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Abstract
Neurorobotics has emerged from the alliance between neuroscience and robotics. It pursues the
investigation of reproducing living organism-like behaviors in robots by means of the embodiment
of computational models of the central nervous system. This perspective article discusses the
current trend of implementing tools for the pressing challenge of early-diagnosis of
neurodegenerative diseases and how neurorobotics approaches can help. Recently, advances in this
field have allowed the testing of some neuroscientific hypotheses related to brain diseases, but the
lack of biological plausibility of developed brain models and musculoskeletal systems has limited
the understanding of the underlying brain mechanisms that lead to deficits in motor and cognitive
tasks. Key aspects and methods to enhance the reproducibility of natural behaviors observed in
healthy and impaired brains are proposed in this perspective. In the long term, the goal is to move
beyond finding therapies and look into how researchers can use neurorobotics to reduce testing on
humans as well as find root causes for disease.

1. Introduction

Today, diagnosis of neurodegenerative diseases (NDs) (e.g. dementia and Parkinson’s disease) is a clinical
decision taken when symptoms start to be evident. However, detection while the person is still
pre-symptomatic [1] is fundamental to increase quality of life for patients by allowing them to receive
therapy that can slow or even change the course of progression of the disease [2]. Furthermore, diagnosis of a
specific ND, based only on history and examination leads to misdiagnosis especially when diseases have
similar clinical presentations [3–6]. The review by [7] substantiates the difficulty in differential diagnosis
(distinguishing between diseases with similar clinical presentations) when it comes to NDs. They note that
identification of key clinical features is a significant step in preventing or slowing down these diseases.
Researchers have been working towards solving these gaps by utilizing biomarkers that are quantifiable
indicators of the physiological/pathological processes (see reviews by [8–10]), and applying machine learning
(ML) algorithms to analyze subject data (see review by [5]). Nonetheless, these approaches have their
limitations and each of these reviews call for further research to increase both the accuracy of diagnosis and
the understanding of NDs. A recent review by [11], p 1105, reinforces this perspective, noting that ‘In face of
the obvious limitations in biological realism, virtual simulations provide extreme flexibility, since pathological
states can be simulated at different levels of the system, locally or globally, and different assumptions can be first
translated into both circuital and functional model features and then verified in the emerging behavior of the
simulated network.’

Early detection of NDs is required to increase the effectiveness of neuroregeneration, for example
through stem cell therapy. In this regard, molecular diagnostics [2] are promising but up until now, the best
diagnostic tool, neuropathology, is performed post-mortem. The future of diagnostics requires the
integration of biomarkers, imaging, and biochemical techniques [2]. However, this still demands clinical
trials to gather the necessary data. This perspective paper contends that the urgent demand for early
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Figure 1. A block diagram outlining the current and future approach for the diagnosis of NDs. Straight arrows signify the flow of
data between the blocks, the curved red arrow signifies model adaptation through an iterative process. (A) The current status
where only data collected from human beings (motion and neurophysiological) are evaluated for diagnosis of NDs. In the current
paradigm, diagnosis from motion data is typically subjective and performed by a clinician. (B) The future perspective where both
simulated data obtained throughout neurorobotics experiments and human data are fed into ML algorithms to extract
biomarkers of symptoms and fit the artificial brain models embodied in the neurorobot (curved red arrow).

diagnosis can be addressed by integrating alternative approaches and tools, such as neurorobotics
experiments, requiring cooperation between scientists from different areas such as neurology, biology,
computational neuroscience, and robotics. In particular, this multidisciplinary collaboration aims to further
our understanding of the relationship between disease progression and symptom development, improving
accuracy of diagnostic tools while reducing reliance on experiments involving humans.

Neurorobotics [12] studies the interaction of brain, body, and environment in closed perception–action
loops by using artificial systems such as rigid and soft robots. Robots are controlled by brain-inspired control
architectures in which algorithms simulate the central nervous system at varying levels of detail. The
intersection between robotics and neuroscience highlights many promising approaches and applications that
ultimately lead to intelligent robots [13] that can help with gaining a better understanding of the brain.
Figure 1 outlines our vision for the paradigm shift in brain disease investigation by adopting a neurorobotics
approach. This perspective highlights the need for an iterative process of developing ML tools to extract
biomarkers from the body’s motion and the respective neurophysiological activities. Biomarkers can also be
extracted from the simulated counterparts. Their benchmark will enable the validation of computational
models of the brain and the body.

This paper asserts that not only will this increase biological fidelity of embodied computational models
but also inform neuroscience [14] and medicine, leading to early diagnosis of NDs [5]. With the aid of high
fidelity brain models and advanced simulation tools, scientists can make up for the limitations of
neuroimaging techniques to generate and study activity from different brain regions while repeating
behavioral tasks through a neurorobot. Hence, the output from an artificial brain coupled with the ML
outcome will make early diagnosis of NDs possible. Altogether, novel neuroscientific theories about the
neural mechanisms of the brain can be uncovered using this perspective.

Some previous novel studies in neurorobotics focused on the embodiment of computational brain
models within robots with the aim of providing synthetic testbeds for replicating symptoms of NDs (see
review by [15]). Computational models are an invaluable tool in modelling pathological alterations and
consequently investigating causative mechanisms. In particular, they provide the opportunity to reproduce
physiological details at the neuronal level and to analyze experimental data collected from different brain
areas [16–19]. They can be descriptive or predictive, integrating data from in vitro and in vivo studies. Highly
realistic brain models would enable highly realistic embodiment in robots yielding to more realistic
observation of the brain skills and mechanisms set in place by brain-body interplay and interactions with
the environment [20, 21]. However, the lack of computational models based on data collected from humans
[18] hinders the reproducibility of much more complex mechanisms that occur during brain-body
interactions. Since this observation by [18], ‘The Virtual Brain’ on the EBRAINs platform [19] has been
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launched and offers simulation of large-scale networks and extensive data on human brains from patients
and healthy subjects. Thanks to simulation technology like The Virtual Brain, personalized computational
models can be created which can then be applied within personalized medicine to account for a patient’s
unique configuration of symptoms and biology (i.e. DNA markers, chromosomal makeup, hormone levels,
etc). In their review of computational models shaped by artificial intelligence (AI), [22] expand on this point,
where they state that personalized medicine requires improved data translation from clinical research.
Importantly, they also highlight that AI can be useful within personalized drug development. However, in
order to produce a ‘digital twin’ of a patient to test different treatments [23], a high level of data synthesis is
required. The heterogeneous data collected during clinical trials presents an obstacle in the process of creating
such precise models [24]. Here, ML can help to standardize data input, reducing the burden on clinical
researchers to structure collected data sets in a specific manner. This is also true for ‘organs on chips’ which
are implantable devices that can used to study disease and biological interactions by collecting data in vivo.
Synthesizing this kind of multi-modal data can inform the creation of digital twins and other computational
models [25]. This is a major advance that allows both the creation and analysis of human-like brain models.
The next step will be to incorporate embodiment of such models and continue optimization through ML.

The study of lesions occurring in different brain regions, originally led to theories about the functional
role of the impaired regions and mapping of certain functions/behaviors to specific brain regions [14, 26,
27]. However, these mappings that are based on single brain regions, usually neglect the interactions across
the brain areas which are crucial for cognition aspects [28]. Consequently, collecting multi-modal data from
diverse studies and combining their findings would allow researchers to build more accurate models of the
whole brain [29]. While many computational brain models are proposed for reproducing the neural
dynamics, such as spiking patterns, in different brain regions [30], verification of these models is not yet
formalized. The assessment of the accuracy of the developed computational models relies on either the
neurophysiological or behavioral markers. This perspective argues that compared to the limits of the
currently available neuroimaging techniques, the robotic embodiment of these models would facilitate
studying both types of markers simultaneously while monitoring the activity of all the simulated neurons.
Thus, benchmarking can be carried out by comparing data collected from neurorobotics experiments to that
recorded from different neuroimaging techniques of the biological counterparts [15]. Upon achieving high
biological fidelity, it would be possible to collect data from robotic embodiment experiments as a substitute
for human subjects. The combination of the previous key elements would facilitate the analysis of brain
diseases while being able to replicate neurophysiological aspects or biological phenomena in neurorobotic
embodiments. However, this requires new advancements within computational models in order to more
closely resemble brain regions.

The further development of ML tools and algorithms for biomarker extraction from a variety of data [5]
is expected to provide a better fitting procedure to replicate neural responses [30], and so enhance the
prediction of disease (i.e. as seen in Parkinson’s disease (PD)—[31]). Furthermore, realistic body models are
necessary to allow a better match between artificial and living system performance to show healthy and
impaired human-like skills. Nevertheless, a robotic embodiment allows fast generation of data through
repeatable experiments in a controlled environment. The main advantages of this approach are that scientists
can formulate hypotheses about the diseases of the human brain, avoid invasive testing on animals, and keep
human subjects away from monotonous and repetitive exercises [15].

In the following sections, the current status of interdisciplinary studies aimed at investigating NDs
leveraging computational modeling, bioinspired embodiment andmachine learning approaches is
presented together with the future needs. This perspective addresses the crucial need for devising new
strategies for early diagnosis, uncovering root causes of NDs, and automating the testing of novel treatments.

2. Current status

2.1. Computational brain models
In the current paradigm, computational modelling is already accepted as a viable method to answer open
questions regarding NDs [32]. There have been advances in understanding the effects of disease
characteristics on brain functionality [33–39], modelling disease progression [40, 41], and testing relevant
therapies or treatments [42–46] using computational modelling techniques.

Many studies have focused on the role of dopamine in NDs [33, 36, 38, 39, 47]. Results from these studies
are able to confirm biological hypotheses about dopamine but focusing on a single neurotransmitter limits
the amount of information that can be obtained. The review by [18] acknowledges that computational
models have significantly contributed to the understanding of the cause, symptoms, and treatments of PDs.
However, even with all that has been learned regarding the connection between dopamine and NDs, they still
leave the reader with many open questions. For example, how does dopamine loss effect brain areas outside
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the striatum? What is the correlation between neural dynamics and dopamine level? Furthermore, the
current studies tend to focus on single brain regions, again limiting the scope of impact. For example, even
though it has been shown that the cerebellum and basal ganglia are interconnected [48], computational
models ignore their subcortical communication. Computational models need to be implemented at multiple
levels in order to understand the many small elements interacting with each other during NDs [33].

Studies such as [34] look into specific symptoms of a neurological disorder and are able to find
correlations between symptoms and biomarkers. In the case of [34], they were able to link dopamine
depletion to akinesia and tremor. Lindahl and Kotaleski [38] correlated symptoms with neuronal dynamics,
such as firing synchrony and increased oscillations in the brain. These confirmations show the promise of
studying NDs with computational models, creating new insights into how different network characteristics
and parameters can affect behaviors. However, the underlying causes behind what initiates system changes
remains largely unknown [32]. Geminiani et al [14] took a step in this direction by replicating different types
of damage to the cerebellar cortex, successfully modelling the associated cerebellar impairment. Their
approach provided insight into how different types of damage translate to functional impairment and
supports the expectation that modelling impaired networks can lead to an understanding of causal
mechanisms.

Just as computational models can provide insight into neurological diseases, they can also help
investigate the effectiveness of treatment strategies. For example, [42, 44, 45] study the impact of deep brain
stimulation (DBS) on an ND by simulating DBS within a computational model. Others take a slightly
different approach, modelling the aberrant patterns in brain regions and then applying different treatment
techniques to understand which might be most effective [43]. Both methodologies have proven to be fruitful.
Instead of moving directly to human trials, these strategies can be tested with robots to add the benefits of
embodiment while allowing for fast data collection and precisely controlled, repeatable experiments [15].

2.2. Bioinspired embodiment
Robots are utilized as vessels to embody the computational models of different brain regions. This
embodiment allows researchers to study the neural mechanisms governing the activity in these regions and
how cognition arises. The limitations of neuroimaging have driven many scientists to use robotic
embodiment, which were called then brain-based devices (BBDs), to study the nervous system and the
collective behavior of brain areas [49, 50]. The fact that BBDs are embodied allows researchers to closely
monitor neural activity while interacting with the environment and executing specific tasks. Hence, viable
comparisons can be made between the embodied models and their biological counterparts. To study a
behavior selection mechanism, [51] embedded a model of the basal ganglia in a mobile robot to mimic an
animal foraging task of choosing between different objects. When choosing among multiple alternatives with
high salience, it showed behavioral disintegration which is similar to that observed in animals. This type of
study shows that embodiment of computational models is capable of reproducing biological behaviors.

Embodiment does not always require the robot to be mobile, in a study by [52], a model was built for the
premotor cortex, primary motor cortex, and cerebellum using a spiking neural network (SNN) based on the
Neural Engineering Framework to control a robotic arm. The cerebellar and cortical models played the role
of dynamics and kinematics adaptation, respectively. This work presented metrics to compare activity in the
simulated models to their biological counterparts. Moreover, it challenged the classical view concerning the
neural activity representation, where the findings refer to the neurons directly encoding torques, and hence
dynamics, not only the kinematics. In [21, 53], a spiking forward cerebellar model provided sensory
predictions to give corrections to a motor cortex-like spiking network to guide robot motion in
sensor-guided control while maintaining realistic firing rates. These studies were completed with a robot arm
and they did not account for the motion in a musculoskeletal arm. On the contrary, in [54], a bio-mimetic
cortical spiking model was coupled with a musculoskeletal arm model to achieve realistic dynamics from the
physiological perspective. One aim of this work was to provide a faithful musculoskeletal model that
considers the biomechanical and anatomical properties of human arms. Such biologically-realistic models
impose truthful constraints for the motion dynamics, hence they promote more realistic firing dynamics in
the modeled brain areas. Embodiment is not always about developing a computational model of the central
nervous system, [55] use a humanoid robot arm to investigate the plausibility of growing tissue for grafting
onto humans. This is a preliminary investigation showing promising results, reinforcing the idea that
embodiment is necessary for developing life-based technologies compatible with human physiology.

Neurorobotics can help improve reproducibility, explainability, and trustworthiness of neural model
by providing a physical instantiation of the model, which can be used to validate the model’s predictions and
behavior in a real-world setting. This allows researchers to test their models in a more realistic and
ecologically valid environment, which can help to increase the external validity and generalizability of the
research.
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Figure 2. The common approaches in neurorobotics research. The left block introduces the neurorobotics research paradigm
called exploration that focuses on replicating behavioral functions. The right block introduces the exploitation paradigm that
focuses on the biological plausibility of the embodiment process.

Reproducibility: Using standardized hardware platforms, such as the iCub robot [56], aids in
reproducibility, as the same physical systems can be used for different experiments, allowing for direct
comparison between results. This can help to ensure that differences in the results are due to the specific
neural model being tested, and not due to variations in the physical platform. Furthermore, by using
neurorobotics, it is possible to use real-world sensor data as input to the model, which can help to increase
the realism of the model and better replicate real-world scenarios.
Explainability: By providing a way to observe and analyze the behavior of the model in a real-world

setting, a deeper understanding of how the model is making decisions and behaving can be gained [57]. The
interpretability is thus improved through the use of visualizations and simulations that allow to see how the
model is processing information and making decisions. This can include visualizing the internal state of the
model, such as the activation of individual neurons, as well as visualizing the model’s output in the form of
simulated or real-world actions.
Trustworthiness: By providing a way to validate and test models in a real-world setting. This can include

testing the model’s predictions and behavior in a variety of different scenarios and conditions, and
comparing the model’s performance to that of human experts or other benchmark models.

To achieve these goals, two main approaches are followed in neurorobotics studies as presented in
figure 2. Exploration versus exploitation is a trade-off occurring in the human brain [58] so this naturally
translates to neurorobotics when attempting to model these biological systems. The first approach focuses on
mimicking behavior and performance with a robot that is guided by a bio-inspired functional model (Type
1, exploration, seen in figure 2) as in [51, 59]. Such models attempt to test new theories about the neural
mechanisms responsible for a specific behavior in humans/animals. While the second approach focuses on
the embodiment of biologically-plausible cellular-level neural models (Type 2, exploitation, seen in figure 2)
as in [21, 60]. Such models emulate validated models to reproduce neural activity of different brain regions
while engaged in a behavioral task. Hence, the former approach is considered more adequate for exploration
of novel models and the latter is more adequate for the exploitation process. Although these approaches are
not contradictory, some limitations (e.g. limited computational power necessary for real-time operation, the
lack of computationally-efficient biologically-realistic neuron models) reduce the possibility of employing
cellular-level models in an exploration theme.

Studies in the neurorobotics field are evolving and have advanced enough to begin studying neurological
diseases by computationally replicating lesions in relevant brain areas. Most of the studies that investigate
NDs focus on PD, as it is accompanied by various motor symptoms, making robotic embodiment a good
candidate to reproduce such symptoms. In [61], a model of the basal ganglia, built using leaky-integrator
neurons, was embedded in a LEGO mobile robot with the goal of demonstrating the ability to choose among
behavioral actions. In this study, PD and Huntington’s disease were modeled by changing the network
parameters to mimic the effect of the depletion of dopamine. However, the main focus for this study was to
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develop a bio-inspired behavioral selection mechanism for robotics. On the other hand, [59] were interested
in modelling the effects of PD. For this, they modelled the basal ganglia within a reinforcement learning
paradigm such that the indirect pathway was responsible for the exploration activity, while the direct pathway
was responsible for the exploitation, and the dopamine release was linked to the error in a reaching task.
Based on the amount of error, the dopamine controlled switching between exploration and exploitation. The
modeling of PD in this case involved reducing the dopamine release to reduce the complexity of the
exploration activity. Further work looking into PD was completed by [60] where they embedded a
computational model of the basal ganglia-thalamus-cortex in a humanoid-like robot. The model was built
based on data derived from experiments with rats to reproduce the tremor symptoms that characterize PD by
modulating the synaptic conductance as observed in cases of dopamine depletion. This approach is
promising as it embeds a faithful representation of the basal ganglia network from [62] in a robot. However,
more complex interactions with the environment are necessary to differentiate results obtained from
experiments conducted in simulation to that involving the rich dynamical interactions of a physical setup.

2.3. ML approaches
ML is a form of AI that enables discovery of patterns and relationships in high-dimensional, sparse, and
noisy datasets [63]. ML approaches can aid in early and precise diagnosis [64], in disease progress prediction
[65], and can reveal important insights into disease mechanisms. For example, promising findings have
shown that the time to perform clinical assessment can be decreased thanks to the application of ML
methods on motor function and language [5]. However, for rating scale assessment of the disease, they have
not yet been fully evaluated and validated [66]. With the aim to investigate brain activity, neuroimaging
techniques such as magnetic resonance imaging and computed tomography, electroencephalography (EEG),
and other methods can be applied together with ML-driven data analyses to distinguish patients affected by
an ND from healthy subjects [67], as well as to detect functional changes in neurons [68] such as fluctuations
of the neural oscillations that are mostly characterized by their frequency, amplitude, and morphology. In
order to apply the ML algorithms, data from healthy and unhealthy individual brains have to be gathered, for
instance collection of electrical frequency activity over time in different brain areas [5]. However, there exist
many ML algorithms and choosing the correct one is crucial to obtain reliable results.

The most commonly applied ML methods are supervised algorithms for classification and regression
(i.e. neural networks, random forest, support vector machines) that require large volumes of accurately
labelled data [64]. For example, they have been applied to predict PD among healthy and not healthy people
(see survey by [69]), and to classify neurodegenerative disorders according to symptoms [5]. In [70], scalable
and automated procedures enabled the generation of high-quality data that allowed to identify PD-specific
signatures in fibroblasts. On the contrary, unsupervisedML algorithms (i.e. neural networks, network
diffusion algorithm) do not require labelled data and they have been used for gene regulator analysis, disease
progression classification, image and video analysis, natural language processing, and pattern recognition
(see [5] for a review on these applications). Lastly, reinforcement learning approaches that are based on trial
and error learning have been widely used for automation and robotics, but not in medicine, though use is
increasing [71], for example for determining medication regimens or for modelling the progression of an
ND [72].

So far, studies using ML methods were limited to the analysis of motor symptoms, kinematics, and
wearable sensor data. On the contrary, non-motor symptoms are used as valid supportive diagnostic criteria
[73] but they lack specificity and are complicated to assess and/or yield variability from patient to patient.
Studies have revealed that features extracted from multiple data modalities could lead to high-patient level
diagnostic performance, while facilitating accessible and non-invasive data [31]. Therefore, by combining
different data modalities, we may identify relevant features that are not traditionally used in the clinical
diagnosis of PD. Actually, only a small number of studies validated these technical approaches in clinical
settings using human participants. Thus, there is a gap between model development and their clinical
applications. Supplying clinicians with ML approaches based on multi data modalities may support clinical
decision making in patients with ambiguous symptom presentations, and/or improve diagnosis at an earlier
stage [31].

An additional issue that may lead to challenges in the integration of newly acquired data and previously
published data, is the irregular reporting standards of methods and results in some of the published studies
using ML, as well as inaccurate descriptions of data acquisition and pre-processing protocols [64]. There is a
huge need for higher transparency of data collection, pre-processing protocols, model implementation, and
study outcome. In [70], authors applied reproducible, automated data generation protocols together with
unbiased deep learning techniques. These findings pave the way to uncover novel patient-specific cellular
phenotypes with valuable implications for personalized medicine such as new drug discovery strategies.

6



Neuromorph. Comput. Eng. 3 (2023) 013001 S Tolu et al

Relevant studies have been proposed for the detection of biomarkers for ND [8, 74], but the majority of
them are too expensive and rely on relatively invasive methods (such as positron emission tomography and
cerebrospinal fluid) that are also not widely available [75], thus limiting the applicability. Very recent
research findings showed that deep learning using convolutional neural networks (CNN) with novel
cost-effective biomarkers (e.g. blood-based biomarkers) [8], and brain image-based biomarkers [76] are
promising for ND diagnosis [64]. Moreover, their combination can help build a more comprehensive picture
of neuronal changes happening during the ND, which in turn is likely to improve disease prediction and
consequently enable therapy at the earliest possible stage [77].

3. Future needs and perspective

The current status section introduces some of the gaps in the current research landscape. This perspective
maintains that these limitations can be addressed through computational modelling, embodiment, and ML.

3.1. Computational brain models
3.1.1. Increase biological fidelity
Even though computational models have been used to successfully further understanding of ND effects and
treatments, these models can still be improved [18]. For example, the connection between circuit function
and disease progression is not currently known. It is not clear if it is strictly one way meaning that circuits
breakdown due to disease progression or if there is a circular influence so that circuit breakdown also further
contributes to progression [32]. In order to further the current research landscape, biologically-plausible
computational models must continue to be developed including different levels of abstraction from
single-purpose neural circuits to single brain areas and expanding to communication between brain regions.
These models can be elaborated by including different types of neurons [21], adding gap junctions [78],
including neuromodulators such as dopamine [79], and including non-neuronal glial cells [80] in order to
increase the fidelity of simulated network architectures and neuronal activity. The challenge faced when
developing increasingly complex models is that it is computationally expensive leading to increased energy
needs and long simulation times. There is always a compromise to be made to balance computational cost
versus model accuracy. Methods that reduce spiking activity while maintaining accuracy can help both
conserve energy and computational cost [81]. CNNs using artificial neurons can also be used in conjunction
with spiking models to increase efficiency such as the electrocardiogram (ECG) classification method
proposed by [82]. Han and Roy [83] also confirm an increase in energy efficiency by utilizing both artificial
and spiking neurons in an image recognition task. Energy can also be conserved using event-based hardware
platforms inspired by the brain known as neuromorphic chips. Implementations on these chips significantly
reduce computational load, for example, [84] show up to 90× fewer operations than a standard deep neural
network in an optical flow estimation task when using Intel’s Loihi2 chip. Based on these studies, we contend
that while increasing biological fidelity will increase complexity, there are mitigating steps that can be taken
to keep energy and computational costs at a reasonable level.

3.1.2. Identify underlying causes
As the models move closer to biology, the represented activity and behaviors can be analyzed to find the root
causes of ND because progression can be monitored on a neurophysiological level. The initiation of neural
degradation in different ways can be tested and compared to biological datasets at various stages of disease
progression. The ability to control and change single parameters at disease onset is unique to simulation
since there are so many interdependencies in living systems [85]. Complex computational models can take
into account the inter-dependency between biomarkers including both clinical and biomedical biomarkers.

3.1.3. Leverage simulation for testing of therapies
Understanding the onset and progression of disease naturally leads to a better understanding of how to treat
the symptoms, and halt or slow progression, as evidenced by studies in molecular diagnostics [2]. An
advantage of simulation is that the speed can be increased so that trials of new therapies do not need to occur
in ‘real time’ [15]. This reduces the time of the iterative process necessary for developing new therapies or
treatments.

3.2. Bioinspired embodiment
3.2.1. Optimize models through embodiment
By embedding these complex computational models in robots it becomes possible to take the motion
dynamics into consideration. Studying the body-environment interaction allows for the reproduction of
realistic firing patterns while executing behavioral tasks. However, real time operation is crucial in this case.
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Figure 3.Holistic approach. Figure 3 shows an envisioned use case scenario for the investigation on PD that consists of three main
stages: (1) PDModel creation. A computational brain model is built to simulate its neural mechanisms underlying the action
selection task thanks to dopaminergic modulation in the basal ganglia. Response patterns and firing rates obtained from the
literature are mimicked to obtain a simulated PD model. An ML algorithm empowers the classification and analysis of data
related to the neural activity (EEG signals) and movements (EMG signals) of a PD subject (e.g. a rat, a human) such that
biomarkers of PD symptoms are obtained. The disease model is then optimized and personalized based on the biomarker
analysis. (2) Testing. The model is nested into a closed-control loop to replicate the action selection behavior with a
musculoskeletal model of the PD subject through the interplay of the external stimuli and internal feedback. In this way, brain
pathology is directly linked to motor behavior. (3) Validation. Finally the model is validated against the biological data collected
from the PD subject. The proposed approach based on neuromusculoskeletal modelling and simulation offers a unique and
intuitive visual analytics tool for the clinicians to support a qualitative assessment and their medical decision tasks.

Therefore, it underlines the need to develop hardware (e.g. neuromorphic chips [86], FPGAs, GPUs) or
software (e.g. NEURON, NEST, Brian, GeNN) capable of running large scale networks in real time.

3.2.2. Increase accessibility of models
The development of graphical tools for rapid deployment of novel neural architectures by making the
creation of complex computational models accessible to clinical researchers is also necessary to accelerate the
research in the neurorobotics field. The NeuroRobotics Platform under the EBRAINS initiative [19] allows
embedding SNNs in different simulated robots [87], thus aiming for customizable and generalizable
implementations. However, the currently available interface needs specific programming skills which may
slow down progress for clinical researchers.

3.2.3. Create realistic brain-body-environment interactions
While neurorobots can provide new insights through the combination of motion and neurophysiological
data, a transition to musculoskeletal models is also crucial to further increase biological fidelity. There are
intrinsic properties of robots that are fundamentally different from biological bodies [88] and this has
implications for how the body interacts with the environment. The ability to then model the body ‘in vivo’
through musculoskeletal models allows the opportunity for a deeper understanding of NDs and can inform
new treatments [89].

3.3. ML
3.3.1. Find new biomarkers
Applying ML techniques allows handling/processing an enormous amount of multidimensional data
recorded from different brain regions. Given unified protocols for data collection from healthy subjects and
multiple disease groups, ML can help build better predictive models that consider the activity and signals
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Figure 4. Future of neurorobotics in neurodegenerative research, introducing a flow of iterative development. From biological
data collection (1), machine learning tools can analyze and compare biological signals to output from neurorobots (2), this
benchmark analysis can then be applied to the computational models to increase biological fidelity (3). The outcome of this
iterative development process are synthetic testbeds for NDs, creation of diagnostic algorithms for early diagnosis and prediction,
and the possibility to increase the personalization of patient care.

across brain regions. Novel biomarkers can then be introduced based on the developed models [29]. These
biomarkers can be extracted from neuroimaging, behavioral, and neurophysiological data collected in both
clinical and simulation trials. The availability of this multimodal data means their results can be
cross-referenced to create new biomarkers for diagnosing NDs early [5].

3.3.2. Establish a standardized methodology
ML algorithms are being applied to biological data with promising results [31, 64]. The next step is to
standardize a methodology for when to apply specific ML algorithms. The results of these algorithms must
be analyzed systematically to then determine when a biomarker exists versus a coincidental signal artifact.
Finally, the way that data from embodied computational models is compared to biological signals must also
be agreed upon to ensure benchmarking is consistent across models.

3.4. The future of ND research as a holistic approach
The introduced neurorobotics approach (figure 1(B)) aims to reveal the root causes or the mechanisms of an
ND. By achieving this, early diagnosis will be possible. Furthermore, by means of robotic embodiment, new
therapies can be introduced that avoid or limit the use of drugs and costly or invasive tests on human beings.
In the end, neurorobots will serve as a testbed to reproduce the brain activity under specific conditions, to
test novel neuroscientific theories, and to assess the effects of the novel rehabilitation therapies on the disease
mechanisms. Figure 4 visualizes this future perspective by highlighting how it expands on the current
paradigm. The embodiment of computational models is already a wide-spread approach (see current use in
figure 4). While these models need to increase in biological-plausibility by ways of using spiking neural
networks and musculoskeletal models, this perspective adds the novel neurorobotics approach of combining
bioinspired embodiment and ML algorithms to create a holistic methodology.

The embodied computational models provide data for analysis through ML, producing an output which
can be compared to biological data. The results are used to improve the computational models in an iterative
process of development. Once the models are optimized, the embodied models can be used for testing of
therapies and to monitor the neurophysiological and behavioral effects on a neurorobot before prescribing
experimental practices to patients. This understanding leads to the development of predictive algorithms
based on what is learned about the underlying mechanisms and causes of NDs and the impact of various
therapy regimens. Finally, this can customize healthcare for those living with an ND, allowing referral to
relevant specialists and tailored therapies. In this way, the brain model embodiment, together with imaging
analysis, and accurate AI for biomarker extraction will enable personalized neurorehabilitation strategies.

9
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Autonomous and intelligent robotic devices together with the incorporation of motivational elements,
e.g. games, have transformed rehabilitation to become more efficient and give patients a better access to it
[90], for example in recovering after a major operation, loss of sensory functions, stroke effects, etc.
Neurorobots have the potential to open-up cost-effective development of rehabilitation for treatment of ND.
However, if and how to achieve a proper rehabilitation for ND is still an open question. Therefore neural
control strategies that aim to regain neuroplasticity, and, thus, the control of movement, must be
investigated. With this aim, BBDs will be increasingly used to allow virtual testing in different scenarios and
optimize the rehabilitation routines. Moreover, the possibility to interact with a BBD through bio signals,
will make it possible to create a new generation of rehabilitation devices to overcome the current challenges
faced in the rehabilitation of subjects with brain and motor disabilities. Gaining a better understanding of
neural mechanisms is critical for endowing robots with superior interaction capabilities with their
environment, or for facilitating seamless robot-robot or human-robot interactions. Neurorehabilitation
robotics imposes some concerns related to robot ethics and the role of therapists necessitated by
human-robot interaction. The laws proposed by [91] will allow engineers and clinicians to work closely
together on a new generation of neurorobots.

4. Conclusion

The advances in computational modeling, embodiment, and ML have led us to the point where we can now
‘close the loop’ for iterative development of a biologically-plausible system. Researchers can use the various
strengths of each discipline to formulate new hypotheses, test current hypotheses, and move experimentation
with biomimetic models closer to biological processes. This requires a shift in the approach to researching
neurodegeneative diseases, requiring a novel interdisciplinary paradigm. It is the assertion of this perspective
that this approach will have a clear impact within studies of NDs—uncovering the underlying causes, leading
to early diagnosis, and automating the testing of cutting-edge rehabilitation strategies.
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