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Abstract
Purpose  Alzheimer’s disease (AD) is a progressive, incurable human brain illness that impairs reasoning and retention as 
well as recall. Detecting AD in its preliminary stages before clinical manifestations is crucial for timely treatment. Magnetic 
Resonance Imaging (MRI) provides valuable insights into brain abnormalities by measuring the decrease in brain volume 
expressly in the mesial temporal cortex and other regions of the brain, while Positron Emission Tomography (PET) meas-
ures the decrease of glucose concentration in the temporoparietal association cortex. When these data are combined, the 
performance of AD diagnostic methods could be improved. However, these data are heterogeneous and there is a need for 
an effective model that will harness the information from both data for the accurate prediction of AD.
Methods  To this end, we present a novel heuristic early feature fusion framework that performs the concatenation of PET 
and MRI images, while a modified Resnet18 deep learning architecture is trained simultaneously on the two datasets. The 
innovative 3-in-channel approach is used to learn the most descriptive features of fused PET and MRI images for effective 
binary classification of AD.
Results  The experimental results show that the proposed model achieved a classification accuracy of 73.90% on the ADNI 
database. Then, we provide an Explainable Artificial Intelligence (XAI) model, allowing us to explain the results.
Conclusion  Our proposed model could learn latent representations of multimodal data even in the presence of heterogeneity 
data; hence, the proposed model partially solved the issue with the heterogeneity of the MRI and PET data.

Keywords  Alzheimer’s disease · Feature fusion · MRI · PET · Heuristic methods · Deep learning

1  Introduction

Alzheimer’s disease (AD) is a depressive brain illness that 
is the leading cause of dementia in older people. It causes 
cognitive decline, thereafter leading to the inability to carry 
out daily duties [1]. AD not only reduces the way of life of 
patients, but it also leads to extra stress on healthcare givers. 
The synthesis of the amyloid peptide is linked to AD, and 
the symptoms often begin with minor memory loss before 
progressing to other brain dysfunctions [2]. Since there 

is no cure for AD, early detection in the prodromal stage, 
i.e., mild cognitive impairment (MCI), is vital. Early MCI 
(EMCI) is a stage of cognitive impairment that occurs before 
MCI [3]. Early diagnosis of EMCI may prevent EMCI from 
progressing to AD [3]. Studies have stressed the relevance 
of diagnosing MCI patients by identifying the differences 
between EMCI and late MCI (LMCI) groups [4–6]. Neu-
roimaging has become a crucial diagnostic tool for AD due 
to the rapid advancement of neuroimaging technologies [7, 
8]. Non-invasive techniques such as MRI and PET are rou-
tinely employed to record brain tissue features [9, 10]. By 
evaluating the brain images captured from PET and MRI, 
volumetric consolidation in parts of the brain atrophy can be 
used as an essential biomarker for AD [11, 12].

PET imaging is an important functional technology that 
allows clinicians to swiftly and precisely study activities 
relevant to the human brain, with the potential for the early 
detection of AD [13, 14]. PET images obtained using radi-
oactive 18-fluorodeoxyglucose (FDG) diffusion were used 
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to produce sensitive glucose metabolic rate estimations in 
the brain [15], and this can be used to trace the progression 
of the disease from Normal Cognitive (NC) to AD. When 
it is difficult to tell the difference between physiological 
and pathological alterations in the anatomy, FDG-PET can 
be used. The volume of brain structure diminishes with 
age (particularly in the elderly) [16], making it impossible 
to identify whether a person’s brain is in a normal or dis-
eased state using only MRI. PET can detect the AD status 
of people more effectively in these cases. For example, 
Ozsahin et al. utilized PET data for the automated clas-
sification of AD groups [17]. Authors [18] predicted the 
risk of AD based on the deep learning model by extract-
ing FDG PET image features. Jo et al. established a deep 
learning-based system for the categorization of AD that 
recognizes the morphological phenotypes of tau deposi-
tion in tau PET images [19]. Liu et al. used a multiscale 
deep neural network to learn the patterns of metabolism 
changes due to AD pathology by analyzing PET images 
[20].

Because of its capacity to show distinct atrophy patterns 
in the brain, structural MRI (sMRI) is useful in the range 
of possibilities of AD and its high resolution for soft tissue 
[21]. For many years, structural information about the brain 
has been widely employed for early detection and diagnosis 
of AD [22, 23], due to its universality in clinical practice and 
convenience in the examination [24]. MRI has confirmed 
the pattern of AD progression seen in postmortem brain tis-
sue research [25]. The temporal lobe and parietal lobe, as 
well as sections of the frontal cortex and cingulate gyrus, 
degenerate as AD progresses, resulting in extensive atrophy 
of the affected regions [26]. The patient’s structural altera-
tions in the brain can be observed with MRI. Taheri et al. 
used extracted gray matter (GM) images from sMRI using 
CNN architecture for the diagnosis and classification of the 
CN, EMCI, and LMCI groups [27]. Mehmood et al. applied 
tissue segmentation on sMRI to extract the GM tissue, and 
VGG layer-wise transfer learning was used to distinguish 
between EMCI and LMCI patients [28]. Yue et al. employed 
Deep Convolutional Neural Network (DCNN) on sMRI to 
extract the most useful spatial features of GM and further 
segmented into ninety regions for LMCI vs. EMCI classifi-
cation [29]. Liu et al. extracted structural and functional fea-
tures for distinguishing EMCI subjects from LMCI subjects 
[30]. Wee et al. used a spectral graph-CNN-based system for 
the early detection of AD that used sMRI cortical thickness 
and its underlying geometric information [31]. Sheng et al. 
combined sMRI features and genetic features for six binary 
classifications (HC vs. AD, HC vs. EMCI, HC vs. LMCI, 
EMCI vs. LMCI, EMCI vs. AD, and LMCI vs. AD) [32]. 
Jiang et al. utilized the volumetric features of sMRI data to 
train VGG16 CNN with transfer learning for the classifica-
tion of EMCI vs. NC [24].

PET imaging can capture brain metabolism character-
istics to aid in the detection of lesions, whereas structural 
MRI can reflect changes in brain structure [33]. Iaccarino 
et al. assessed gray matter reduction in the early MCI stage 
as well as FDG-PET metabolic connectivity. Results showed 
that multimodal data provides a clinically important anal-
ysis [34]. Researchers have proposed a multimodal input 
image modality based on MRI and PET images to improve 
classification accuracy. Forouzannezhad et al. developed a 
Deep Neural Network (DNN) model using a 3- hidden layer 
approach to obtain the relevant information from MRI and 
PET data for the classification of the AD group [35]. The 
model classified six binary groups. Their findings revealed 
that the sensitivity of the EMCI vs. AD classification is 
higher than the specificity for the combined modality of 
MRI + PET. Hao et al. extracted MRI and PET features with 
consistent metric constraints by extracting pairwise similar-
ity measures for PET and MRI modalities, and the extracted 
features are used as input to SVM for classification [36]. 
The model could successfully retain the feature’s structural 
information with higher sensitivity than specificity in the 
task of LMCI vs. EMCI.

The idea of multimodal data fusion for medical diagnos-
tics is not new [37, 38]. Khan et al. used it to fuse vari-
ous modalities of brain MRI images (T1, T2, T1CE, and 
Flair) for brain tumor recognition [39], and by Muzammil 
et al. to fuse Computed Tomography (CT) and MRI of the 
brain [40]. Maqsood et al. proposed a multimodal image 
fusion framework based on multiscale image matting and 
evaluated the brain MRI and CT images [41]. Guo et al. 
proposed to fuse structural images, such as CT and MRI 
images, and functional images such as PET and single-pho-
ton emission computerized tomography (SPECT) images 
[42]. Zhang et al. extracted characteristics from MRI and 
PET data using a deep multimodal fusion network based on 
the attention mechanism. Irrelevant information was sup-
pressed [43]. When the inference is made, complementary 
information from MRI and PET features can be learned, 
even if a specific type of modal data is absent, the single 
input and related complementary information obtained from 
the pretrained model could still be used to forecast AD. Shao 
et al. proposed a feature correlation and feature structure 
fusion approach with Support Vector Machine (SVM) [44]. 
The classification results showed that the model improved 
greatly in LMCI vs. EMCI classification when compared 
with other state-of-the-art methods. The authors suggested 
the need to further improve the binary classification of their 
model.

Recently, hybrid methods based on the combination of 
deep learning and heuristics, or nature-inspired optimization 
methods were proposed to enhance brain MRI image clas-
sification for AD diagnostics [45]. Pradhan et al. proposed a 
hybridized Salp Swarm Algorithm-based Extreme Learning 



293Explainable Deep-Learning-Based Diagnosis of Alzheimer’s Disease Using Multimodal Input Fusion of PET and MRI Images

1 3

Machine (ELM) used to optimize the ELM model for MRI 
classification [46]. Raghavaiah et al. used an Enhanced 
Squirrel Search Algorithm to select the optimal weight 
parameters of the deep neural network (DNN) architecture 
for AD stage classification [47]. In our previous work, the 
Resnet18 pretrained model was utilized for binary classifi-
cation of AD using MRI from ADNI, proving its effective-
ness in EMCI vs. AD and LMCI vs. AD with VA of 99.99 
and 99.95%, respectively [48], while it was able to achieve 
98.86% accuracy, 98.94% precision, and 98.89% recall in 
multiclass classification [49]. Odusami et al.. utilized a ResD 
hybrid technique based on Resnet18 and Densenet121, and 
for classification, the data from the two pretrained models 
are mixed [50]. Experiments reveal that the suggested hybrid 
ResD model has achieved 99.61% (macro) precision. This 
has inspired us to design an Agitated Resnet18 model using 
multimodal input images for the early detection of AD. The 
first convolution layer of Resnet18 is changed into an agi-
tated layer, which is added to the main residual layer. This 
model takes advantage of the data extracted in the channel 
dimension and combines them with the original features in 
multiscale.

Summarizing, there are two approaches for fusing PET 
and MRI images. One approach for fusing MRI and PET 
images is to use a multimodal deep neural network (DNN) 
that takes both modalities as input and outputs a diagno-
sis. DNN can be trained using a dataset of subjects with 
AD and healthy controls. The network learns to extract 
features from both modalities and uses them to distinguish 
between the two groups. Another approach is to use a DNN 
to extract features from each modality separately, and then 

fuse the features using a fusion layer. This approach can 
be useful when the two modalities provide complemen-
tary information and the features from each modality are 
not directly comparable. This paper offers three significant 
contributions: the concatenation-based fusion of MRI and 
PET images, the in-3-Channel Resnet18 model for the AD 
classification task, and experimental validation of the pro-
posed methodology on images from the ADNI database. The 
experiments demonstrate that the use of multimodal features 
extracted from the channel dimension and deep supervision 
can improve the performance of the AD classification model.

The novelty of this research paper further lies in its con-
tribution to the field of Alzheimer’s disease diagnosis using 
a combination of MRI and PET images. The paper presents a 
novel early feature fusion framework that concatenates PET 
and MRI images and trains a modified Resnet18 deep learn-
ing architecture on the combined dataset. The combination 
of MRI and PET images has been widely studied for the 
diagnosis of Alzheimer’s disease. However, the use of early 
fusion, which combines the images at an earlier stage in the 
analysis process, even though it may not be entirely new, it 
remains relevant and important to explore further to advance 
our understanding of AD and develop more effective diag-
nostic and treatment strategies. By combining anatomical 
information from MRI with the functional information from 
PET, early fusion can provide a more accurate and reliable 
diagnosis of AD. The 3-in-channel approach is used to learn 
the most descriptive features of the fused images, leading to 
an improved binary classification of Alzheimer’s disease. 
Additionally, the paper provides an XAI model to explain 
the results, adding interpretability to the deep learning-based 
diagnosis. The experimental results on the ADNI database 
show promising accuracy and demonstrate the effectiveness 
of the proposed approach. To guide our research, we formu-
late the following Research Questions (RQ):

RQ1  How can the combination of MRI and PET images be 
used to improve the diagnosis of Alzheimer’s disease?

Table 1   Statistical data of MRI and PET from ADNI

Modality Class Subjects Sex Number of 
samples

CDR

MRI EMCI 215 100 M,115 F 2150 0.5
LMCI 187 90 M,97 F 1870 1

PET EMCI 215 95 M,120 F 2150 0.5
LMCI 187 82 M,105 F 1870 1

Fig. 1   Data preprocessing steps: 
a original image, b background 
mask, c generated brain mask, 
and d clean MRI image after 
noise removal
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RQ2  What is the effectiveness of the proposed concatena-
tion-based feature fusion framework for fusing MRI and 
PET images in the diagnosis of Alzheimer’s disease?

RQ3  How does the modified Resnet18 deep learning archi-
tecture perform in the classification of Alzheimer’s disease 
using fused MRI and PET images?

RQ4  Can the results of the deep learning-based diagnosis 
of Alzheimer’s disease be explained using the proposed 
Explainable Artificial Intelligence (XAI) model?

RQ5  How does the proposed approach compare with exist-
ing methods for diagnosing Alzheimer’s disease using MRI 
and PET images?

The remaining parts of the paper are summarized as fol-
lows. Section 2 describes the dataset and the steps of our 
methodology, including data preprocessing, image denois-
ing, intensity normalization, and the proposed modification 
of the ResNet18 neural architecture. Section 3 presents the 
results of the experiments. Section 4 discusses the results 
while Sect. 5 compares the proposed model with previous 
studies. Finally, Sect. 6 presents the conclusions.

2 � Materials and Methods

The overall architecture of our proposed model consists of 
two steps, namely, data preprocessing and classifying with 
the in-3-channel Resnet18 model.

2.1 � Materials

The data used in this study were collected from the Alzhei-
mer’s Disease Neuroimaging (ADNI) database. We obtained 
spatially normalized MRI and Coreg, Avg, Standardized 
Image, and Voxel Size PET images of the whole brain. Spa-
tial normalization of MRI images involves aligning different 
brain images to a common reference space, which allows 
for meaningful comparisons between groups. Co-registration 
of PET images with MRI images are important because it 
allows for accurate localization of PET signals within spe-
cific brain regions. A total of 412 MRIs and 412 PETs sub-
jects were included in this study and all subjects received 
both imaging examinations, each of the modalities contain-
ing EMCI and LMCI groups. The middle slices of both MRI 
and PET ranging from slice number 144 to slice number 153 
were extracted for this study, and Clinical Dementia Rating 
(CDR) were used to determine the cognitive status of each 
patient data distribution is provided in Table 1.

Fig. 2   Comparison of MRI 
image masks: a matrix mask, 
b white matter mask, and 
c fuzzy c-means normalized 
image

Fig. 3   Workflow diagram of PET/MRI image preprocessing tech-
nique
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2.2 � Preprocessing Steps

To reduce the learning difficulty and enhance the proposed 
model performance on multimodal data, we utilized data 
processing steps consisting of noise removal and intensity 
normalization. Preprocessing is necessary to further improve 
the image quality.

2.2.1 � Removal of Noise

Most MRI and PET images are noisy and typically include 
regions of low contrast. The original images are rotated by 

90 degrees, and a mask with a number greater than ten is 
generated from the original images to form both the back-
ground mask and brain mask. The generated mask is used 
to perform segmentation. Morphological dilation is further 
applied to the segmented images to perform non-linear oper-
ations related to the morphology of features in the images 
such as boundaries and skeletons. Dilation enlarges bright 
regions and shrinks dark regions. Figure 1 depicts the gener-
ated brain mask and clean MRI and PET images. 

2.2.2 � Intensity Normalization

In image processing applications concerning MR images, 
intensity normalization is a crucial preprocessing step. 
Due to the usage of diverse equipment, MR images have 
an inconsistent intensity scale across (and within) facilities 
and scanners, pulse sequences, and scan settings that are dif-
ferent, and a different environment in which the machine is 
located. Fuzzy C-means is used to find a mask for the white 
matter on the original MRI and its brain mask is shown in 
Fig. 1. A white matter mask for the image is created from the 
brain mask and segmentation is obtained from the morpho-
logical dilation. Then the White Matter mask serves as an 
input again, where it is used to find an approximate mean of 
the White Matter intensity in the target contrast and move it 
to the standard value. Figure 2 shows the White Matter mask 
and the fuzzy means normalized MRI. 

The overall process of the preprocessing technique is 
shown in Fig. 3. 

2.3 � Proposed in‑3‑Channel Resnet18 Model

After completion of noise removal, all the clean data, Fuzzy 
C-means normalization is used as the segmentation of gray 

Fig. 4   Framework of the proposed model

Fig. 5   Workflow diagram of the classification process
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matter so that the clean image is normalized to the mean of 
the tissue as demonstrated in Fig. 4. The step is described 
thus: 

Let T ∁B = the tissue mask for the image I, where: T  = 
the set of indices corresponding to the location of the tissue 
in the imageI . Then the tissue mean is described in Eq. (1), 
and the segmentation-based normalized image is described 
in Eq. (2).

 where c ∈ R > 0 = constant.
In this study, three-class fuzzy—means are used to get 

a segmentation of the tissue over the brain mask B for the 
T1-MRI or PET and we set arbitrarily c = 1. Early fusion is 
performed on the normalized MRI and PERT data by sim-
ple concatenation. The first convolution layer of ResNet18 
is changed using in _ channel = 3, and out _ channel = 64, 
kernel _ size = (3, 3), stride = (1, 1), padding = (1, 1), 
and bias = True. Then the classification method is designed 
using the extracted features to distinguish the EMCI sub-
jects from the LMCI subjects.

The ResNet18 classification model diagram of concate-
nated MRI and PET data performance is shown as follows. 
First, import the model for the classification of AD classes, 
and then input MRI data and PET data. Early fusion of the 
two neuroimaging data is performed by direct concatena-
tion. Using a holdout of 80%, the fused data is divided into 
training and validation for model training and validation. 
If the optimal result is achieved, the model is further tested 
on new data and obtains the classification result, else the 

(1)� =
1

| T |
∑

t∈T
I(T)

(2)Iseg(X) =
c.I(X)

�

hyperparameters of the model are updated for an optimal 
result as shown in Fig. 5. 

To extract meaningful and key information from the 
multimodal data, we introduce the training algorithm 
which is achieved by reducing cross-entropy loss and 
hyperparameter update. A stochastic gradient is utilized 
to optimize the parameters of the proposed multimodal 
model. The pseudocode of the learning algorithm for AD 
classification is shown in Algorithm 1. The parameters of 
ResNet18 are initialized and the learning rate is set to ɲ. 
A mini batch of input fused data will be sampled from the 
training set for network model training.

Assume that there are Q classes, the cross-entropy loss 
for a batch size of R samples can be represented as follows:

vi
j
 is the label of the ith sample for the class j, and Si

j
 is 

the corresponding SoftMax probability. Application of 
gradient descent to the loss function will gradually update 
the parameters, and the multimodal network is evaluated 
on the validation set at a frequency of F. The best model 
will be obtained after training Fmax iterations with opti-
mal hyperparameters.

(3)Yc = −
1

R

R∑

i=1

Q∑

j=1

(vi
j
log(Si

j
))

Table 2   Training accuracy (TA) and Validation accuracy (VA) of 
the proposed model with or without intensity normalization, with or 
without change in the first convolution layer on MRI Data

Model TA (%) VA (%) No of epochs

ResNet18 with normal image 83.90 89.88 5
Proposed model with normal 

image
90.12 95.34 5

ResNet18 with normal image 85.15 93.40 10
Proposed model with normal 

image
91.50 96.50 10

ResNet18 with normalized image 92.56 98.60 5
Proposed model with normalized 

image
94.78 96.90 5

ResNet18 with normalized image 92.60 98.65 10
Proposed model with normalized 

image
95.10 96.99 10

Fig. 6   The proposed model’s confusion matrix on test data (normal-
ized data)
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Algorithm 1 Learning algorithm of Mul�modal features for AD Classifica�on

Input: PET data P, MRI data M

Output: Predicted Label Set W
Method: 

1. Func�on concatenate (P, M)
2. Split and Load fused data into the training set A1 and valida�on set A2.

3. Parameters ini�aliza�on: learning rate ɲ, itera�on step t ←0, maximum accuracy on the 
valida�on set maxacc, valida�on frequency F, and maximum itera�on Fmax.

4. while t< Fmax do
5. t ←t + 1
6. iterate over a mini-batch from A1

7. Forward propaga�on and compute the classifica�on loss in equa�on 3.
8. Backpropaga�on and update hyperparameters via gradient descent θt ← θt-1 - ɲ ∂

∂θt−1

9. If Mod (t, F) =0 then
10. Compute Valida�on accuracy b on A2

11. If b > maxacc ← b
12. θ * ← θt

13. end if
14. end if
15. end while

Table 3   Accuracy with or without intensity normalization, with or 
without change in first convolution layer on PET Data

Model TA (%) VA (%) No of epochs

ResNet18 with normal image 90.20 91.40 5
Proposed model with normal 

image
92.30 96.70 5

ResNet18 with normal image 90.20 91.40 10
Proposed model with normal 

image
93.50 94.10 10

ResNet18 with normalized image 94.50 99.60 5
Proposed model with normalized 

image
96.98 90.90 5

ResNet18 with normalized image 94.60 86.60 10
Proposed model with normalized 

image
96.90 90.95 10

Table 4   Accuracy with or without intensity normalization, on concat-
enated MRI and PET Data

Model TA (%) VA (%) No of epochs

Proposed Model with normal 
image

66.33 61.40 5

Proposed Model with normal 
image

89.72 77.39 10

Proposed Model with normalized 
image

76.77 69.70 5

Proposed Mode with normalized 
image

96.73 73.91 10
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2.4 � Experimental Setup

In this study, we designed EMCI vs. LMCI binary. In the 
beginning stage, noise removal and normalization were 
applied to each image. The train-split ratio was conducted 
to ensure that the trained model’s generalization was cor-
rect. The data ADNI were divided in the ratio 70%: 30%, 
with 70% for training and the remaining 30% for validation. 
The effect of Fuzzy C-Means and the modifications made 
on the first convolutional layer were ascertained by train-
ing the MRI and PET data separately on ResNet18 without 
modification, and then fused data on ResNet18. Samples 
were extracted from a separate subject outside of the training 
set and validation set. To reduce overfitting, we made data 
augmentation for rotation at 15 degrees. The proposed model 
was implemented using the open-source library Pytorch and 
performed on Nvidia TU116 [Geforce GTX 1660] GPU 
with ten epochs. PU architecture is highly efficient for train-
ing and deploying deep CNNs [51]. The optimizer used is 
Stochastic gradient descent (SGD) with a learning rate of 
0.0001, momentum 0.9, weight decay 0.1, and the loss func-
tion used is Cross-entropy. If the accuracy on the validation 
dataset does not improve after 5 epochs, and the loss on 
the validation dataset does not decrease within ten epochs, 
the learning rate was changed. To further reduce overfitting, 
ResNet18’s last layer is modified with 0.5 dropouts and an 
increased number of epochs. A standard measure of accu-
racy was used to assess the proposed model’s performance.

3 � Results

Additional findings to demonstrate the performance of the 
proposed In-3-channel ResNet18 model for binary AD 
diagnostic tasks by examining the impact of intensity nor-
malization on the model, as well as the effect of altering 
RenNet18’s first convolutional layer, was performed. Fur-
thermore, we compared the results. of our proposed model 
with the existing techniques. Table 2 shows the result of the 
training set and validation set on ResnNet18 with normal 
images and normalized image of MRI data with epochs with 
the best result, likewise, the result of the training set and 
validation set on the proposed model with normal image 
and normalized image of MRI data is also shown in Table 2.

Figure 6 shows the confusion matrix results of the in-
3-channel model for EMCI vs. LMCI classification with 
normalized data at 10 epochs, where zero label represents 
EMCI and one label represents LMCI. 

4 � Discussion

The early diagnosis of Alzheimer’s disease (AD) is crucial 
for the effective management of the condition. Magnetic 
Resonance Imaging (MRI) and Positron Emission Tomog-
raphy (PET) are two imaging modalities that have been 
widely used in AD research. While MRI provides detailed 
structural information about the brain, PET allows for the 
assessment of metabolic and functional changes associated 
with AD. Deep learning models can fuse information from 
both modalities and learn complex relationships between the 
imaging data, and improve diagnostic accuracy compared to 
using either modality alone.

The results of the proposed model are illustrated in 
Tables 2, 3 and 4. The VA of the in-3 channel model on MRI 
data yielded an increase of 0.32% as the number of epochs 
increased from 5 to 10 as depicted in Table 2. As regards 
PET data, not so much improvement with the increase in 
the number of epochs used in the training and validation 
phases as shown in Table 3. An appreciable increase is seen 
in the training and VA of the proposed model on the fused 
MRI and PET data as shown in Table 4. In Fig. 5, the total 
number of both correct and wrong classifications from both 
classes is represented. Unlike the existing approaches for 
extracting discriminative features from multimodal MRI and 
PET data, we propose a novel 3-channel in-channel model 
by modifying the first convolution layer of the ResNet18 
architecture with an in-channel of three. Each channel learns 
the representation of the combination of different modali-
ties by utilizing the greatest number of available samples. 
The key benefit of this fusion is that it allows us to train our 
model with more samples, which improves the classifica-
tion performance. The combination of MRI and PET images 
improves the diagnosis of Alzheimer’s disease by providing 
a more comprehensive view of the brain and its functioning. 
MRI measures the decrease in brain volume and can iden-
tify abnormalities in the mesial temporal cortex and other 
regions of the brain, while PET measures the decrease of 

Table 5   Comparison of Proposed Model with Existing Methods

Author Binary classification Method Accuracy (%) Specificity (%) Sensitivity (%)

Fourozannezhad et al. [35] EMCI vs. LMCI DNN with three hidden layers 69.5 60.5 80.6
Hao et al. [36] EMCI vs. LMCI SVM 73.6 67.4 85.5
Shao et al. [44] EMCI vs. LMCI SVM 75.5 63.3 83.8
Proposed model EMCI vs. LMCI ResNet18 (3-in-Channel) 73.9 94.32 66.74
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glucose concentration in the temporoparietal association 
cortex. By combining these data, a more accurate diagnosis 
of Alzheimer’s disease can be made, because the two modal-
ities provide complementary information about the brain, 
and the combination of the two can lead to a more robust 
and reliable diagnosis. Although several previous methods 
in the literature used separate feature selection methods, 
our proposed model can automatically learn discriminative 
features from multimodality data in an end-to-end way [21, 
30] and the features used are cortical thickness, shape, and 
regional volume. The best-performing algorithm gave a sen-
sitivity of 81.2%, a specificity of 66.9%, and an accuracy 
of 72.5% [27]. The results depicted in Table 3 showed that 
VA decreased from 96.70 to 94.10% after the number of 
epochs increased when analyzing the normal PET image 
using the proposed method. One major possibility of the 
decrease in VA is that the learning rate may be too high 
or too low for PET data as this decrement did not occur in 
MRI data and the fused data. Our proposed model achieved 
an accuracy of 73.90% in the test data from the ADNI data-
base. As a result, the use of early fusion improved diagnostic 
accuracy by considering the complex relationships between 
the imaging data. The proposed concatenation-based feature 
fusion framework is effective in the diagnosis of Alzheimer’s 
disease using fused MRI and PET images. The framework 
performs the concatenation of the two modalities and trains 
a deep learning architecture on the combined dataset. The 
3-in-channel approach is used to learn the most descriptive 
features of the fused images, leading to improved accuracy 
in the binary classification of Alzheimer’s disease. The 
experimental results on the ADNI database show that the 
proposed framework achieves a classification accuracy of 
73.90%, demonstrating its effectiveness in the diagnosis of 
Alzheimer’s disease.

5 � Comparison of Proposed Model 
with Existing Studies

This subsection details the solution to RQ3, RQ4, and RQ5. 
The modified Resnet18 deep learning architecture has been 
found to perform well in the classification of Alzheimer’s 
disease using fused MRI and PET images. The 3-in-channel 
approach allows the architecture to learn the most descrip-
tive features of the fused images, leading to improved 
accuracy in the binary classification task. The experimen-
tal results on the ADNI database show that the modified 
Resnet18 architecture achieved a classification accuracy of 
73.90% as shown in Table 5, demonstrating its effectiveness 
in the diagnosis of Alzheimer’s disease using fused MRI and 
PET images. Three previous studies [34, 35, 44] used Deep 
Neural Network (DNN) or Support Vector Machine (SVM) 

models to classify EMCI vs. LMCI and reported varying 
levels of accuracy, specificity, and sensitivity. The pro-
posed model uses ResNet18 (3-in-Channel) and achieves a 
higher level of specificity compared to the previous models, 
but lower levels of accuracy and sensitivity. The proposed 
model’s novelty lies in the use of ResNet18 (3-in-Channel) 
and its ability to achieve high specificity, which may have 
implications for the EMCI classification of individuals. The 
results of the deep learning-based diagnosis of Alzheimer’s 
disease can be explained using the proposed Explainable 
Artificial Intelligence (XAI) model. The XAI model allows 
for the interpretation of the results of the deep learning-
based diagnosis, making the results more transparent and 
understandable. This can be particularly useful for clinicians 
who may not have experience with deep learning models and 
want to understand why a certain diagnosis was made. The 
proposed approach compares favorably with existing meth-
ods for diagnosing Alzheimer’s disease using MRI and PET 
images. The concatenation-based feature fusion framework 
and the modified Resnet18 deep learning architecture pro-
vide a more comprehensive view of the brain and its func-
tioning by combining MRI and PET images. The experi-
mental results on the ADNI database show that the proposed 
approach achieved a higher classification accuracy compared 
to existing methods, demonstrating its effectiveness in the 
diagnosis of Alzheimer’s disease. Additionally, the proposed 
XAI model provides interpretability to the deep learning-
based diagnosis, making the results more transparent and 
understandable. Table 5 compares the proposed model with 
other existing works in the classification of AD.

6 � Conclusion

The paper proposed a methodology for combining neuroim-
aging data from PET and MRI images to make an early diag-
nosis of AD. We introduced a novel 3-channel phase feature 
learning model for early fusion for the early diagnosis of 
AD that concatenates and integrates MRI and PET neuro-
imaging data simultaneously. Our proposed model could 
learn latent representations of the multimodality data even 
in the presence of heterogeneity data; hence, the proposed 
model partially solved the issue with the heterogeneity of the 
MRI and PET data. This 3-channel phase feature learning 
offers maximum samples to be used during training based 
on multimodality data, thus more imaging modality data 
could be added to the model. We have achieved improved 
classification performance over existing techniques. Fus-
ing MRI and PET images using deep learning models with 
additional preprocessing of data is an important and relevant 
approach for the early diagnosis of AD. These models have 
the potential to improve diagnostic accuracy and can help 
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to identify imaging biomarkers that are associated with the 
disease. The results showed that the use of intensity normali-
zation and early fusion techniques significantly improved the 
classification accuracy of AD. The accuracy improvement 
was attributed to the better alignment of the image intensi-
ties and the integration of complementary information from 
both modalities. Further research is needed to optimize the 
use of these models in clinical practice by effectively fine-
tuning the hyperparameters. Furthermore, the use of data-
fused deep learning models can help to identify imaging 
biomarkers that are associated with AD, which can aid in 
the development of new therapies for the disease.
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