
REVIEW PAPER

Machine learning with multimodal neuroimaging data to classify
stages of Alzheimer’s disease: a systematic review and meta-analysis
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Abstract
In recent years, Alzheimer’s disease (AD) has been a serious threat to human health. Researchers and clinicians alike

encounter a significant obstacle when trying to accurately identify and classify AD stages. Several studies have shown that

multimodal neuroimaging input can assist in providing valuable insights into the structural and functional changes in the

brain related to AD. Machine learning (ML) algorithms can accurately categorize AD phases by identifying patterns and

linkages in multimodal neuroimaging data using powerful computational methods. This study aims to assess the contri-

bution of ML methods to the accurate classification of the stages of AD using multimodal neuroimaging data. A systematic

search is carried out in IEEE Xplore, Science Direct/Elsevier, ACM DigitalLibrary, and PubMed databases with forward

snowballing performed on Google Scholar. The quantitative analysis used 47 studies. The explainable analysis was

performed on the classification algorithm and fusion methods used in the selected studies. The pooled sensitivity and

specificity, including diagnostic efficiency, were evaluated by conducting a meta-analysis based on a bivariate model with

the hierarchical summary receiver operating characteristics (ROC) curve of multimodal neuroimaging data and ML

methods in the classification of AD stages. Wilcoxon signed-rank test is further used to statistically compare the accuracy

scores of the existing models. With a 95% confidence interval of 78.87–87.71%, the combined sensitivity for separating

participants with mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%; for separating

participants with AD from NC, it was 94.60% (90.76%, 96.89%); for separating participants with progressive MCI (pMCI)

from stable MCI (sMCI), it was 80.41% (74.73%, 85.06%). With a 95% confidence interval (78.87%, 87.71%), the Pooled

sensitivity for distinguishing mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%, with a

95% confidence interval (90.76%, 96.89%), the Pooled sensitivity for distinguishing AD from NC was 94.60%, likewise

(MCI) from healthy control (NC) participants was 83.77% progressive MCI (pMCI) from stable MCI (sMCI) was 80.41%

(74.73%, 85.06%), and early MCI (EMCI) from NC was 86.63% (82.43%, 89.95%). Pooled specificity for differentiating

MCI from NC was 79.16% (70.97%, 87.71%), AD from NC was 93.49% (91.60%, 94.90%), pMCI from sMCI was 81.44%

(76.32%, 85.66%), and EMCI from NC was 85.68% (81.62%, 88.96%). The Wilcoxon signed rank test showed a low

P-value across all the classification tasks. Multimodal neuroimaging data with ML is a promising future in classifying the

stages of AD but more research is required to increase the validity of its application in clinical practice.
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Introduction

AD is among the most widespread neurological conditions,

affecting over 20 million people globally, and is expected

to rise further in the next decades (Stefano et al. 2019). It

typically starts in middle or old age. AD is typically con-

sidered an irreversible disease without a cure. Both the

cardinal clinical symptoms and the disease proteins can be

used to classify neurodegenerative diseases, and AD is

classified as tauopathies based on the protein (Jeromin and

Bowser 2017). The abnormal accumulation of tau protein

and amyloid beta (Ab) caused tauopathies. Although, the

pathophysiologic knowledge of Alzheimer’s disease

derived from existing ideas such as amyloid beta deposi-

tion has greatly aided understanding of the disease process.

Amyloid beta may begin to build up in the brain 20 years

before the first indication of AD occurs, whereas the

accumulation of Tau protein occurs 15 years before the first

symptoms of AD appear (Goenka and Tiwari 2021). The

use of biomarkers that indicate pathophysiological alter-

ations suggesting the development of AD has contributed

significantly to the effort to identify the disease as early as

feasible. Researchers are identifying and refining radio-

logical which is not limited to neuroimaging, genetic, CSF

multisensory, speech, electroencephalogram (EEG), and

blood biomarkers. Simultaneously, clinical trials are eval-

uating the impact of biomarkers that potentially slow or

stop the progression of AD. Some of the neuroimaging

modalities such as functional magnetic resonance imaging

(fMRI), fluorodeoxyglucose positron emission tomography

(FDG-PET), structural Magnetic resonance imaging

(sMRI), and Diffusion Tensor imaging (DTI) have revealed

the related structural and behavioral alterations in the brain

during the illness process.

The pathogenic aspect of AD was shown by sMRI

scanning, which is frequently used to assess morphometric

alterations in the brain associated with the loss of synapses,

neurons, and dendritic de-arborization in AD progression

over time (Salvatore et al. 2018; Dubois et al. 2021).

However, structural imaging is insufficient to reflect

changes preceding protein buildup. Analysis has shown

that metabolic alterations occur before atrophy in people at

risk for AD and a functional biomarker can be identified

before the specific protein profiles connected to advanced

AD using FDG-PET (Ou et al. 2019; Veitch et al. 2022;

Kim et al. 2022). Considering the progression of AD and

cognitive impairment, fMRI techniques can track AD-re-

lated brain damage (Hojjati et al. 2017; Ahmadi et al. 2021;

Li et al. 2020). DTI gives information on the structure of

the brain in the form of Mean Diffusivity (MD), Fractional

Anisotropy (FA), and Echo Planar Imaging (EPI) intensi-

ties (De and Chowdhury 2021). Additionally, DTI can spot

early microstructural changes in AD patients before they

manifest as gross anatomical changes, changes that stan-

dard MRI typically misses.

Mild but measurable changes in thinking ability are seen

in people with Mild Cognitive Impairment (MCI), and MCI

patients have a high chance of developing AD (Kang et al.

2020). MCI is a medical disorder with symptoms that differ

from those associated with normal aging. Depending on

different stages, Progressive mild cognitive impairment

(pMCI), stable mild cognitive impairment (sMCI) (Lu et al.

2022) early mild cognitive impairment (EMCI), and late

mild cognitive impairment (LMCI) (Rallabandi et al.

2020), are the four categories under which MCI can be

classified. A fundamental change in the assessment of

biomarkers / cognitive markers to predict the transition

from MCI to Alzheimer’s disease is needed.

Deep Learning (DL) approaches have been used to

handle AD diagnosis difficulties successfully in recent

years by applying them to neuroimaging single modality.

Despite efforts to diagnose AD in the early stages with a

single modality, the correctness, and dependability of the

findings are open to doubt while thinking about the

establishment of established standards for precise AD

staging along with fewer AD-related physiological markers

(Kim et al. 2022). The functional alterations that occur in

the brain areas cannot be evaluated by sMRI, and sMRI is

inappropriate for capturing alterations before protein syn-

thesis. Although FDG-PET can deliver a more thorough

diagnosis of brain metabolic cognitive function but might

not be appropriate to identify the early indications of AD

before the neuronal loss occurs.

Considering this, efforts to find a biomarker specific to

AD using multimodal neuroimaging data to improve the

diagnostic performance of a computer-aided diagnostic

(CAD) system have been actively ongoing. The regional

distribution of white matter hypometabolism (WMH)

associated with Ab burden, glucose hypometabolism, and

gray matter volume reduction has also been examined from

MRI and PET (Gaubert et al. 2021; Pham et al. 2022). The

pairwise similarity measures for multiple modalities such

as VBM-MRI or FDG-PET were utilized for AD analysis

(Hao et al. 2020). Furthermore, multimodal connections

between tau deposition, gray matter atrophy, hypometa-

bolism, and white matter tract declension in atypical AD

were investigated from MRI, PET, and DT (Sintini et al.

2018). The selection of complementary features from each

modality is a predominant challenge faced by research

communities working in multimodal neuroimaging

(Sharma and Mandal 2023). Neuroimaging studies of AD

identify different brain regions depending on the imaging

modality, and several studies of specific symptoms within

AD have been highly inconsistent (Banning et al. 2019).

Additionally, the heterogeneity of neuroimaging modality
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has raised the concern of reproducibility crisis of AD

analysis with multimodal neuroimaging data owing to this,

a subfield within artificial intelligence (AI), ML, is

becoming more common in developing the automatic

sophisticated model for multimodal data in early detection

of AD.

Earlier this decade, many researchers focused on mul-

timodal learning to gather and combine latent representa-

tion data from several neuroimaging techniques. A growing

number of studies have looked at MRI and PET extract to

learn multilevel and multimodal features by transforming

the regional brain images into higher-level characteristics

that are more compact (Sarraf and Tofighi 1603; Lu et al.

2018; Abdelaziz et al. 2021; Jin et al. 2022). Similarly,

with the recent establishment of multimodal fusion, a

growing number of studies have proposed image fusion

methods for multimodal neuroimaging analysis in AD

diagnosis, and their effectiveness is evaluated using

machine learning (ML) algorithms as multimodal classi-

fiers (Lazli et al. 2019; Song et al. 2021). The purpose of

the fusion is to have a better contrast, fusion quality, and

improved model performance (Muzammil et al. 2020). The

successful utilization of multimodal image fusion coupled

with ML has shown that it improves the diagnosis of AD

(Veshki et al. 2022). The motivation for this study is based

on the heterogeneity of neuroimaging modalities and the

challenge of the selection of complementary features from

each modality (Goenka and Tiwari 2022a). The anatomical

and functional changes in the brain linked to AD may be

better understood thanks to neuroimaging techniques.

However, it is still unclear whether single-modality neu-

roimaging approaches can reliably and accurately diagnose

AD.

This study sought to determine whether multimodal

neuroimaging fusion coupled with ML is reliable and

effective to distinguish individuals with early symptoms of

AD from the terminal stage of AD using a systematic

review and measure the effectiveness of its classification

using a random effect meta-analysis. A comparable meta-

analysis was found in the literature search (Sharma and

Mandal 2023), but the procedure utilized in this system is

based on (Aggarwal et al. 2021) and is addressing the

following Research Questions (RQNs):

RQN1: What are the main discoveries and methods used

to detect AD using multimodal neuroimaging and ML?‘‘.

RQN2: What are the various fusion techniques utilized in

multimodal neuroimaging studies to facilitate

classification?

RQN3: What is the percentage usage of various fusion

techniques?

RQN4: What is the diagnostic accuracy of differentiating

between various stages of AD?

RQN5: What are the significant differences in the

performance of multimodal neuroimaging fusion for

the classification tasks?

The contributions of this study are as follows:

• This study provides a systematic review and meta-

analysis of the contribution of machine learning (ML)

to the accurate classification of the stages of Alzhei-

mer’s Disease (AD) using multimodal neuroimaging

data.

• The study identifies the potential of multimodal

neuroimaging data with ML in accurately classifying

different stages of AD. The authors conducted an

explainable analysis of the classification algorithms and

fusion methods used in the selected studies, which can

help researchers and practitioners to understand the

strengths and limitations of different methods.

• The study provides pooled estimates of sensitivity and

specificity for differentiating between AD and healthy

control participants, as well as for differentiating

between different stages of Mild Cognitive Impairment

(MCI) and early MCI from NC. These estimates can

help researchers and practitioners to evaluate the

performance of different methods and to compare their

results.

• The study highlights the need for additional research to

increase the validity of the application of multimodal

neuroimaging data with ML in clinical practice. This

can guide future research and development in this field.

Methodology

This section explains the study’s research techniques,

including the research questions, the search procedure, the

criteria for inclusion and exclusion, and the selection

execution. The Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) report (Moher

et al. 2009), was used to conduct and report this systematic

review. A systematic review was conducted to locate

studies that used multimodal neuroimaging learning or

multimodal neuroimaging fusion to categorize AD phases.

Only articles published as a full -text English Language

articles between January 2016 and August 2022 (included)

were chosen. Articles from before 2016 were excluded

because of the methodological (deep learning algorithm

and multimodal techniques) gap among earlier research

and the criteria used to make them hardly comparable.

We carried out a state-of-the-art search adding phrases

together using Boolean operators in IEEE Xplore, Science

Direct/Elsevier, ACM Digital Library, and PubMed data-

bases. The relevant subject search terms used are Term A:
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‘‘Multimodal imaging Fusion’’ OR ‘‘Multimodal Learn-

ing’’, Term B: ‘‘Alzheimer Disease’’, Term C: ‘‘Mild

Cognitive Impairment’’ OR ‘‘MCI’’, Term D: ‘‘deep

learning’’. Forward snowballing was also performed on

Google Scholar to find any relevant articles. The following

rule was created by combining these search keywords:

Term A AND Term B AND Term C AND Term D. The

eligibility criteria were applied after the removal of

duplicates to only choose the articles that included (1)

classification of MCI (EMCI or LMCI or pMCI, sMCI) to

AD, Stages of AD was diagnosed using internationally

accepted scores (3) use of multimodal neuroimaging data

(4) Imaging fusion techniques, a (5) classification tech-

niques utilizing ML algorithms (6) accuracy, sensitivity,

and specificity for quantitative analysis.

After choosing the appropriate number of studies, the

specified facts were extracted for each study: (1) authors

and year of publication, (2) Stages, (3) imaging fusion

techniques, (4) classification methods, (5) Validation

methods, (6) performance metrics score.

We also carried out an explainable analysis based on the

systematic evaluation conducted on the commonly used

XAI algorithms (Jin et al. 2020). These authors focused on

Post-hoc XAI algorithms in their evaluation which

explained trained black-box models by probing model

parameters and categorized Post-hoc XAI into three:

Activation-based, Gradient-based, and Perturbation-based.

We further classified the fusion methods into abstraction

levels and Performance evaluation analysis of image fusion

algorithms based on evaluation conducted by Hermessi

et al. (2021).

Data synthesis and analysis were carried out using a

metadta statistical program that pools diagnostic test data

in Stata. The HSROC model is applied to calculate pooled

sensitivity and specificity of selected studies. within- and

between-study heterogeneity, along with the correlation

between sensitivity and specificity, are all taken into con-

sideration by the hierarchical model (Lee et al. 2015). The

command ’’metandi tp fp fn tn‘‘ is used to get the diag-

nostic odds ratio (DOR), pooled sensitivity, pooled speci-

ficity, and likelihood ratio (LR). HSROC is achieved by

utilizing the command command ‘‘metandiplot tp fp fn tn’’.

Studies with the same type of diagnosis are considered for

meta-analysis. Wilcoxon signed-rank test (Derrac et al.

2011), is utilized to statistically compare the accuracy

scores of the existing models and determine if there are

significant differences in their performance when using

multimodal neuroimaging fusion for the classification of

pMCI versus sMCI, MCI versus NC, AD versus NC, and

EMCI versus NC.

Results

Search and Study selection

The flow of the survey procedure, as shown in Fig. 1,

depicts the analytical review process and the selection of

relevant articles at various phases. Database search yielded

2299 results, forward snowballing (Google Scholar) yiel-

ded another 50 records, and a total number of 2349 studies

were returned from the search. After removing duplicates

found due to the combined search, 2247 abstracts were

screened. Of these, the 1948 articles did not fulfill the

eligibility criteria based on title, abstract, and conclusion.

Two hundred and ninety-nine full papers were individually

accessed, and 213 Papers were excluded at this stage. 47

papers fulfilled inclusion criteria for the systematic review

and contained data for accuracy, sensitivity, and sensitivity

for meta-analysis as depicted in Fig. 1, and this expressed

the generic answer to RQN1 while the details are provided

in subsections of this section.

Summary of the selected studies are represented in

Table 1 while Table 2 provides the attributes of the

included participants.

Datasets

All studies analyzed in this systematic review used the

ADNI dataset, except the study (Schouten et al. 2016) that

used the OASIS dataset.

The Alzheimer’s Disease Neuroimaging Initiative

(ADNI) (Marcus et al. 2007) dataset is a publicly available

dataset that has been used in many studies on Alzheimer’s

Fig. 1 Flow Diagram of Selected Studies using PRISMA Chart
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Disease (AD). ADNI is a collaborative research effort

involving multiple institutions and funded by the National

Institutes of Health. The ADNI dataset includes longitu-

dinal data from individuals with AD, Mild Cognitive

Impairment (MCI), and healthy control (NC) participants.

The data includes clinical assessments, cognitive tests,

genetic information, and multimodal neuroimaging data

from Magnetic Resonance Imaging (MRI), Positron

Emission Tomography (PET), and cerebrospinal fluid

biomarkers. The data typically includes images of brain

structures, such as gray matter, white matter, and cere-

brospinal fluid, as well as functional images of brain

activity, such as regional cerebral blood flow or glucose

metabolism.

The Open Access Series of Imaging Studies (OASIS)

(Pan et al. 2021b) dataset is a publicly available dataset that

contains neuroimaging data and clinical information from

individuals with and without dementia. The dataset was

created to provide a resource for researchers to study the

brain and its changes over time in the context of normal

aging and neurodegenerative diseases such as Alzheimer’s

disease. The OASIS dataset includes T1-weighted MRI

scans, demographic information, and cognitive test scores

from over 1,500 individuals. The dataset is divided into

two subsets: a cross-sectional dataset and a longitudinal

dataset. The cross-sectional dataset includes MRI scans and

clinical data from over 400 individuals with Alzheimer’s

disease, mild cognitive impairment, and cognitively normal

individuals. The longitudinal dataset includes MRI scans

and clinical data from over 500 cognitively normal indi-

viduals, some of whom went on to develop cognitive

impairment or Alzheimer’s disease during the study period.

The OASIS dataset has been widely used in research on

Alzheimer’s disease and other neurodegenerative diseases,

as well as in studies on normal aging and brain develop-

ment. It has contributed to the development and validation

of machine learning models for Alzheimer’s disease diag-

nosis and classification, as well as to the study of structural

changes in the brain over time(Pan et al. 2021b). The

OASIS dataset is a valuable resource for researchers

studying the brain and its changes over time in the context

of aging and neurodegenerative diseases.

The multimodal neuroimaging data used in these data-

sets provide a rich source of information for machine

learning algorithms to identify patterns and classify dif-

ferent stages of AD.

Baseline methods

Baseline methods for AD recognition and stage classifi-

cation using the ADNI dataset typically involve using

clinical and cognitive assessments, as well as neuroimaging

data such as Magnetic Resonance Imaging (MRI) and

Positron Emission Tomography (PET) scans. In terms of

clinical assessments, commonly used measures include the

Mini-Mental State Examination (MMSE), Clinical

Dementia Rating (CDR), and the Alzheimer’s Disease

Assessment Scale-Cognitive subscale (ADAS-Cog). These

assessments can help diagnose and stage AD based on the

severity of cognitive impairment. Neuroimaging data can

also be used for AD recognition and stage classification.

MRI scans can be used to measure brain volume, cortical

thickness, and hippocampal atrophy, which are all known

to be associated with AD. PET scans can be used to

measure the accumulation of beta-amyloid and tau pro-

teins, which are also biomarkers of AD. Baseline methods

for AD recognition and stage classification using the ADNI

dataset typically involve using these clinical and cognitive

assessments, as well as neuroimaging data, to identify

individuals with AD or mild cognitive impairment, and to

differentiate them from healthy control participants.

Machine learning algorithms can be applied to these

baseline methods to develop more accurate and objective

methods for Alzheimer’s disease recognition and stage

classification. Several machine learning algorithms can be

used as baseline methods for AD recognition and stage

classification using the ADNI dataset. Here are some

examples:

• Logistic regression: This is a type of linear model that

can be used for binary classification problems (e.g., AD

vs. healthy controls). Logistic regression can be used to

model the relationship between the input features (e.g.,

clinical assessments, and neuroimaging data) and the

binary outcome variable (e.g., AD vs. healthy controls).

• Random forest: This is an ensemble learning method

that can be used for classification problems. Random

forest combines multiple decision trees to make a final

prediction. Each tree is trained on a random subset of

the input features, and the final prediction is based on

the majority vote of all the trees.

• Support vector machines (SVM): This is a type of linear

model that can be used for binary classification

problems. SVM finds a hyperplane that separates the

input data into two classes (e.g., AD vs. healthy

controls). The hyperplane is chosen to maximize the

margin between the two classes.

• Convolutional neural networks (CNN): This is a type of

deep learning model that can be used for image analysis

tasks, such as MRI or PET scans. CNNs can automat-

ically learn hierarchical representations of the input

data and are commonly used for object recognition

tasks. In the context of AD recognition, CNNs can be
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used to identify patterns in neuroimaging data that are

indicative of AD or MCI.

These machine-learning algorithms can be used as

baseline methods for AD recognition and stage classifica-

tion and can provide a starting point for developing more

accurate and sophisticated models. It is important to note

that the choice of algorithm will depend on the specific task

and the characteristics of the input data. Metaheuristics

approach such as spider monkey optimization algorithm,

Cuckoo Search optimization, Bat Inspired Algorithm, Ant

Lion Optimization, and Moth Flame Optimization has been

hybridized with ML, and utilized in CoVID-19, lung can-

cer, Retinal artery vein, Chronic Kidney, and diabetes

respectively (Kaur et al. 2023). Metaheuristics with ML

have also been utilized in the diagnosis of AD in MRI

images (Shankar et al. 2019; Chitradevi et al. 2021; Sayed

et al. 2017). However, it is important to note that the uti-

lization of metaheuristics in combination with ML tech-

niques has been limited in the context of multimodal

neuroimaging.

Features of neuroimaging data

The ranking of features of neuroimaging data from the

ADNI and OASIS datasets that have the greatest impact on

the medical diagnosis and stage classification of AD may

vary depending on the specific machine learning algorithm

and dataset used. However, some studies have identified

specific features that are consistently important across

multiple studies. For example, in a study by Liu et al.

(2015) that used the ADNI dataset, the authors found that

the most important features for distinguishing AD from

healthy controls were gray matter volume in the medial

temporal lobe and the entorhinal cortex. In a similar study

by Kung et al. (2021) that also used the ADNI dataset, the

authors found that cortical thickness in the entorhinal

cortex and the inferior temporal gyrus were the most

important features for distinguishing AD from healthy

controls. In another study by Gu et al. (2022) that used the

ADNI dataset, the authors found that the most important

features for distinguishing AD from healthy controls were

gray matter volume in the hippocampus, amygdala, and

temporal lobe, as well as cortical thickness in the medial

temporal lobe.

Table 2 Characteristics of Participants in the Included Study

Study Size Source

MCI/NC

Dong et al. (2022) 52/52 ADNI

Jia and Lao (2022) 35/50 ADNI

Lao and Zhang (2022) 203/181 ADNI

Ning et al. (2021) 200/99 ADNI

Peng et al. (2019) 125/100 ADNI

Ortiz et al. (2018) 111/68 ADNI

Aderghal et al. (2018) 443/241 ADNI

Khvostikov et al. (1801) 108/58 ADNI

kim and lee (2018) 99/52 ADNI

Shi et al. (2018) 99/52 ADNI

Ahmed et al. (2017) 58/52 ADNI

Suk et al. (2016) 99/52 ADNI

Tong et al. (2016) 74/36 ADNI

Lei et al. (2016) 204/101 ADNI

AD/NC

Dwived et al. (2022) 100/100 ADNI

Meng et al. (2022) 23/23 ADNI

Zhang et al. (2021) 282/603 ADNI

Wang et al. (2021) 34/50 ADNI

Shao et al. (2020) 160/160 ADNI

Hao et al. (2020) 160/211 ADNI

Ezzati et al. (2019) 249/424 ADNI

Feng et al. (2019) 93/100 ADNI

Feng et al. (2018) 93/100 ADNI

Cheng and Liu (2017) 93/100 ADNI

Zheng et al. (2016) 51/52 ADNI

Schouten et al. (2016) 77/173 OASIS

pMCI/sMCI

Xu et al. (2022) 55/138 ADNI

Zhang and Shi (2020) 105/13 ADNI

Gupta et al. (2020) 31/30 ADNI

Lee et al. (2019) 163/376 ADNI

Huang et al. (2019) 326/441 ADNI

Hojjati et al. (2017) 25/69 ADNI

Marcus et al. (2007) 702/409 ADNI

Choi and Jin (2018) 79/92 ADNI

Mathotaarachchi et al. (2017) 43/230 ADNI

LMCI/NC

Pan et al. (2021b) 80/84 ADNI

Zou et al. (2021) 82/78 ADNI

Lei et al. (2020) 44/44 ADNI

Fang et al. (2020) 297/251 ADNI

Yu et al. (2020) 39/28 ADNI

Kang et al. (2020) 70/50 ADNI

Pan and Wang (2022) 44/ 44 ADNI

Xing et al. (2019) 191/177 ADNI

Forouzannezhad et al. (2018) 296/248 ADNI

Table 2 (continued)

Study Size Source

Qiu et al. (2018) 44/44 ADNI
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In terms of stage classification, some studies have found

that different features may be important for distinguishing

between different stages of AD. For example, in a study by

Guo et al. (2020) that used the ADNI dataset, the authors

found that different features were important for distin-

guishing between mild cognitive impairment and AD, as

compared to distinguishing between mild cognitive

impairment and healthy controls. Specifically, cortical

thickness in the medial temporal lobe and the inferior

temporal gyrus were the most important features for dis-

tinguishing mild cognitive impairment from healthy con-

trols, while gray matter volume in the hippocampus,

amygdala, and entorhinal cortex were the most important

features for distinguishing mild cognitive impairment from

AD. The most important features of neuroimaging data for

medical diagnosis and stage classification of AD appear to

be gray matter volume and cortical thickness in regions of

the brain associated with memory and cognitive function,

such as the hippocampus, amygdala, and medial temporal

lobe. However, the exact features that are most important

may vary depending on the specific machine learning

algorithm and dataset used, and additional research is

needed to further understand the underlying neural mech-

anisms of AD and how they can be detected using neu-

roimaging data.

Explainable analysis of the selected studies

The visualization of classification results by the ML

models is vital, especially in critical fields like healthcare

(Chen et al. 2020). Ensuring that the machine learning

model can explain decisions, can also strengthen the pos-

sibility to know the model fairness, reliability, and

robustness of the model. Explain- ability is also important

to debug ML models and make informed decisions about

how to improve them. The activation-based method is the

most frequently used explanation method for interpreting

the predictions of CNN by creating a coarse localization

map that highlights the critical areas of the image for the

prediction outcome (Selvaraju et al. 2017; Jiang et al.

2021). Gradient-based methods gradient-based visualiza-

tion methods guided backpropagation, backpropagation,

and Grad-CAM are gradient-based visualization methods

that determine the gradient of the inference about the input

image to retrieve the spatial information of the input called

saliency map (Selvaraju et al. 2017; Huff et al. 2021). The

perturbation-based method produces a series of perturbed

images by modifying the input of the model and observing

the changes in the output which are expected to indicate

which parts of the input are very important (Ivanovs et al.

2021). The explainable analysis conducted on the forty—

seven selected studies is depicted in Table 3

Categorization of image fusion methods
into abstraction levels

The answers to RQN2 and RQN3 are provided in this

section. The goal of image fusion is to create a merged

image by combining information from multiple image (Liu

et al. 2018) modalities, and the abstraction level at which

information is combined when dealing with complemen-

tary information needs to be considered. The fusion

methods utilized by the forty- seven studies are classified

as three abstraction levels: Pixel-level fusion, Feature-level

fusion, and Decision-level fusion (Jin et al. 2020). Pixel–

level fusion combined multiple input images which could

be captured from different imaging devices or a single type

under different parameters settings into a fused image (Liu

et al. 2018; Liu et al. 2018; Wang et al. 2023). Feature-

level image fusion is an intermediate-level fusion based on

the comprehensive analysis of feature information extrac-

ted from the information of each image source to form

fused information(Wang et al. Feb. 2023; Xiao et al.

2020).Decision-level fusion includes fusion at an advanced

level and brings together the interpretations of data from

different imaging modalities obtained by local decision-

makers based on voting, inference, evidence theory, and

fuzzy integral (Xiao et al. 2020; Rajini and Roopa 2017).

Figures 2 and 3 gives the percentage usage of each of the

fusion level and the classifier for the fused information

respectively.

Table 4 summarizes the bivariate and HSROC param-

eter estimates with their standard errors and approximate

95% confidence interval (CI) in Stata. When differentiating

MCI from NC, AD from NC, pMCI from sMCI, and EMCI

from NC participants the pooled sensitivity was 83.77%

with 95% CI (78.87%, 87.71%), 94.60% with 95% CI

(90.76%, 96.89%), 80.41% with 95% CI (74.73%,

85.06%), 86.63 with 95% CI (82.43%, 89.95%), while

specificity was 79.16% with 95% CI (70.97%, 87.71%),

93.49 with 95% CI (91.60%, 94.90%), 81.44% with 95%

CI (76.32%, 85.66%), 85.68% with 95% CI (81.62%,

88.96%), respectively, as depicted in Table 4.

Figure 4a–d shows the HSROC curve of studies differ-

entiating MCI from NC, AD from NC, pMCI from sMCI,

and EMCI from NC participants respectively, and this

provides the answer to RQN4. Each study point in Fig. 4

was scaled according to the precision of sensitivity and

specificity in the study. The solid circle represents the

summary estimate of sensitivity and specificity for each of

the diagnosis (MCI vs NC, AD vs NC, pMCI vs sMCI, and

EMCI vs NC). The summary point is enclosed by a spotted

line denoting the 95% confidence area and a dashed line

denoting the 95% prediction area (the area within which

one is 95% certain the results of a new study will fall). The
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Table 3 Explainable Analysis

for the Selected Forty-Seven

studies

Study Post-hoc XAI algorithms

Activation based Gradient-based Perturbation based

Suk et al. (2016) X X X

Zheng et al. (2016) X X X

Schouten et al. (2016) X X X

Lei et al. (2016) X X X

Tong et al. (2016) X X X

Cheng and Liu (2017) X X X

Mathotaarachchi et al. (2017) X X X

Ahmed et al. (2017) X X X

Qiu et al. (2018) X X X

Kim and Lee (2018) 4 X X

Shi et al. (2018) X X X

Liu et al. (2018) X X X

Khvostikov et al. (2018) X X X

Aderghal et al. (2018) X X X

Forouzannezhad et al. (2018) X X X

Ortiz et al. (2018) X X X

Choi and Jin (2018) X X X

Lu et al. (2018) X X X

Feng et al. (2018) X X X

Feng et al. (2019) X X X

Huang et al. (2019) X X X

Peng et al. (2019 X X X

Lee et al. (2019) X X X

Hojjati et al. (2017) X X X

Zhang et al. (2019) X X X

Xing et al. (2019) X X X

Ezzati et al. (2019) X X X

Kang et al. (2020) 4 X X

Hao et al. (2020) X X X

Shao et al. (2020) X X X

Zhang and Shi (2020) X X X

Lei et al. (2020) X X X

Yu et al. (2020) X X X

Gupta et al. (2020) X X X

Fang et al. (2020) X X X

Pan et al. (2021a) X X X

Wang et al. (2021) X X X

Zuo et al. (2021) X X X

Ning et al. (2021) X X X

Zhang et al. (2021) X X X

Lao and Zhang (2022) 4 X X

Meng et al. (2022) X X X

Xu et al. (2022) X X X

Dwivedi et al. (2022) X X X

Jia and Lao (2022) X X X

Pan and wang 2022 X X X

Dong et al. (2022) X X X

Note: X, not available for the study; 4, available for the study
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pooled DOR for differentiating MCI from NC participants

was 19.61% with 95% CI (11.26%, 34.17%), and the

pooled DOR for differentiating AD from NC participants

was 251.75% with 95% CI (133.30%, 475.44%) while the

pooled DOR for differentiating pMCI from sMCI and

EMCI from NC participants was 18.01% with 95% CI

(11.04%, 29.38%), and 38.80 with 95% CI (22.46%,

67.03%), respectively. Table 5 shows the result of the

Wilcoxon signed ranks test for pairwise statistical com-

parison of the accuracy of the existing model depicted in

Table 1 for the classification of pMCI versus sMCI, MCI

versus NC, AD versus NC, and EMCI versus NC with 0.90

hypothetical value for comparison. Table 5 provides the

answer to RQN5.

Discussion

We looked at research that has already been published on

multimodal neuroimaging data with ML algorithms as a

fair approach to detecting stages of AD. According to the

selected 47 studies in the quantitative analysis, about three

studies reported the visualization of feature-level properties

using class activation maps. The Post-hoc XAI algorithms

for multimodal explanations provided by Jin et al. (2020)

are a helpful starting point for the explainable multimodal

model. Although most of all the studies included infor-

mation about the sensitivity and specificity of the model

decision the most relevant features to predict AD stages

after the fusion of information from different modalities are

not analyzed. Only 3 out of the 47 studies presented their

results with some visualization of the relevant brain regions

for the classification of AD stages. In terms of the fusion

methods, we observed that the pixel-level methods

(Dwivedi et al. 2022) used techniques based on multiscale

decomposition (Wavelet transform), wherein the decom-

position transform is used to first break down the source

images into multiscale coefficients. Wavelet transforms

have been proven to be effective at extracting information

details from one image to inject them into another image

based on additions, substitutions, or strategy choices. This

technique could capture both location and frequency

information, and it could extract spatial structures over a

range of sizes, thereby being able to separate high fre-

quencies from low frequencies. Most of the studies utilized

feature-level methods which operate on features extracted

from the images, and the extracted information is achieved

using some intelligent computing techniques such as

machine learning based methods (Zuo et al. 2021; Xu et al.

2022), region-based algorithms (Pan and Wang 2022), and

similarity-matching to content (Dong et al. 2022). Machine

learning-based methods (CNN) of multimodality fusion is

an effective medical image analysis method (Matho-

taarachchi et al. 2017; Huang et al. 2019; Jiang et al. 2021;

Liu et al. 2018) for multi-class classification (Goenka and

Tiwari 2022b, c). Authors in Daneshtalab et al. (2019)

produced an accuracy of 94.2% which is a better perfor-

mance than that (Qiu et al. 2018) with an accuracy of

84.0%. Both studies fused information extracted from

sMRI and DTI images, but the study with machine learn-

ing-based methods (Kang et al. 2020) performed better.

From Fig. 3, it is shown that feature-level fusion has 75%

usage by the included studies.

A preferred abstraction by most of the researchers was

feature-level fusion due to its capability of proving more

valid results in the case of compatible features (Danesh-

talab et al. 2019; Agarwal and Desai 2021). However, the

concatenation of compatible features may produce an

extremely feature vector that makes the computational load

Fig. 2 Percentage Usage of Fusion Level based on the Included

Studies

Fig. 3 Percentage Usage of Classifiers by the Included Studies
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more difficult (Nachappa et al. Apr. 2018). Several other

studies used decision-level fusion in which features are

ascertained and extracted from each source image, then

categorized with regional classifiers, and then decision

rules are utilized to combine the information (Peng et al.

2019; Fang et al. 2020). Although decision-level-fusion

aimed to support accepted interpretations and comprehen-

sions, the limitation resides in the requirement for prior

Table 4 Summary of Bivariate

and HSROC Parameter
No studies/Diagnosis Parameters Coefficient Standard Error [95% Conf. interval]

9/pMCI versus sMCI Sensitivity

Specificity

0.80412

0.81443

0.02634

0.02377

0.74733

0.76327

0.85069

0.85661

Covariance between estimates of E(logitSe) and E(logitSp) .0047818

15 / MCI versus NC Sensitivity

Specificity

0.83775

0.79163

0.02248

0.03709

0.78874

0.70971

0.87716

0.85515

Covariance between estimates of E(logitSe) and E(logitSp) 0 .0011304

13/AD versus NC Sensitivity

Specificity

0.94602

0.93491

0.01506

0.00846

0.90768

0.91621

0.96898

0.94966

Covariance between estimates of E(logitSe) and E(logitSp) -0.0005566

10/EMCI versus NC Sensitivity

Specificity

0.86636

0.85684

0.01909

0.01866

0.82431

0.81624

0.89956

0.88968

Covariance between estimates of E(logitSe) and E(logitSp) 0 .013727

Fig. 4 HSROC Curve for Included Studies: a MCI vs NC, b AD vs NC, c pMCI vs sMCI, d EMCI vs NC

Table 5 Wilcoxon signed ranks

test Result for pairwise

statistical

No studies/diagnosis P value

9/pMCI vs sMCI 0.00390

15 / MCI vs NC 0.00006

13/AD vs NC 0.00024

10/EMCI vs NC 0.00195
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knowledge-making algorithms to be very complex (Jin

et al. 2020; Lahat et al. 2015). Therefore, considering the

effect of fusion strategy on the performance of the classi-

fication model, we cannot say categorically that a particular

fusion strategy is preferable over the others. In all of the

fusion levels identified in the included studies, the objec-

tive evaluations of the fusion methods’ performances were

not considered in all of the included studies, and this

evaluation would have helped to assess the image noise,

resolution differences between images, and computational

complexity from fused images (Kaur et al. 2021). These

evaluations would have also provided more insights into

the studies utilizing fused images given the percentage of

information retained from source images, level of synthetic

information produced, and the level of noise (Huang et al.

2020). However, significant progress has been recorded in

other domain using pixel fusion-level (Singh et al. 2018;

Liu et al. 2021a). Another important finding from this study

is that generalization and stability ability of the multimodal

model was not further verified as shown in Table 1. None

of the studies tested their model in different datasets, and as

for validation methods, 29 studies selected cross-validation

with different number of folds. Leave -one-out cross vali-

dation was selected in 3 studies while random -split vali-

dation method was selected in 5 studies. Finally, 10 studies

utilized the train/test method of validation.

The results of the meta-analysis are listed in Table 3. We

used a bivariate model to directly provide pooled sensi-

tivity and pooled specificity with corresponding 95% CI for

four different diagnoses of AD on multimodal neu-

roimaging data. Sensitivity and specificity are chosen as the

main outcome measures in the meta-analysis of diagnostic

accuracy studies producing dichotomous index test results

because most primary studies report results in pairs of

sensitivity and specificity. To the best of our knowledge,

this is the first comprehensive review and meta-analysis to

look at the diagnostic value of multimodal neuroimaging

data for AD diagnosis.

Because the analysis is bivariate, we may test for vari-

ations in either sensitivity or specificity or both, between

the four diagnoses of AD extracted from the 47 studies.

Considering the 47 studies included in the quantitative

analysis, the pooled sensitivity and pooled specificity

results show that the pooled sensitivity and specificity of

studies diagnosing pMCI versus sMCI is significantly

lower than that of other studies. It shows that studies with

MCI vs NC are a more sensitive test than pMCI versus

sMCI, but at the cost of more false positive test findings

and a resulting poorer specificity. These results, therefore,

suggest favorable sensitivity and specificity of multimodal

neuroimaging-based models when compared to single

modal neuroimaging–based models. The result of the

pooled DOR also indicates heterogeneity between studies,

with wide CI indicating the need for more and better-

powered studies. The result of the Wilcoxon Signed Ranks

Test shows that the obtained P-value from each of the

classification tasks is less than the typical significance level

of 0.05, which suggests that there is strong evidence to

reject the null hypothesis. This indicates that there is a

significant difference in the accuracy of the existing mod-

els. The results in Table 5 suggest that the classification

model can distinguish between individuals with cognitive

impairment and those without it, with high accuracy. This

finding implies that the classification model is particularly

effective at distinguishing between these two groups. The

low p-value suggests that the model’s accuracy in classi-

fying individuals as MCI or NC is significantly better than

the other three classification tasks.

No study included in the analysis had more than 700

individuals, which raises questions regarding overfitting,

most especially for the feature-level fusion. Generally,

unsupervised, semi-supervised, supervised, and reinforce-

ment learning are the several subtypes of ML (Kang and

Jameson 2018). Most of the studies used supervised algo-

rithms as depicted in Figure with the most common choice

being SVM. However, supervised learning is subject to

overtraining and overfitting (Kernbach and Staartjes 2022).

Thus, the supervised learning algorithm must therefore be

continually retrained to retain a good classification per-

formance when exposed to new input data. Also, while

semi-supervised learning can infer new knowledge,

supervised learning cannot. The former is of higher

importance, given the complexity of AD stages. Due to

this, cutting–edge semi-supervised learning such as auto-

encoder displayed similar performance to supervised ones

such as SVM and CNN. Studies utilizing semi-supervised

learning approaches such as stacked auto-encoder (Lao and

Zhang 2022) or RNN (Feng et al. 2019) reported accuracy,

sensitivities, and specificities over 92%, and 83% for AD

vs NC, pMCI versus sMCI binary classification respec-

tively, but utilize limited sample sizes as depicted in

Table 2. Consequently, there is a need for research into

semi-supervised algorithms for categorizing AD stages.

Although the utilization of metaheuristics with ML has

shown promise in various medical domains, including the

diagnosis of diseases such as COVID-19, lung cancer,

retinal artery veins, chronic kidney, and diabetes, its

application in multimodal neuroimaging is relatively

limited.

Comparison with existing studies

There are a few reviews in this research area. Sharma et al.

(2023), conducted a multimodal neuroimaging data review

that focused on feature selection, feature scaling, and
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feature fusion. The conclusion for the further study rec-

ommended a robust multimodal ML-based classification

model trained on features extracted from an in-house cre-

ated dataset. Nitika and Shamik (Goenka and Tiwari

2022a) focused on brain-imaging biomarkers based on

deep learning frameworks. This review to the best of our

knowledge gives a detailed overview of research trends in

multimodal neuroimaging for AD and analyses them in

various strategies namely: fusion level abstraction, ML

method, explainability method, and dataset. This survey

followed the procedure laid down in Aggarwal et al. (2021)

whose focus was basically on the diagnostic accuracy of

ML in medical imaging. Table 6 shows the comparison of

this survey with existing ones.

Conclusion

This study shows the potential of multimodal neuroimag-

ing data with machine learning algorithms in accurately

classifying different stages of Alzheimer’s Disease. The

study performed a systematic review and meta-analysis to

evaluate the impact of ML methods on the classification of

AD stages. The results show that Machine learning with

multimodal neuroimaging data holds great promise for

accurately classifying Alzheimer’s disease stages. The

study also analyzed the classification algorithms and fusion

methods used in the selected studies, providing insights

into their strengths and limitations. This information can

facilitate researchers in comprehending the diverse

methodologies at their disposal and enable them to make

judicious choices while devising classification models for

Alzheimer’s disease stages, utilizing multimodal neu-

roimaging. This study also provides the explainability

analysis across the selected studies, and it shows that

explainability was not available for the majority of the

studies, which raises a concern about the reliability of

model decisions.

The significant degree of variability or heterogeneity

among the research included in the analysis is one of the

study’s limitations. This implies that the imaging modali-

ties employed, the image preprocessing methods used, and

the classification algorithms used to evaluate the data

varied amongst the researchers. Additionally, this review

excluded studies that did not report sensitivity and speci-

ficity as performance metrics for the classification models.

Overall, while the study provides important insights into

the potential of machine learning and neuroimaging data

for diagnosing AD, these limitations suggest that more

research is needed to fully explore and validate these

approaches.

Future research should focus on the exploration of other

Alzheimer’s disease diagnosis methods with multimodal

imaging based on machine learning and metaheuristics

approach (Sun et al. 2022; Liu et al. 2021b). The research

focus could also be on increasing the sample size for

analysis.
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