerns can be explored 
and accounted for already at the design stage. If well developed and 
validated, such models should ultimately also give the ability to do 
service life prediction modelling [17] providing acceleration factors 
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between accelerated stress tests and outdoor exposure under various 
conditions. 

Building mathematical models of the degradation processes is how
ever a complicated task [18]. To capture a full degradation pathway 
typically involves several modelling steps: The starting input is the 
macroclimatic conditions, the module architecture, and the system 
configuration, which is translated into microclimatic/local loads and 
stress levels. These are subsequently used as input to chemical and/or 
physical models of the degradation in one or more of the module ma
terials. Finally, this degradation needs to be translated into a perfor
mance loss. The complexity and possible simplifications in each of these 
steps will vary significantly depending on the degradation mode in 
question. Considering multi-dimensional and interlinked reaction paths 
will add another level of complexity. It should also be noted that any 
model aiming for service life prediction capabilities must additionally 
take into consideration both variability in BOMs and the manufacturing 
process. 

As mentioned in the previous paragraph, an important input to 
model field degradation is information about macroclimatic conditions, 
thus some form of weather data. For some modelling purposes and/or 
degradation processes, simplifications from temporally varying param
eters can be made, e.g. by using weighted average temperatures [19] or 
humidities [20] as input to analytical degradation models. For other 
processes or purposes, it is instead desirable to input weather data 
time-series into more complex numerical models, which can come at a 
high computational cost. To illustrate this problem, we will in the 
following look specifically at the modelling of thermomechanical fatigue 
in soldered ribbon cell interconnects. However, we note that the prob
lem holds relevance also for modelling of other degradation modes, such 
as cell crack effects during cyclic mechanical loads [21–23], crack 
development in backsheets driven by thermomechanical stress [8] or 
coupled hygro-thermo-mechanical effects [24]. 

Modelling of PV modules by use of the finite element method (FEM) 
has been an active research field over the last 10–15 years. An instruc
tive overview of the topic can be found in a recent review by Nivelle 
et al. [25]. PV modules represent a challenging modelling problem due 
to their high aspect ratio. Depending on the modelling goal, the model 
might need to capture phenomena on length scales ranging from 10− 5 m 
(busbar and solder thickness) to 10◦ m (module size). To achieve this, 
multi-scale modelling approaches can be applied [26–32]. Type of 
computational domain (e.g. 2D or 3D), choice of boundary conditions (e. 
g. symmetry), constitutive material models, multi-scale approaches etc. 
influence on the complexity of the problem and hence computational 

demands [25]. Simplifications does however come with a risk of lower 
accuracy and less relevant results. Further coupling mechanical phe
nomena to chemical changes in a multi-physics modelling approach 
[28] will give additional complexity. 

For thermomechanical stress on the interconnects, several FEM 
modelling studies have investigated its dependence on module BOM, 
manufacturing and design [26,31,33–41]. For such studies, the model is 
typically run through the temperature profile of the IEC 61215 thermal 
cycling test [42] and the computed damage is compared between cases. 
Studies have also been performed to explore the thermal cycling tem
perature profile itself, and how it can be modified to e.g. speed up testing 
[43]. Computing damage for actual outdoor temperature profiles is 
computationally demanding, however, making a comparison between 

Table 1 
Specifics of the six weather datasets used to model cell temperatures.  

Location Data- 
source 
reference 

Time-period (date 
format- DD.MM.YY) 

Original time- 
resolution [min] 

Sensor height [m] Latitude [⁰N] 
Longitude [⁰] 
Altitude [m] 

Köppen-Geiger 
climate zone 
(Found by use of 
[54]) 

% of 
timestamps 
missing at least 
one parameter 

% of days 
replaced 
(days with 
gaps >2 h) Tamb Ws GHI Tamb Ws GHI 

Oslo, Norway [55] 01.03.16–28.02.21 60 10 1 2 10 NA 59.94 Dfc-Subarctic 
Climate 

6.7 2.2 
10.72 
77 

Freiburg im 
Breisgau, 
Germany 

[56] 01.01.10–31.12.19 10 10 10 2 12 6 48.02 Cfb-Temperate 
Oceanic Climate 

0.36 0.68 
7.83 
236 

Tucson, AZ, 
USA 

[57] 01.01.13–31.12.20 5 5 5 1.5 1.5 1.5 32.24 Bsh-Hot Semi-arid 
Climate 

0.04 0.21 
− 111.17 
844 

Everglades, 
FL, USA 

[57] 01.01.13–31.12.20 5 5 5 1.5 1.5 1.5 25.90 Am-Tropical 
Monsoon 

0.16 0.27 
− 81.3 
1.5 

Fallbrooks, 
CA, USA 

[57] 01.01.14–31.12.20 5 5 5 1.5 1.5 1.5 33.44 Csa-Mediterranean 
hot summer 

0.07 0.19 
− 117.19 
344 

Sioux Falls, 
SD, USA 

[57] 01.11.12–31.10.19 5 5 5 1.5 1.5 1.5 43.73 Dfa-Hot Summer 
Continental 
Climate 

0.51 0.90 
− 96.62 
497  

Fig. 1. Each of the days in the ten year (3652 days) dataset for Freiburg im 
Breisgau plotted according to the three parameters Tmax, ΔTmax-min, and ΔTtot 
(see main text, section 3, for parameter definition). The color-coding of the 
datapoints place each day into one out of seven clusters, as determined by the k- 
means clustering algorithm. Note that days from cluster number (#)3 and #6 
are largely interspersed in this plot, as the main parameter separating these two 
clusters is Nrev. 
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computed damage during indoor thermal cycling and outdoor field 
exposure difficult. To overcome this issue, a few different approaches 
have been taken. First, simpler 2D models were used to compute accu
mulated damage during full years of outdoor temperature variations for 
various locations [43,44]. The 2D models focused on stresses in the 
solder layer and enabled low computational demands but might be less 
capable of studying stresses in the ribbon and of capturing long-range 
effects such as the influence of mounting conditions. Second, statisti
cal analysis of outdoor temperature profiles has been used to generate an 
“average” thermal cycle for a given location [45,46]. Such a cycle is easy 
to model but does not contain e.g. temperature fluctuations happening 
on short timescales and might not be easy to determine in locations of 
large seasonal variations. Third, numerous studies have selected and 
modelled a few days from a given location, representing certain condi
tions such as “sunny and hot”, “cloudy and hot”, “summer day” or 
”winter day” [33,40,44,47,48]. The approach of only modelling certain 
days intuitively makes a lot of sense. Clearly there are many days in a 
year that have quite similar temperature profiles and hence result in 
similar thermomechanical damage; it should not be necessary to model 
them all. However, the days to model have so far been manually selected 
in a heuristic manner. This makes it difficult to judge and ensure the 

representability of the selected days for the site. Further, it does not 
allow objective and consistent comparisons between sites, climates 
and/or system configurations. In sum, there is a clear need for an 
approach that can allow for modelling of realistic outdoor temperature 
profiles at acceptable time-resolution, while using complex models, and 
in a way that is reproducible and comparable between climates, sites 
and/or system configurations. 

In this work, we use an unsupervised machine learning algorithm to 
select a set of representative daily temperature profiles from historical 
timeseries for various locations. Such algorithms have been used to 
select representative historical periods of input data in other modelling 
disciplines, such as for long-term energy system modelling [49–51] and 
in finance [52]. Various algorithms exist to select periods which 
together give a good statistical representation of the overall variety of 
the dataset. A common approach is to use clustering algorithms [53], i.e. 
machine learning techniques that group datapoints. In this work, we use 
k-means clustering, one of the simplest and most common clustering 
techniques. We use this algorithm to select representative daily PV cell 
temperature profiles for six different locations in different climate zones. 
We show how the algorithm can group similar temperature profiles and 
select a representative temperature profile for each group. Further, a 

Fig. 2. An example period from May 2017, showing twelve daily temperature profiles color coded equivalently to Fig. 1, based on their assignment to different 
clusters by the k-means clustering algorithm. For clarity, the cluster number (#) to which each daily temperature profile is assigned is displayed in grey color above 
the respective curve. 

Fig. 3. The representative daily temperature profile selected for each of the seven clusters shown in Fig. 1. The representative day was selected as the medoid 
datapoint for each cluster. In the top left corner of each sub-figure, the average count of each cluster per year is specified in grey color. 
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yearly frequency for each representative profile is obtained to enable the 
creation of a full-year representative dataset, based on only a subset of 
days. We study how such a representative dataset can reproduce key 
characteristics of the original dataset, as well as differences between 
sites located in different climates. Such representative datasets, con
sisting of a low number of temperature profiles, could be used as input to 

complex PV module models and drastically reduce the computational 
efforts. 

2. Input data and methods 

2.1. Processing and quality control of the weather data sets 

As input to FEM modelling of thermomechanical fatigue in in
terconnects, cell temperature data is the relevant microclimatic stressor. 
For the current work, we will model such data from weather data sets. 
To evaluate our approach, we have chosen weather station datasets 
gathered for selected locations in a variety of different climate zones 
from open databases. Information on the datasets is summarized in 
Table 1. 

The time-period for each dataset was chosen to get a time-series of 
minimum 5 years, containing only full years, and with good data- 
availability for all relevant weather parameters. The relevant weather 
parameters for modelling of cell temperature are ambient temperature 
(Tamb), wind-speed (Ws) and global horizontal irradiance (GHI). All 
datasets contained quality information for each timestamp, based on 
which all data flagged as erroneous was removed. Thereafter, the per
centage of datapoints missing at least one parameter was determined 
(see Table 1). Missing data was replaced as follows: For gaps longer than 
2 hours, data for the entire day or set of days were replaced by data from 
the same day(s) in the following year. The percentage of days that were 
replaced in this way is shown in the last column of Table 1. All gaps 
shorter than 2 hours were filled by linear interpolation. 

Based on the time-resolution of the available datasets and the need to 
keep the computational efforts reasonable while at the same time 
capturing relevant temperature changes, a 10 minute time-resolution 
was chosen as a common standard for all datasets. Higher time- 
resolution datasets were down-sampled to a 10 minute time-resolution 
by removing excess datapoints. For the Oslo location, the 1 hour Tamb- 
data were up-sampled to 10 minute time-resolution; the variation in 
temperature between the original measurement points were set based on 

Fig. 4. An elbow plot for the Freiburg im Breisgau ten-year dataset. The sum of 
squared distances from all datapoints to their cluster center is plotted as a 
function of the number of clusters (blue, left y-axis), as well as the percentage- 
wise lowering of this parameter when adding an additional cluster (orange, 
right y-axis). 

Fig. 5. For each of the six locations, boxplots are plotted for (a) Tmax, (b) ΔTmax-min, (c) Nrev, and (d) ΔTtot (see main text, section 3, for parameter definition). For 
each location, boxplots are shown for representative datasets constructed by using a 15, 10 and 5% threshold in the elbow plot to select the number of representative 
days, as well as for the original dataset (boxes from left to right for each location respectively, with increasing color saturation). The number of representative days 
making up each dataset is shown by the numbers above the upper whisker. The features of the boxplot can be interpreted as follows: orange line shows the median, 
the notch represents the confidence interval around the median, the box extends from the first to the third quartile of the data, while the whiskers give the 5th and 
95th percentile. 
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10 minute time-resolution temperature data available from a measure
ment station located ~5 km away. For the locations where the wind 
sensor height differed from the standard meteorological height of 10 
meter, Hellmann’s equation (as implemented in equation 2 in Ref. [58]) 
was applied to estimate wind speed at 10 meter height from the 
measured values. 

2.2. Modelling of cell temperatures from weather data sets 

From the sets of weather data described above, cell temperatures 
were modelled by help of the python package pvlib, version 0.8.0 [59]. 
First, the GHI values were transposed to plane-of-array (POA) irradiance 
at an optimal fixed tilt for the latitude, selected by Eq. 12 of [60]. 
Thereafter, the POA irradiance (EPOA, W/m2), Tamb (◦C), and Ws (m/s) 
was used to model the cell temperature (Tc, ◦C), by use of the Sandia 
(King) model [61], as given in Equation (1). 

Tc = EPOA × exp(a + b × Ws) + Tamb +
EPOA

E0
× ΔT, Equation 1 

In Equation (1), a, b, and ΔT are empirically determined coefficients 
for a “glass/cell/polymer sheet” module type in an open rack mount; 

− 3.56, − 0.075 and 3 ◦C, respectively [61]. E0 is a reference irradiance of 
1000 W/m2. 

2.3. Selection of representative periods 

A first question when selecting representative periods is their desired 
length; one could imagine selecting representative hours, representative 
days or even representative weeks [50,62]. For the thermomechanical 
fatigue of interconnects, temperature variations ranging from diurnal to 
sub-hourly timescales are important, while variations on longer time
scales, e.g. weeks and months, are less important. Therefore, we aim at 
selecting representative daily temperature profiles with a high 
time-resolution, capturing both diurnal and sub-hourly temperature 
variations. 

To select the representative days we use k-means clustering. In short, 
the k-means algorithm first initializes a given number of center-points 
and assigns all datapoints to clusters based on their nearest center- 
point. From the resulting clusters, new center-points are calculated, 
and then all datapoints are reassigned to new clusters based on the new 
center-points. This process continues in an iterative fashion until a 
convergence criterion is met. In this work, the k-means clustering was 

Fig. 6. Heatmaps where energy distances [a.u.] are calculated between distributions for the six different locations (Os- Oslo, Fr- Freiburg, SF- Sioux Falls, Tu- Tucson, 
Fa- Fallbrooks, Ev- Everglades). The original datasets (y-axis) are compared to (a) the original dataset, as well as representative datasets built by applying an elbow 
plot threshold of (b) 15%, (c) 10% and (d) 5% (x-axis). 
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performed through an implementation for python from scikit-learn 
(KMeans, with default settings) [63]. Before clustering, the data was 
scaled by help of the StandardScaler from scikit-learn (fit_transform, with 
default settings) [64] to give all parameters equal weight. 

2.4. Comparing parameter distributions 

To compare the parameter distributions for different datasets (dis
cussed further in the Results and Discussion), the energy distance metric 
was used [65] as implemented for python in the dcor project, v0.5.6 
(energy_distance, with default settings) [66]. The energy distance was 
calculated for scaled distributions, as described for the k-means clus
tering procedure (section 2.3). 

3. Results and Discussion 

K-means clustering is a method to group datapoints. In our example 
case, we want to use it to group daily temperature profiles. Thus, we 
need to represent each daily temperature profile by a set of parameters 
to be used as input to the k-means clustering algorithm. In selecting the 
set of parameters, we base ourselves largely on a study by Bosco et al. 
[43]. They found that an empirical analytical expression could be used 
to calculate solder fatigue damage in agreement with FEM-simulations if 
provided the following input for a given location: the mean daily 
maximum cell temperature, the mean daily maximum cell temperature 
change, and a temperature reversal term describing the number of times 

the temperature history increases or decreases across a reversal tem
perature, Trev. By fitting to FEM-simulated data, Trev was found to be 
56.4 ◦C, thus this parameter is related to temperature loading cycles 
happening at fairly high temperatures. Based on these results, we 
describe each daily temperature profile by the maximum daily cell 
temperature, Tmax, the difference between daily maximum and mini
mum temperature, ΔTmax-min, and the number of temperature reversals 
around Trev, Nrev. In addition, we add a fourth parameter: the total 
summed temperature change, ΔTtot. This fourth parameter is added to 
distinguish days of different degree of changing irradiance conditions, 
also when the ambient temperature and/or irradiance is not high 
enough to reach Trev. 

We note that improvements might be possible in which parameters 
are used to describe the daily temperature profiles. For example, using a 
rainflow counting algorithm [44] might be beneficial compared to the 
use of ΔTtot. Also, Bosco et al. established their empirical model based on 
a specific module design and solder material [43] and adjustments e.g. 
to Trev might be needed for other module architectures. However, an 
in-depth study of the parameter selection is beyond the scope of this 
paper. Further, we note that work needs to be done to establish 

Fig. 7. Plots of the normalized energy distance between the distribution of 
temperature parameters in the original dataset and in the representative data
set, as a function of number of representative days used to build the repre
sentative dataset. Plotted using a linear (a) and logarithmic (b) y-axis. 

Fig. 8. (a) The 98th percentile cell temperature of the representative datasets 
plotted as a function of number of representative days. The dotted lines show 
the 98th percentile temperature for the original datasets. The inset show the 
same data, for a larger range of representative days used. (b) The difference 
between the 98th percentile cell temperature of the original datasets to the 
representative dataset plotted as a function of number of representative days. 
The black dotted lines indicate a +2 and − 2 ◦C difference. 
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appropriate selection parameters for other types of input data and/or 
degradation modes, such as e.g. wind load patterns or thermomechan
ical fatigue of polymer materials. Such work might need to be done in an 
iterative fashion, where modelling of an initial set of representative 
periods selected based on best guess criteria would give guidance to 
subsequent refinement of the selection parameters. 

After describing all daily temperature profiles by the set of four pa
rameters, each dataset is run through the k-means clustering algorithm. 
To illustrate the outcome, all days in a ten year dataset (3652 days) for 
the location of Freiburg im Breisgau is plotted in Fig. 1 as a function of 
the three parameters Tmax, ΔTmax-min, and ΔTtot. Each datapoint is color- 
coded according to the cluster assignment done by the k-means algo
rithm, into one of seven different clusters. In Fig. 2, the cell temperature 
profile over a period of twelve days in May 2017 is plotted as an illus
tration, where the color coding of each daily temperature profile cor
responds to that in Fig. 1, based on their assignment to different clusters 
by the k-means clustering algorithm. The cluster number to which each 
daily profile is assigned is also displayed above the respective curve. 
Qualitatively, we observe that similar temperature profiles have been 
placed in the same cluster. For each cluster, a representative daily 
temperature profile is chosen as the medoid datapoint, i.e. the datapoint 
closest to the center of the cluster. These representative profiles are 
shown in Fig. 3, with the link between the profiles in Figs. 2 and 3 again 
given by the color of the curves. In the top left corner of Fig. 3 subfigures, 
the average frequency per year for each profile is written in grey, based 
on the number of datapoints in each cluster. Thus, the set of represen
tative days and associated frequencies can be used as input to modelling 
representing a typical year for the location. How well such a dataset can 
represent the original dataset will be discussed shortly, but first we need 
to look at how we should choose the number of representative days. 

The k-means clustering algorithm (and many other clustering algo
rithms) does not inherently decide the number of clusters it outputs. The 
cluster number is instead an input parameter often decided through the 
inspection of elbow plots. Fig. 4 shows an example elbow plot for the 
Freiburg im Breisgau dataset, where the sum of squared distances from 
all datapoints to their closest cluster center is plotted as a function of 
number of clusters (blue). In a dataset containing an underlying struc
ture or grouping of the datapoints, a clear “elbow” can often be identi
fied in such plots. At the elbow, it is clear that adding an additional 
cluster will not lead to an improvement that is worth the added cost, and 
it might also lead to overfitting. In our data however, such an underlying 
structure or grouping does not exist. Hence, it will be a somewhat sub
jective decision to decide the point where the diminishing added return 
is no longer worth the additional cost, which will also be dependent on 
the purpose, model complexity and the needed level of accuracy. 
However, to allow for comparative analysis between sites and/or system 
configurations, we seek a way of selecting the number of clusters which 
is comparable between datasets. To this end, we look at the corre
sponding lowering of the sum of squared distances when increasing the 
cluster number, also plotted in Fig. 4 (orange). When comparing 
different datasets, we propose to choose a cluster number for all datasets 
where further increase in the cluster number will not lead to a 
percentage-wise lowering above a certain threshold. For the example 
shown in Figs. 1–3, the Freiburg im Breisgau dataset was treated with a 
15% threshold, which lead to a selection of seven representative days. A 
lower threshold should be chosen if larger accuracy is needed, but the 
threshold should be kept the same when comparing datasets. 

At this point, we are able to outline the procedure to select repre
sentative periods and how it might be used, using our example of ther
momechanical interconnect modelling: First, a suitable representative 
period, and the parameters to describe the relevant weather data must 
be selected. In the example case, daily temperature profiles were 
selected as the most relevant time period, and then described by four 
different parameters (Tmax, ΔTmax-min, Nrev, and ΔTtot). Second, a suitable 
number of representative periods need to be set, depending on the 
required accuracy or other needs. In the example case, we set the 

number to seven for Freiburg im Breisgau, based on an elbow plot as 
described above. Third, the clustering algorithm is run. In the example 
case, the clustering algorithm groups all periods into separate clusters 
(Fig. 1) and extracts a representative profile as well as average frequency 
per year for each of the cluster types (Fig. 3). Fourth, this is used as input 
to the modelling. In the example case, the damage associated with the 
computed thermomechanical strain (or plastic work) for each of the 
representative profiles (Fig. 3) would be modelled by the FEM model. 
Then, to estimate the total interconnect damage generated during one 
year in the location, the resulting damage for each of the representative 
profiles would be multiplied by the average frequency per year for each 
cluster, (e.g. 55 for cluster 0 (Figs. 3a), 49 for cluster 1 (Fig. 3b), etc) and 
then summed. This estimation of damage could be compared to the 
damage estimates computed in an equivalent manner for other locations 
or mounting configurations, as well as for an accelerated thermal cycling 
profile. For example, climate specific modelling could be done as in 
Ref. [43] but while employing more complex 3D multi-scale models. 

With the method to select the representative days established, we 
now seek to understand how well these days represent the full dataset. In 
Fig. 5, the full-year dataset built by the representative days is compared 
to the original dataset for each of the six different locations/climates. 
The comparison is done by looking at boxplots for each of the four pa
rameters Tmax, ΔTmax-min, Nrev, and ΔTtot. For each location, the three 
leftmost boxplots of increasing color saturation (moving left to right) 
show the distribution for representative datasets built from a varying 
number of representative days, where the number of days is set by a 15, 
10 and 5% threshold in the elbow plot, as discussed above. The resulting 
number of days in each case is placed above the corresponding upper 
whisker. The rightmost boxplot in saturated color is showing the dis
tribution of the original dataset, consisting of between 1826 and 3652 
days depending on location. Qualitatively, we observe that even when 
using a low number of representative days, in the range of 5–20, key 
statistical features of the original dataset, such as the median and the 
25th and 75th percentile, is well reproduced. Reproduction of the 5th 
and 95th percentiles is however more challenging for some of the pa
rameters. To make a representative dataset which better captures such 
aspects of the original dataset, other methods to cluster the dataset and/ 
or select representative days might have advantages and should be 
further explored. 

To be useful, the representative dataset should not only reproduce 
key features of the original dataset, but also reproduce significant dif
ferences and similarities between datasets. In our case, it should 
reproduce differences and similarities in temperature variation between 
e.g. different sites or mounting configurations. Again, the plots in Fig. 5 
show how key differences between the different datasets are repro
duced, such as differences in median or interquartile range. For a more 
quantitative comparison, Fig. 6 show heatmaps of the distribution of 
energy distances calculated between different datasets. The energy 
distance is a metric that characterizes similarity of distributions [65]. It 
was calculated between pairs of distributions of the four parameters, as 
described in the section 2.4. In Fig. 6a, the original datasets are 
compared to each other. As expected, we observe smaller energy dis
tances (more similar distributions) within the group of warmer (Tucson, 
Everglades, Fallbrooks; lower left corner) and the group of colder (Sioux 
Falls, Freiburg im Breisgau, Oslo; upper right corner) locations, than 
when comparing warm and cold locations (upper left or lower right 
corner). It is also clear that e.g. Sioux Falls is more similar to the group of 
warmer locations than Oslo. Fig. 6b compares instead the original 
datasets to representative datasets selected by use of the 15% elbow plot 
threshold, thus datasets built by 4–7 days. Already, we observe that key 
features of the original heatmap, such as those discussed above, is 
reproduced. As we decrease the elbow plot threshold from 15% (Fig. 6b) 
to 10% (Fig. 6c) to 5% (Fig. 6d), the overall energy distance between 
distributions decrease, and the similarity to the original heatmap 
(Fig. 6a) becomes clearer. 

There will always be a trade-off between accuracy and 
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computational cost. To study what might be gained in going to a higher 
number of representative days, Fig. 7 show a plot of the energy distance 
between the representative and original dataset as a function of number 
of representative days, up to a full year. We observe that when 
increasing the number of representative days from one and onwards, the 
energy distance falls rapidly in the beginning. As the number of repre
sentative days increases however, the energy distance decrease is 
quickly slowing down. Eventually, there is no significant gain in 
increasing the number of representative days. It is clear that a full year of 
data, such as the use of a typical meteorological year [13] is not needed 
to capture the key features of the original datasets for this example case. 

As another metric to evaluate the representative datasets, we look at 
the 98th percentile cell temperature, Tc,98. The 98th percentile module 
temperature (which is closely linked to Tc,98) has been adopted in IEC TS 
63126 [13,67] as a metric to evaluate whether deployment in a certain 
location and system configuration warrants modified qualification and 
safety testing of the module. In Fig. 8a, Tc,98 of the representative 
datasets is plotted as a function of number of representative days used to 
build the dataset, and compared to Tc,98 of the original dataset. In 
Fig. 8b, instead the difference in Tc,98 between the original and repre
sentative datasets is plotted. At a low number of representative days, the 
Tc,98 is too low, but quickly increases towards the original dataset value. 
For all locations, the value stabilizes within 2 ◦C of the true value at a 
number of representative days lower than 15. In line with Figs. 5 and 6, 
the differences between the datasets are well reproduced. 

4. Summary and conclusions 

We have shown how an unsupervised machine learning technique, 
the k-means clustering algorithm, can be used to select representative 
historical periods of weather data (or derivatives thereof) as input to 
computationally intensive modelling of field degradation in PV mod
ules. We have exemplified the approach by selecting representative 
daily cell temperature profiles for six different locations in different 
climate zones, to be used as input to FEM modelling of thermo
mechanical fatigue in cell interconnects. The method is capable of 
grouping temperature profiles based on a set of descriptive parameters 
and selects a representative profile for each group. From this, a repre
sentative yearly dataset can be built. We have studied how such a 
dataset compares to the original dataset and shown that key statistical 
features are reproduced. It seems clear that even when using only a low 
number of representative daily profiles, in the range of 5–20, key 
characteristics of the temperature variations at a site, as well as differ
ences between sites, are reproduced. Using such representative days 
instead of a full year of data, would cut the computational cost by a 
factor of 20–70. Lastly, we have presented an approach to allow repre
sentative period selection for different sites or system configurations in a 
comparable way, through thresholding in elbow plots. 

We believe that the presented approach constitutes a useful addition 
to the toolbox for the modelling of PV modules, especially as the 
modelling becomes more complex, incorporating both multi-scale and 
multi-physics effects. Further work will be needed to e.g. couple the 
presented work to numerical modelling and establish the full modelling 
pipeline proposed, assess suitability and develop appropriate selection 
parameters for other degradation modes, and assess the possibility of 
improved clustering algorithms. 

CRediT authorship contribution statement 

Gaute Otnes: Writing – review & editing, Writing – original draft, 
Visualization, Software, Methodology, Investigation, Conceptualization. 
Dag Lindholm: Writing – review & editing, Conceptualization. Hall
vard Fjær: Writing – review & editing, Conceptualization. Pernille 
Seljom: Writing – review & editing, Methodology, Conceptualization. 
Sean Erik Foss: Writing – review & editing, Project administration, 
Funding acquisition, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This work was funded by the European Union’s Horizon 2020 
research and innovation program under grant agreement 818009 (Be- 
Smart). 

The authors thank Dr. Heine Nygard Riise and Lisa Kvalbein for 
useful discussions. 

References 

[1] D.C. Jordan, T.J. Silverman, J.H. Wohlgemuth, S.R. Kurtz, K.T. VanSant, 
Photovoltaic failure and degradation modes, Prog. Photovoltaics Res. Appl. 25 
(2017) 318–326, https://doi.org/10.1002/pip.2866. 

[2] A. Skoczek, T. Sample, E.D. Dunlop, The results of performance measurements of 
field-aged crystalline silicon photovoltaic modules, Prog. Photovoltaics Res. Appl. 
17 (2009) 227–240, https://doi.org/10.1002/pip.874. 

[3] A. Virtuani, M. Caccivio, E. Annigoni, G. Friesen, D. Chianese, C. Ballif, T. Sample, 
35 years of photovoltaics: analysis of the TISO-10-kW solar plant, lessons learnt in 
safety and performance—Part 1, Prog. Photovoltaics Res. Appl. 27 (2019) 
328–339, https://doi.org/10.1002/pip.3104. 

[4] D. Jordan, M. Kempe, I. Repins, J. Bleem, J. Menard, P. Davis, Life after 30 years- a 
PV system in Colorado, in: 2021 Photovoltaic Reliability Workshop, 2021. 

[5] E. Annigoni, A. Virtuani, M. Caccivio, G. Friesen, D. Chianese, C. Ballif, 35 years of 
photovoltaics: analysis of the TISO-10-kW solar plant, lessons learnt in safety and 
performance—Part 2, Prog. Photovoltaics Res. Appl. 27 (2019) 760–778, https:// 
doi.org/10.1002/pip.3146. 

[6] D. Jordan, T. Barnes, N. Haegel, I. Repins, Build solar-energy systems to last — save 
billions, Nature 600 (2021) 215–217, https://doi.org/10.1038/d41586-021- 
03626-9. 

[7] C.R. Osterwald, T.J. McMahon, History of accelerated and qualification testing of 
terrestrial photovoltaic modules: a literature review, Prog. Photovoltaics Res. Appl. 
17 (2009) 11–33, https://doi.org/10.1002/pip.861. 

[8] M. Owen-Bellini, S.L. Moffitt, A. Sinha, A.M. Maes, J.J. Meert, T. Karin, C. Takacs, 
D.R. Jenket, J.Y. Hartley, D.C. Miller, P. Hacke, L.T. Schelhas, Towards validation 
of combined-accelerated stress testing through failure analysis of polyamide-based 
photovoltaic backsheets, Sci. Rep. 11 (2021) (2019), https://doi.org/10.1038/ 
s41598-021-81381-7. 

[9] M. Owen-Bellini, P. Hacke, D.C. Miller, M.D. Kempe, S. Spataru, T. Tanahashi, 
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