
1.  Introduction
Langmuir probes are widely used to characterize space plasma and laboratory plasma. A variety of Langmuir 
probe geometries are being used, such as spherical (Bhattarai & Mishra, 2017), cylindrical (Hoang, Clausen, 
et al., 2018), and planar probes (Johnson & Holmes, 1990; Lira et al., 2019; Sheridan, 2010). Probes can be 
operated in sweep mode (Lebreton et al., 2006), harmonic mode (Rudakov et al., 2001), or fixed biased mode 
(Jacobsen et al., 2010), for different types of missions and measurements. Despite operational differences, all 
Langmuir probes consist of conductors exposed to plasma to collect current as a function of bias voltage. A 
common approach to infer plasma parameters from Langmuir probes is to sweep the bias voltage and produce 
a current-voltage characteristic, which can be analyzed using theories such as the Orbital Motion-Limited 
(OML) (Mott-Smith & Langmuir, 1926) theory, the Allen-Boyd-Reynolds (ABR) theory (Allen et al., 1957; 
Chen, 1965, 2003), and the Bernstein-Rabinowitz-Laframboise (BRL) theory (Bernstein & Rabinowitz, 1959; 
Laframboise, 1966) to obtain plasma parameters such as density, temperature, and satellite floating potential. 
The temporal and, on a satellite, the spatial resolution of Langmuir probe measurements are determined by 
the sweep time, which varies based on the mission's scientific need and available resources. Considering the 
orbital speed to be around 7,500 m/s for a satellite in low Earth orbit (LEO), the spatial resolution of sweep 
bias Langmuir probe can vary from tens of meters, to kilometers, depending on the sweep frequency. In order 
to study the formation of density irregularities that scale from meters to tens of kilometers at high and low 
latitudes, a sampling frequency of near 1 kHz is required (Hoang, Røed, et al., 2018; Jacobsen et al., 2010). 
A solution, proposed by Jacobsen is to use multiple fixed biased needle probes (m-NLPs) to sample plasma 
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simultaneously at different bias potentials in the electron saturation region (Jacobsen et  al.,  2010). This 
approach would eliminate the need for sweeping the bias voltage, and greatly increase the sampling rate of the 
instrument.

The first inference models for m-NLPs relied on the OML approximation, from which the current Ie collected by 
a needle probe in the electron saturation region is written as:

𝐼𝐼𝑒𝑒 = −𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒
2

√

𝜋𝜋

√

𝑘𝑘𝑘𝑘𝑒𝑒

2𝜋𝜋𝜋𝜋𝑒𝑒

(

1 +
𝑒𝑒(𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑏𝑏)

𝑘𝑘𝑘𝑘𝑒𝑒

)𝛽𝛽

,� (1)

where ne is the electron density, A is the probe surface area, e is the elementary charge, k is Boltzmann's constant, 
Te is the electron temperature, Vf is the satellite floating potential, Vb is the bias potential of the probe with 
respect to the satellite, and β is a parameter related to probe geometry, density, and temperature (Hoang, Røed, 
et al., 2018; Marholm & Marchand, 2020). Several assumptions were made in the derivation of this inference 
equation; such as the probe length must be much larger than the Debye length, and the plasma is non-drifting. If 
these assumptions are valid, then β = 0.5, and as first suggested by Jacobsen, a set of m-NLPs can be used to infer 
the electron density independently of the temperature (Jacobsen et al., 2010). For a satellite in near-Earth orbit 
at altitudes ranging from 550 to 650 km, we can expect a Debye length of around 2–50 mm, and an orbital speed 
of around 7,500 m/s. A common length for m-NLP instrument used on small satellites is ∼25 mm (Bekkeng 
et al., 2010; Hoang et al., 2019; Hoang, Clausen, et al., 2018), which is often comparable to, and sometimes 
smaller than the Debye length. In lower Earth orbit, ion thermal speeds are usually less than the orbital speed, 
while electron thermal speeds are usually higher than the orbital speed. Thus, the orbital speed is expected to 
mainly affect ion saturation region currents for Langmuir probes. However, electrons can only penetrate the ion 
rarefied wake region behind the probe as much as ambipolar diffusion permits (Barjatya et al., 2009). As a result, 
electron saturation currents are also influenced by an orbital speed. One consequence is that the β = 0.5 assump-
tion does not hold in Equation 1, and a better approximation for the current is obtained with β values between 0.5 
and 1. For example, in a hot filament-generated plasma experiment, Sudit and Woods showed that β can reach 
0.75 for a ratio between the probe length and the Deybe length in the range of 1–3. For larger Debye lengths, 
they also observed an expansion of the probe sheath from a cylindrical shape into a spherical shape (Sudit & 
Woods, 1994). Ergun and co-workers showed that with a ram speed of 4,300 m/s in their simulations, the current 
collected by a 40.8 cm needle probe is better approximated with Equation 1 using a β value of 0.67 instead of 
0.55 calculated in a stationary plasma (Ergun et al., 2021). In the ICI-2 sounding rocket experiment, β calculated 
from three 25 mm m-NLPs varied between 0.3 and 0.7 at altitudes ranging from 150 to 300 km (Hoang, Røed, 
et al., 2018). Simulation results by Marholm et al. showed that even a 50 mm probe at rest can be characterized by 
a β ∼ 0.8 (Marholm et al., 2019), in disagreement with the OML theory. In practice, needle probes are mounted 
on electrically isolated and equipotential guards in order to attenuate end effects on the side to which they are 
attached. The distribution of the current collected per unit length is nonetheless not uniform along the probe, as 
more current is collected near the end opposite to the guard. A study by Marholm and Marchand showed that for 
a cylindrical probe length that is 10 times the Debye length, β is approximately 0.72. For a probe length that is 30 
times the Debye length, β is approximately 0.62, and with a guard, this number is reduced to 0.58 (Marholm & 
Marchand, 2020). Although this number approaches 0.5, 30 times the Debye length is a stringent requirement for 
OML to be valid, and it is hardly ever fulfilled in practice. Experimentally, Hoskinson and Hershkowitz showed 
that even with a probe length 50 times the Debye length, β is approximately 0.6, and the density inference based 
on an ideal β = 0.5 is 25% too high (Hoskinson & Hershkowitz, 2006). Barjatya estimated that even a 10% error 
in β (to 0.55) can result in a 30% or more relative error in the calculated density based on the β = 0.5 assumption 
(Barjatya & Merritt, 2018). In what follows, we find that densities estimated using Equation 1 assuming β = 0.5 
are about three times larger than the known values used as input in our simulations, as illustrated in Section 2.4.1. 
This is consistent with findings in Barjatya and Merritt (2018) and Guthrie et al. (2021), considering β calculated 
in our simulation is in the range of 0.75–1. Another approach proposed to account for the fact that β is generally 
different from 0.5, consists of determining the ne, Vb, Te, and β, as adjustable parameters in nonlinear fits of 
measured currents as a function of voltages. This led to remarkable agreement with density measured using a 
radio frequency impedance probe on the international space station (Barjatya et al., 2009, 2013; Debchoudhury 
et al., 2021). This method was originally applied to a probe operated in sweep voltage mode, but it can be straight-
forwardly adapted to fixed bias m-NLP measurements (Barjatya & Merritt, 2018; Barjatya et al., 2009; Hoang, 
Røed, et al., 2018).
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In the following, we assess different techniques to infer plasma densities, and satellite potentials from fixed bias 
needle probe measurements based on synthetic data obtained from kinetic simulations. We also present a new 
method to interpret m-NLP measurements based on multivariate regression. Our kinetic simulation approach, the 
construction of a synthetic data set, and different models to infer plasma parameters are presented in Section 2. In 
Section 3, the various models are assessed using the synthetic data set. In Section 4, the same models are applied 
to NorSat-1 data, to infer densities and satellite potentials from in situ measured currents. Section 5 summarizes 
our findings and presents some concluding remarks.

2.  Methodology
In this section, we briefly describe our kinetic simulation approach, and how it is used to construct synthetic data 
sets used to train and validate inference models, using two regression techniques. We then describe the various 
models to infer density, and satellite potential from m-NLP measurement.

2.1.  Kinetic Simulations

The space plasma parameters considered in our simulations are selected so as to be representative of condi-
tions expected for a satellite in low Earth orbit at altitudes ranging between 550 and 650  km. This is done 
by sampling ionospheric plasma parameters using the International Reference Ionosphere (IRI) (Bilitza 
et  al.,  2014) model in a broad range of latitudes, longitudes, altitudes, and times as shown in Figure 1. The 
ranges considered for these parameters are summarized in Table 1. Forty-five sets of plasma parameters approx-
imately evenly distributed in this parameter space are selected as input in simulations, as shown in numbered 
squares in Figure 1. The three-dimensional PIC code PTetra (Marchand, 2012; Marchand & Lira, 2017) is used 
to simulate probe currents in this study. Cross comparisons were made between PTetra simulation results and 

Figure 1.  Scatter plot of plasma parameters obtained from the IRI model, corresponding to different latitudes, longitudes, altitudes, and times, as listed in Table 1. 
The x and y axes, and the color bar refer respectively, to the electron density, electron temperature, and the ion effective mass. Numbered squares identify the set of 
parameters used in the kinetic simulations.
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analytic results under conditions when those are valid, and with other inde-
pendently developed simulation codes, and show excellent agreement (Deca 
et  al.,  2013; Marchand et  al.,  2014). In PTetra, space is discretized using 
unstructured adaptive tetrahedral meshes (Frey & George, 2007; Geuzaine & 
Remacle, 2009). Poisson's equation is solved at each time step using Saad's 
GMRES sparse matrix solver (Saad, 2003) in order to calculate the electric 
field in the system. Then, electron and ion trajectories are calculated kineti-
cally using their physical charges and masses self consistently. The mesh for 
the m-NLP and the simulation domain illustrated in Figure 2, is generated 
with GMSH (Geuzaine & Remacle,  2009). The needle probe used in the 
simulation has a length of 25 mm and a diameter of 0.51 mm, as those on 
the NorSat-1. The needle probe is attached to a 15 mm long and 2.2 mm 
diameter guard which is biased to the same voltage as the probe. The outer 
boundary of the simulation domain is closer to the probe on the ram side, 
and farther on the wake side, as shown in Figure 2. The probes are assumed 
to be sufficiently far on the ram side, away from other satellite components, 
to be unaffected by their presence, and are identical except for their biases. 
A single probe is simulated at a time, and a synthetic solution library is then 
constructed by simulating the probe under different plasma conditions and 

voltages as described in Section 2.2. The simulations are made using two different domain sizes depending on 
the Debye length of the plasma. For plasma densities below 2 × 10 10 m −3 corresponding to a Debye length of 
1.9–7.2 cm, a larger domain is used. For plasma densities above 2 × 10 10 m −3, corresponding to a Debye length 
of 0.2–2.2 cm, a smaller domain with finer resolution is used. The simulation size, the resolution, the number 
of tetrahedra, and the corresponding Debye length are summarized in Table 2. There is overlap between the two 
simulation domains for simulations with Debye lengths around 2 cm. No obvious difference was found in the 
simulated currents, indicating that simulation results from both domains are consistent in the transition range. 
Simulation results from both domains are included when training the regression models. All simulations start 
initially with 100 million ions and electrons, but these numbers vary through a simulation, due to particles being 
collected, leaving, or entering the domain. In the simulations, the probe is segmented into five segments of equal 
lengths as shown in Figure 2, making it possible to estimate a rough distribution of the current along its  length. 
The current used to build regression models is a sum of the currents of the five different segments. The orbital 
speed of the satellite is assumed to be fixed at 7,500 m/s in the simulations, with a direction perpendicular to 
the probe. For the voltages considered, probes are expected to collect mainly electron currents. For simplicity, 
only two types of ions are considered in the simulation, O + and H + ions, and no magnetic field is accounted for, 
which is justified by the fact that the Larmor radius of the electron considered is much larger than the radius of 
the probe. NorSat-1 satellite has a Sun-synchronous orbit, thus moving approximately parallel to the magnetic 
field near the equator. As a result, in these regions 𝐴𝐴 𝑉𝑉 × 𝐵⃗𝐵 should be small at low and mid magnetic latitudes, and 
it is not accounted for in the simulations.

2.2.  Synthetic Solution Library

In order to assess the inference skill of a regression model, a cost function is defined with the following proper-
ties: (a) it is non-negative, (b) it vanishes if model inferences agree exactly with known data in a data set, and (c) 

it increases as inferences deviate from actual data. The cost functions used in 
this work are: the root mean square error,

RMS =

√

√

√

√
1

�����

�����
∑

�=1

(

�mod� − ������

)2,� (2)

the root mean square relative error

RMS� =

√

√

√

√
1

�����

�����
∑

�=1

(

�mod� − ������

)2

� 2
mod�

,� (3)

the maximum absolute error

Figure 2.  Illustration of an m-NLP geometry (left), and the simulation domain 
(right). The needle probe has a length of 25 mm and a radius of 0.255 mm, 
with a guard of 15 mm in length and 1.1 mm in radius. The ram flow is from 
the top of the simulation domain and is assumed to be 7,500 m/s.

Table 1 
Spatial and Temporal Parameters Used to Sample Ionospheric Plasma 
Conditions in IRI, and the Corresponding Ranges in Space Plasma 
Parameters

Environment and plasma conditions Parameter range

Years 1998 2001 2004 2009

Dates January 4 April 4 July 4 October 4

Hours 0–24 with increment of 8 hr

Latitude −90° to +90° with increment of 5°

Longitude 0° to −360° with increment of 30°

Altitude 550–650 km with increment of 50 km

Ion temperature 0.07–0.16 eV

Electron temperature 0.09–0.25 eV

Effective ion mass 2–16 amu

Density 2 × 10 9 to 1 × 10 12 m −3
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MAE = max{|�mod − �����|},� (4)

and the maximum relative error

MRE = max
{

|

|

|

|

�mod − �����

�mod

|

|

|

|

}

,� (5)

where Ydata and Ymod represent respectively known and inferred plasma 
parameters, and Ndata is the total number of data points.

For each of the 45 sets of plasma conditions corresponding to squares in 
Figure 1, five simulations are made assuming five probe voltages (0, 2.3, 4.6, 
7, 9 V) with respect to background plasma, and the simulated currents versus 
probe voltage are fitted analytically with:

𝐼𝐼 = 𝑎𝑎

(

𝑏𝑏 +
𝑒𝑒𝑒𝑒

𝑘𝑘𝑘𝑘𝑒𝑒

)𝑐𝑐

,� (6)

where a, b, and c are adjustable fitting parameters. The MRE calculated for the 45 fits is 1.4%, and the RMSr 
is 0.7%, which shows excellent agreement with simulated collected currents. A comparison between fitted and 
computed currents is shown in Figure 3. The NorSat-1 m-NLP probes fixed biases Vb are +10, +9, +8, and +6 V, 
and the probe voltage with respect to background plasma is given by the sum of the spacecraft floating potential 
and the probe bias V = Vf + Vb. In simulations, probe currents calculated for voltages with respect to background 
plasma in the range between 0 and 9 V are considered as shown in Figure 3. Considering the probe bias voltages 
Vb given above, probe currents can be determined, corresponding to arbitrary floating potentials between −1 and 
−6 V. A synthetic solution library is created for randomly distributed spacecraft floating potentials in the range 
between −1 and −6 V with corresponding currents obtained by interpolation using Equation 6 with the fitted 
a, b, and c computed for each of the 45 cases considered. The result is a synthetic solution library consisting of 
four currents collected by the four needle probes at the four different bias voltages, for 160 randomly distributed 
spacecraft potentials in the range between −1 and −6 V for each of the 45 sets of plasma parameters. In each 
entry of the data set, these four currents are followed by the electron density, the spacecraft potential the electron 
and ion temperatures, and the ion effective mass as listed in Table 3. The resulting solution library consisting of 
45 × 160 = 7,200 entries is then used to construct a training set with 3,600 randomly selected nodes or entries, 
and a validation set with the remaining 3,600 nodes. The cost functions reported in what follows, used to assess 

the accuracy of inferences, are all calculated from the validation data set 
unless stated otherwise.

2.3.  Multivariate Regression

In a complex system where the relation between independent variables and 
dependent variables cannot readily be cast analytically, multivariate regres-
sions based on machine learning techniques are powerful alternatives to 
construct approximate inference models. In this approach, the model must be 
capable of capturing the complex relationship between dependent and inde-
pendent variables. Once the model is trained using the training set, it can then 
be used to make inferences for cases not included in the training data set. In 
this work, two multivariate regression approaches are used to infer plasma 
parameters: the Radial Basis Function and Feedforward Neural Networks. 
The models are trained by minimizing their cost function on the training data 
set, and then applied to the validation data set to calculate the validation 
cost function without further optimization. The use of a validation set is to 
avoid “overfitting” because there are certain limitations on the refinement of 
a model on a training set, such that further improvement of model inference 
skill in the training set will worsen the model inference skill in the validation 
set. A good model is one with the right level of training so as to provide the 
best inference skill in the validation set.

Table 2 
Parameters Used in the two Simulation Domains

Dram 
(cm)

Dwake 
(cm)

Probe 
resolution 

(µm)

Guard 
resolution 

(µm)
Boundary 
resolution Tetrahedra

Debye 
length 
(cm)

3.5 7 51 220 2 mm 2.5 M 0.2–2.2

30 40 51 220 1 cm 1.7 M 1.9–7.2

Note. The first two columns give the distances between the probe to the outer 
boundary on the ram side (Dram), and the wake side (Dwake) respectively, 
followed by the simulation resolutions at the probe, guard, and the outer 
boundary. The number of tetrahedra used in the simulations is in the order of 
millions. The corresponding range in Debye lengths is also listed.

Figure 3.  Comparison between calculated currents from PIC simulations, 
and fitted values using Equation 6, assuming a density of 2 × 10 10 m −3, an 
effective mass of 8 amu, an electron and ion temperatures of 0.15 and 0.12 eV 
respectively, corresponding to point 16 in Figure 1. The fitting errors in the 
figure are calculated over all 45 sets of plasma conditions using Equations 3 
and 5.
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2.3.1.  Radial Basis Function

Radial basis function (RBF) multivariate regression is a simple and 
robust tool used in many previous studies to infer space plasma parame-
ters using a variety of instruments with promising results (Chalaturnyk & 
Marchand, 2019; Guthrie et al., 2021; Liu & Marchand, 2021; Olowookere 
& Marchand, 2021). A general expression for RBF regression for a set of 
independent n-tuples 𝐴𝐴 𝑋̄𝑋 and corresponding dependent variable Y is given by:

𝑌𝑌 =

𝑁𝑁
∑

𝑖𝑖=1

𝑎𝑎𝑖𝑖𝐺𝐺
(

|

|

𝑋̄𝑋 − 𝑋̄𝑋𝑖𝑖
|

|

)

.� (7)

In general, the dependent variable Y can also be a tuple, but for simplicity, 
and without loss of generality, we limit our attention to scalar dependent vari-
ables. In Equation 7, the 𝐴𝐴 𝑋̄𝑋𝑖𝑖 represents the N centers, G is the interpolating 

function, and the ai are fitting collocation coefficients which can be determined by requiring collocation at the 
centers; that is, by solving the system of linear equations

𝑁𝑁
∑

𝑖𝑖=1

𝑎𝑎𝑖𝑖𝐺𝐺
(

|𝑋̄𝑋𝑘𝑘 − 𝑋̄𝑋𝑖𝑖|

)

= 𝑌𝑌𝑘𝑘� (8)

for k = 1, …, N. Here, the dependent variable Y corresponds to the physical parameter to be inferred, and the 
independent variable 𝐴𝐴 𝑋̄𝑋 is a 4-tuple corresponding to the currents or the normalized currents from the m-NLPs 
depending on which physical parameters are being inferred. There are different ways to distribute the centers in 
RBF regression. One straightforward approach is to select centers from the training data set, and evaluate the cost 
function over the entire training data set for all possible combinations of centers, then select the model which 
yields the optimal cost function. For this approach, the number of combinations required for 𝐴𝐴   data points and 
N centers is given by

⎛

⎜

⎜

⎝



�

⎞

⎟

⎟

⎠

=  !
�!( −�)!

.� (9)

This, of course, can be prohibitively large and time-consuming for a large training data set or using a large 
number of centers. An alternative strategy is to successively train models with randomly selected small subsets 
of the entire training data set using the straightforward approach, while calculating the cost function on the full 
training set, and then carrying the optimal centers from one iteration to the next. This “center-evolving strategy” 
is very efficient in finding near-optimal centers for large training data sets and has proven to be as accurate as 
the straightforward extensive approach (Liu & Marchand, 2022). The RBF models here follow this procedure. 
Different G functions and cost functions are tested, and only the models that yield optimal results are reported 
in this paper.

2.3.2.  Feedforward Neural Network

The second multivariate regression approach is a Feedforward neural network 
as illustrated in Figure 4. This consists of an input layer, hidden layers, and an 
output layer. Each node j in a given layer i in the network is assigned a value 
ui,j, and the node in the next layer i + 1 are “fed” from numerical values from 
the nodes in the previous layer according to

𝑢𝑢𝑖𝑖+1,𝑘𝑘 = 𝑓𝑓

(

𝑛𝑛𝑖𝑖
∑

𝑗𝑗=1

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑖

)

,� (10)

where wi,j,k are weight factors, bi,j are bias terms, and f is a nonlinear activa-
tion function (Goodfellow et al., 2016). In this work, the input layer neurons 
contain the four-needle probe currents or normalized currents depending on 
the physical parameter to be inferred, whereas the output layer contains one 

Table 3 
Example Entries of the Synthetic Data Set, With Currents I1, I2, I3, and I4 
Calculated Using Equation 6, and Vb Set to 10, 9, 8, and 6 V, Respectively

I1(nA) I2(nA) I3(nA) I4(nA) Vf(V) ne(m −3)
Te 

(eV)
Ti 

(eV)
meff 

(amu)

233 208 183 129 −2.50 2 × 10 10 0.15 0.12 8

596 533 467 323 −2.93 5 × 10 10 0.07 0.07 4

Note. The floating potential Vf is selected randomly in the range of −1 to 
−6 V, and the probe voltages with respect to background plasma are given 
by V = Vb + Vf. The coefficients, a, b, and c are obtained from a nonlinear 
fit of the simulated currents using Equation 6. The first and second entries 
correspond respectively to points 16 and 21 in Figure 1.

Figure 4.  Schematic of a feedforward neural network.
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physical parameter. The number of hidden layers and the number of neurons in the hidden layers are adjusted to fit 
the specific problem, and attain good inference skills. The Feedforward neural network is built using TensorFlow 
(Abadi et al., 2016) with Adam optimizer (Kingma & Ba, 2015), and using the ReLU activation function defined 
as f(x)  =  max(0, x). The input variables are normalized using the preprocessing. normalization 
TensorFlow built-in function which normalizes the data to have a zero mean and unit variance. The structure of 
the network will be described later when presenting model inferences.

2.4.  Space Plasma and Satellite Parameter Inference Models

The next step is to construct models that map the measured currents to the corresponding plasma and satel-
lite conditions in the solution library. Various models used to infer plasma densities and satellite potentials are 
described in this section.

2.4.1.  Density Inference

The density can be inferred directly from the above two multivariate regression models using the currents 
collected by the four probes as inputs. The density can also be inferred using Equation 1 which can be rewritten as

𝑛𝑛𝑒𝑒

𝑇𝑇
𝛽𝛽−

1

2
𝑒𝑒

=

√

𝜋𝜋2𝑚𝑚𝑒𝑒

2𝐴𝐴2𝑒𝑒3

⎛

⎜

⎜

⎜

⎝

𝐼𝐼

1

𝛽𝛽

1
− 𝐼𝐼

1

𝛽𝛽

2

𝑉𝑉1 − 𝑉𝑉2

⎞

⎟

⎟

⎟

⎠

𝛽𝛽

.� (11)

In this equation, subscripts 1 and 2 indicate different probes. A special case of this equation was first proposed by 
Jacobsen, assuming an infinitely long probe and a stationary plasma, for which β = 0.5, resulting in

𝑛𝑛𝑒𝑒 =

√

𝜋𝜋2𝑚𝑚𝑒𝑒

2𝐴𝐴2𝑒𝑒3

√

𝐼𝐼2

1
− 𝐼𝐼2

2

𝑉𝑉1 − 𝑉𝑉2

,� (12)

which gives an expression for the electron density, independently of the temperature (Jacobsen et al., 2010). With 
currents from more than two probes, the density can be calculated from the slope of the current squared as a 
function of the bias voltage from a linear least-square fit of all probes (Jacobsen et al., 2010). This will be referred 
as the “Jacobsen linear fit” (JLF) approach. It is now well known, however, that for finite length probes, with 
lengths not much larger than the Debye length, β typically ranges between 0.6 and 1. This is the case in particular 
for the needle probes on NorSat-1 with ratios between probe lengths to Debye length ranging from 0.5 to 12.5. 
As a consequence, when this method is applied to the solution library, the inferred density is typically three times 
larger than the density used in the simulation as shown with red boxes in Figure 5. Analytic inferences can be 
improved by adopting a boosting strategy. With this approach, the less accurate analytic model is used as a first 
approximation, which is then corrected by applying a more advanced regression technique.

Two boosting strategies are used in this study, consisting of (a) an affine transformation, and (b) RBF. Consider-
ing that the Pearson correlation coefficient R is invariant under an affine transformation, it follows that the offset 
between two data sets, with a high value of R, can be significantly reduced with a simple affine transformation. 
To be specific, in this case, the density is first approximated using the JLF approach, and an affine transformation 
is applied to the natural log of the density as in:

ln
(

�affine
�

)

= � ln
(

�JLF
�

)

+ �.� (13)

where a and b are determined with a simple least square fit to the known log of the densities in the data set. In the 
second approach, RBF is used to model the discrepancy between the JLF approximated density and the known 
densities, and the modeled discrepancy is used to correct the first JLF estimate.

The nonlinear least squares fit proposed by Barjatya (BNLF) is also used to infer the density and the satellite 
potential. In their paper, Barjatya et al. (2009) apply this method to a full characteristic, covering the ion satu-
ration, the electron retardation, and electron saturation regions. This enabled them to infer all four parameters 
in Equation 1, namely, ne, Te, Vf, and β. In our analysis, inferences are made from only four currents from four 
probes at fixed bias voltages, all in the electron saturation region. As shown by Barjatya and Merritt (Barjatya & 
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Merritt, 2018), however, it is difficult to infer the temperature using this approach, owing to the weak depend-
ence of collected currents on the electron temperature (see Equation 11). A solution, proposed in Barjatya and 
Merritt (2018) and Hoang, Røed, et al. (2018), then consists of estimating the electron temperature from other 
measurements, or from the IRI model, and performing the fit for the remaining three parameters. This simplifica-
tion is justified by the fact that, following this procedure, a 50% error in the temperature, still produces acceptable 
results for the other parameters (Barjatya & Merritt, 2018). When applying the BNLF method in the comparisons 
below, we assume a fixed electron temperature (∼3000 K) in our fit, and then use the 4-tuples of currents using 
Vf, ne, and β values as fitting parameters. The choice of electron temperature also affects the performance of the 
model. This choice of temperature (∼3000 K) is justified by the fact that it gives the best estimates of density 
and potential when BNLF is applied to our synthetic data set. In their original approach, Barjatya et al. (2009) 
assumed half of the probe on the ram side collects electrons due to the wake effect. With this assumption, they 
found that the inferred electron densities were more consistent with their inferred ion densities. In the simulation 
approach, the wake and its effect on electron collection are accounted for self-consistently, and excellent infer-
ences can be made without this assumption.

2.4.2.  Analytic Estimate of Vf

The satellite potential can be inferred directly from the currents using RBF regression. In this approach, the four 
currents are normalized by dividing every current by their sum, in order to remove the strong density dependence 
on the currents. A neural network does not produce satisfactory in this case, and it is not used to infer the satel-
lite potential. The floating potential of the spacecraft can also be inferred using the OML equation, by rewriting 
Equation 1 as:

𝑉𝑉𝑓𝑓 ≈ 𝑉𝑉𝑓𝑓 +
𝑘𝑘𝑘𝑘𝑒𝑒

𝑒𝑒
=

𝑉𝑉2𝐼𝐼

1

𝛽𝛽

1
− 𝑉𝑉1𝐼𝐼

1

𝛽𝛽

2

𝐼𝐼

1

𝛽𝛽

2
− 𝐼𝐼

1

𝛽𝛽

1

=
𝑉𝑉3𝐼𝐼

1

𝛽𝛽

2
− 𝑉𝑉2𝐼𝐼

1

𝛽𝛽

3

𝐼𝐼

1

𝛽𝛽

3
− 𝐼𝐼

1

𝛽𝛽

2

.� (14)

In this equation, the subscripts 1, 2, and 3 refer to different probes, thus there must be at least three probes in 
order to solve for β. The bias voltages of the probes and their corresponding collected currents are known from 
measurements, thus β can be solved using a standard root finder. Given β, Equation 14 then provides a value for 

𝐴𝐴 𝐴𝐴𝑓𝑓 +
𝑘𝑘𝑘𝑘𝑒𝑒

𝑒𝑒
 . In this expression, 𝐴𝐴

𝑘𝑘𝑘𝑘𝑒𝑒

𝑒𝑒
 is the electron temperature in electron-volt, which in the lower ionosphere at mid 

Figure 5.  Correlation plot for the density inferences made with different techniques applied to our synthetic validation set. 
The Pearson correlation coefficient R is calculated using the inferred densities and the density used in the simulation. The 
black line represents the idealized perfect correlation.
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latitudes, is of order 0.3 eV or less. Thus, considering that 𝐴𝐴
𝑘𝑘𝑘𝑘𝑒𝑒

𝑒𝑒
 is generally much smaller than satellite potentials 

relative to the background plasma, any of the two terms on the right side of Equation 14 provides a first approxi-
mation of Vf (Guthrie et al., 2021). This will be referred to as the “adapted OML” approach.

3.  Assessment With Synthetic Data
In this section, we assess our models using synthetic data, which allows us to check the accuracy, and quantify 
uncertainties in our inferences. A consistency check strategy is also introduced to further assess the applicability 
of our models.

3.1.  Density and Satellite Potential Inference

Direct RBF regression is applied to infer the density using the four currents as input variables. When constructing 
an RBF model with G(x) = |x|, minimizing MRE, and using 6 centers, the RMSr and MRE calculated on the 
validation data set are 17% and 35%, respectively. A test is made to infer the density using RBF with 35 randomly 
selected entries from the 45 plasma conditions in the solution library. With 30 voltages, and the same G function, 
cost function, and number of centers, the calculated MRE is also 35%. This is an indication that 45 sets of plasma 
conditions and 160 voltages should be sufficient in terms of sampling size to construct regression models. Using 
a neural network with 4 nodes in the input layer, 14 nodes and 12 nodes in two hidden layers, and 1 node in the 
output layer, results in a 14% RMSr and 43% MRE for the inferred densities. This is calculated using TensorFlow 
with ADAM optimizer with a learning rate of 0.005 and an RMSr as the cost function. The input layer is normal-
ized to have a zero mean and unit variance, while the output layer is normalized by dividing by the largest density. 
The densities calculated using the synthetic solution library, as well as the cost function are shown in Figure 5.

When using an affine transformation to boost the JLF method, the coefficients a and b in Equation 13 are obtained 
from a least squares fit of the log of these densities, to those in the training data set. The fitting coefficients in 
this case, a = 1.13261 and b = −4.82735, are then used to perform an affine transformation on the validation data 
set, leading to a significant improvement in RMSr from 74% to 19%, and in MRE from 83% to 66% compared to 
densities inferred from the JLF approach, as shown in Figure 5. When boosting JLF density with RBF, the 4-tuple 
of currents is used as input variable 𝐴𝐴 𝑋̄𝑋 . Minimizing the MRE using G(x) = |x|, and 5 centers, the RBF corrected 
JLF density yields an RMSr of 17% and an MRE of 79%. The cost functions of the two boosting methods are 
comparable, but an obvious advantage of using an affine transformation is its simplicity.

The Python 3 LMFIT package is used to do the nonlinear fit for the BNLF approaches as in Debchoudhury 
et al. (2021). In the fits, the initial values for the density, the potential, and the β value are 8 × 10 10 m −3, −3 V and 
0.85, and the lower and upper bounds are 1 × 10 8 to 1 × 10 12 m −3, −6 to −1 V, and 0.49 to 0.99, respectively. The 
tolerance of the fit is set to ftol = 1e−90, and the maximum number of function evaluations before termination is 
set to max_nfev = 100,000, to ensure a sufficient number of evaluations before termination. The potential lower 
bound of −6 V is needed to ensure that the values under exponent in Equation 1 are positive. We obtain 3,600 fits 
for each of the 3,600 entries of four currents in our validation data set. The overall RMSr calculated using Equa-
tion 3 for the 3,600 × 4 currents is 1.4%, and the MRE is 3.8%. The resulting density inferences have an RMSr of 

17% and an MRE of 41%, which is better than the densities inferred from the 
affine-transformed JLF approach, but less accurate than those from the multi-
variate regression models. The β values calculated are in the range of 0.75–1. 
Using LMFIT and multiprocessing packages, and 10 parallel processors 
in the Pool, 3,600 fits can be done in 0.96 s using an AMD 5800x processor. In 
comparison, linear fits of the currents square, followed by an affine transforma-
tion of the log of the inferred density can be done using fixed formulas (7,400 
sets can be fitted in one second using an AMD 5800x without parallelization), 
and thus are considerably faster than a nonlinear fit. Regression methods such 
as RBF or neural networks are also numerically very efficient, considering 
they involve simple arithmetic expressions with pre-calculated coefficients. 
Compared to the other density models considered, straightforward RBF yields 
the smallest MRE, thus it is the preferred model to infer density in this work. 
However, the affine-transformed JLF method enables density inferences with 

Figure 6.  Correlation plot obtained for satellite potential inferred with RBF 
and OML techniques.
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accuracy comparable to those of  more complex approaches. This simple and practical technique should therefore 
be of interest in routine data analysis.

When the adapted OML approach is used to infer satellite potentials, an MAE of 0.3  V is calculated using 
currents collected with probe biases of 10, 9, and 8 V probes. Referring to Equation 14, the error of 0.3 V is likely 
due in part to the maximum electron temperature of 0.3 eV considered in the simulations. The β values calculated 
in the synthetic solution library are in the range of 0.75–1. RBF regression is also used to infer satellite potentials. 
In this case, using G(x) = |x|, 5 centers, and minimizing the MAE, the calculated MAE on the validation data set 
is 0.42 V, and the RMS is 0.19 V. The inferred satellite potential from the BNLF approach has an RMS of 0.14 V, 
and an MAE of 0.34 V, which proves this method to be the most accurate compared to the other methods consid-
ered. A correlation plot for potentials inferred using the RBF, adapted OML, and BNLF approaches is shown in 
Figure 6. All methods show good agreement with values from the synthetic solution library.

3.2.  Consistency Check

In order to further assess the applicability of our inference approaches, we perform the following consistency 
check. First, RBF models M1(ne) and M1(Vf) are constructed to infer the density and satellite potential using 
4-tuple currents from our synthetic data set. A second model (M2) is constructed to infer collected currents from 
densities and floating potentials in our synthetic data set. Since we are not able to infer temperatures from the 
currents, the temperature is not included in M2. Consistency is then assessed in two steps, by (a) using currents 
from synthetic data and models M1(ne) and M1(Vf) to infer densities and floating potentials, and (b) applying 
models M2 to these inferred values, to infer back collected currents. RBF density and floating potential inferences 
are used in M1(ne), and M1(Vf) as described in Section 2.4. RBF is also used in M2 with 𝐴𝐴 𝐴𝐴(𝑥𝑥) =

√

1 + 𝑥𝑥2.5 , and 
minimizing RMSr with five centers. With perfect inference models, the results for these back-inferred currents, 
should agree exactly with the starting currents from synthetic data. Variances between back-inferred and simu-
lated currents in the synthetic data are presented as indicative of the level of confidence in our regression tech-
niques. The correlation plot in Figure 7, shows back-inferred currents (green) calculated for a probe with 10 V 
bias against known currents from synthetic data. For comparison, the figure also shows the correlation between 
directly inferred currents (purple) when model M2 is applied to densities and floating potentials in the synthetic 
data set. Both back-inferred and directly inferred currents are in excellent agreement with known currents from 
synthetic data, with comparable metric skills of ≃15% and ≃48% for the RMSr and the MRE, respectively. 
Considering that errors are compounded between the first and second models for the back-inferred currents, the 
nearly identical metric skills in Figure 7 is seen as confirmation of the validity of our regression models.

4.  Application to NorSat-1 Data
In this section, we apply our density and potential inference models constructed with synthetic data, to in situ 
measurements made with the m-NLP on the NorSat-1 satellite. The NorSat-1 currents were obtained from a 

University of Oslo data portal (Hoang, Clausen, et  al.,  2018). The epoch 
considered corresponds to one and a half orbit of the satellite starting at 
approximately 10:00 UTC on 4 January 2020. We start with a comparison 
of simulated and measured currents to verify that our simulated currents are 
in the same range as those of measured in situ currents. Inferences made 
with RBF, neural network, BNLF, adapted OML, and the two corrected JLF 
approaches constructed in Section 2.4, are also presented.

4.1.  Measured In Situ, and Simulated Currents

The relevance of the space plasma parameter range considered in the simu-
lations, to NorSat-1, is assessed in Figure 8, by plotting currents collected by 
the +9 V probe against that collected by the +10 V, from both synthetic data, 
and in situ measurements. The close overlap, and the fact that the range of in 
situ measurements is within the range of simulated currents, indicate that the 
physical parameters selected in the simulations, are indeed representative of 
conditions encountered along the NorSat-1 orbit.

Figure 7.  Correlation plot of inferred +10 V probe current against +10 V 
probe current from the synthetic data set. The calculated +10 probe currents 
in the purple curve are obtained using the validation data set, while the green 
curve is calculated using inferred densities and floating potentials from RBF 
regression.
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The current measurement resolution for the NorSat-1 m-NLP probes is 
approximately 1 nA (Hoang, Clausen, et al., 2018). The noise level from the 
environment, however, is estimated to be of order 10 nA. In what follows, 
darker colors are used to represent inferences made using currents above 
10  nA, and lighter colors are used to represent inferences using currents 
between 1 and 10 nA. This is done by filtering out all data that contain a 
current that is below 10 nA or 1 nA in any of the four probes. A word of 
caution is in order, however, for inferences made from these lower currents, 
as a conservative estimate of the threshold for sufficient signal-to-noise 
ratios, is approximately 10 nA. This lower bound current is supported by a 
consistency check made with models 1 and 2 described in Section 3.2, and 
presented below in Section 4.3.

4.2.  Density and Satellite Potential Inference

Our models, trained with synthetic data as described in Section 2.4, are now applied to infer plasma densities 
and satellite potentials from in situ measured currents, for the time period considered. The results obtained with 
the different models presented in Section 2.4 are shown in Figure 9 for the inferred densities, satellite potentials, 
and measured currents collected by the four probes. The position of the satellite relative to the Earth and the Sun 
given by the solar zenith angle is also plotted in the figure. For example, a small solar zenith angle means that the 
satellite is near the equator on the dayside.

Applying the BNLF method with only four probes at fixed bias voltages, all in the electron saturation region, is 
more challenging than applying the technique to a probe operated in sweep mode, covering the ion saturation, the 
electron retardation, and the electron saturation regions. The reason is that in sweep mode, characteristics contain 
much more information than in fixed bias mode, with only four probes. In practice, inferences made from sweep 
mode characteristics are less sensitive to random errors in the currents, which, owing to their larger numbers, 
tend to cancel. With only four currents, however, noise is less likely to cancel, and inferences will be more sensi-
tive to errors or noises in measured currents. For example, the +8 V NorSat-1 probe currents are often slightly 
lower  than expected for a downward concavity in I as a function of Vb, and tend to produce an upward concavity 
with β larger than 1. Thus in most cases, the fitted β value reaches the maximum allowed value of 1. The resulting 
inferred densities and satellite potentials are shown in Figure 9. For the reasons mentioned above, it is clear that 
no satellite potential below the fitting lower bound of −6 V can appear in the plot.

The densities shown in Figure 9b are obtained using the five density inference methods mentioned in Section 2.4.1. 
At 10:45, the neural network density, the RBF corrected JLF density, and the RBF density overlap nicely, while 
the affine transformed JLF density and the BNLF density are smaller than other inferred densities, particularly 
near the density maxima. The density inferences nonetheless qualitatively agree with each other. Note that at 
around 11:15, the inferred densities fall below 2 × 10 9 m −3, which is outside the range of the synthetic solution 
library. As a result, the regression models such as RBF and neural networks do not produce the right densities 
in these ranges. A note of caution should also be placed for other models at these lighter color regions since the 
signal-to-noise ratio is low for data with currents below 10 nA.

Using the +10, +9, and +8 NorSat-1 probe currents and Equation 14, the inferred satellite floating potential is about 
−8 V for most of the data range considered in this study as shown in Figure 9c. This is in stark contradiction with 
observations in Figure 9d, which shows that the +6 V biased probe collects net positive electrons during most of the 
period considered. Also, there are periods between 10:15 to 10:30, and after 11:45 when the +6 V probe collects 
ion current(negative), indicating drops in the satellite potential below −6 V. The poor performance of Equation 14 
to infer the satellite potential here, results from the fact that Equation 14 yields erratic values of β ranging from 0.3 
to 1.2. Attempts have also been made to approximate the satellite potential with Equation 14 using a fixed value of 
0.58 and 0.78 for β, also resulting in satellite potentials in the −8 V range, and no improvement was found. This 
failure to produce acceptable values of the satellite potential clearly shows that the generalized OML expression in 
Equation 14 does not provide a sufficiently accurate approximation for the currents collected by the NorSat-1 probes.

The floating potentials inferred from the BNLF model are systematically lower than those from RBF and are often 
bounded by the fitting lower limit of −6 V. This is likely caused by the fact that the +8 V probe current is often 

Figure 8.  Correlation plot between currents collected by the +9 V and the 
+10 V probes for both NorSat-1, and synthetic data.
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Figure 9.  Illustrations of NorSat-1 collected currents considered in this study in panel (a), inferred densities in panel (b), 
inferred potentials in panel (c), and the NorSat-1 current near 0 A in panel (d) The solar zenith angle is also plotted against 
the secondary axis. Curves in darker colors are from model inferences using data above 10 nA, whereas those in lighter colors 
show inferences using data with currents between 1 and 10 nA.
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lower than expected for a downward concavity in I as a function of Vb. The 
RBF inferred floating potential shown in Figure 9, is within −4 and −6 V, 
which is consistent with the observation that the +6 V probe collects elec-
trons during most of the time period considered. This potential is generally 
lower than the potential established by the spacecraft on its own, likely due to 
the large number of electrons collected by the positively biased solar panels 
(Ivarsen et al., 2019). Interestingly, the inferred satellite potential using currents 
between 1 and 10 nA (light color) is seen to join smoothly with  the darker color 
inferences, and to decrease below −6 V around 10:25, which is consistent with 
the observation that during that time the +6 V probe no longer collects electron 
current. The currents collected by the probes are  determined mostly by the 
density and the satellite potential, and to a lesser extent, by the electron temper-
ature. In Figure 9, the density and floating potential are seen to peak at around 
10:45 and 11:00 respectively. The currents from the +8, +9, and +10 V probes 
(green, orange, and blue) peak around 10:45, coinciding with the peak in the 
plasma density at this time. Then, as time goes forward to 11:00, the currents 
of the three probes decrease, also coinciding with a decrease in plasma density. 

However, the +6 V probe (red) current is increasing during these times, possibly due to an increase in floating 
potential. This increase is captured in the RBF and BNLF inferred potential, but not in the one derived from adapted 
OML. Another observation is that the inferred floating potential decreases significantly at 10:15, as the satellite 
crosses the terminator. On NorSat-1, the negative terminals of the solar cells are grounded to the spacecraft bus 
while the positive side is facing the ambient plasma (Ivarsen et al., 2019). A likely explanation for the potential drop 
is that the solar cells facing the ambient plasma get charged positively and suddenly start collecting more electrons 
upon exiting solar eclipse. This would agree with findings reported by Ivarsen et al. (2019).

4.3.  Consistency Check

In the absence of accurate and validated inferred densities and satellite potentials from NorSat-1 data, it is not 
possible to confidently ascertain to what extent the inferences presented above are accurate. As an alternative, we 
proceed with a consistency check, following the same procedure as presented in Section 3.2 with synthetic data, but 
using measured currents as input. This is done by first applying models M1(ne) and M1(Vf) trained with synthetic 
data, to infer floating potentials and densities from measured currents. Then M2 (also trained with synthetic data) 
is used to infer currents from the M1—inferred floating potentials and densities. If the models constructed from the 
synthetic data also apply to NorSat-1 data, the inferred currents should closely reproduce the measured NorSat-1 
currents. A correlation plot of inferred against measured currents is shown in Figure 10 for the +10 V probe. In this 
plot, the orange and green curves show back-inferred currents obtained with the RBF M2 model. For the orange 
curve (Affine JLF), the density used as input in M2 is obtained with the affine transformed JLF method. For the 
green curve (RBF), the density used as input in M2 is obtained with RBF density, while in both cases, the floating 
potentials are obtained with the M1(Vf) model using RBF regression. The parts in lighter colors are obtained using 
data with a 1 nA filter, whereas the darker color parts are obtained using data with currents above 10 nA. While 
the graph only shows currents above 30 nA, the 1 nA filter curve extends to the left down to about 5 nA, however, 
these calculated +10 V probe currents plateau in this range and are far from the measured currents. This behavior is 
likely due to noise levels of about 10 nA, thus extra caution should be taken when using model inferences for data 
below 10 nA. The RMSr calculated for the 10 nA NorSat-1 current using direct RBF density as M1(ne) is 9%, and 
the MRE is 28%, whereas these numbers for the affine transformed JLF densities are 11% and 23%, respectively. 
The calculated +10 V probe currents based on RBF regression and affine transformed JLF method nicely follow 
the measured +10 V probe current except for a small increase in the variance at lower currents, thus indicating that 
our model constructed with synthetic data set should be applicable to in situ data.

5.  Conclusions
Two new approaches are presented and assessed, to infer plasma and satellite parameters from currents measured 
with multiple fixed bias needle Langmuir probes. In the first approach, inferences are made with two multivariate 
regression techniques, consisting of radial basis functions, and neural networks. The second approach relies on a 
simple affine transformation combined with a technique first proposed by Jacobsen to infer the plasma density. 

Figure 10.  Results from the consistency check performed with in situ data 
following the same procedure as with the synthetic data set. Both models 1 and 
2 are trained with our synthetic data, and applied to currents from the +10 V 
probe on NorSat-1. Darker colors refer to inferences made with currents above 
10 nA, while lighter colors refer to inferences obtained with currents between 
1 and 10 nA.
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Yet another approach, proposed by Barjatya et al. is considered, which consists of performing nonlinear fits of 
measured currents, to an analytic expression involving the density, the floating potential, and the exponent β 
as fitting parameters, while the electron temperature is estimated by other means. In all cases, the accuracy of 
inferences is assessed on the basis of synthetic data obtained from kinetic simulations made for space-plasma 
conditions representative of those encountered along the NorSat-1 satellite. In addition to assessments based on 
synthetic data, a consistency check is presented, whereby densities and satellite potentials inferred from collected 
currents, are used as input in an inverse regression model to infer currents for one of the probes. The advantage 
of this consistency check is that it is applicable to both synthetic, and in situ measured currents, and in the latter 
case, it does not rely on a priori given inferred densities and satellite potentials. Inference consistency checks are 
made with both synthetic and in situ measured currents, showing excellent agreement.

The density inference methods considered in this study yield excellent results when applied to the synthetic 
data set. The models constructed with synthetic data are then applied to currents measured by the four m-NLP 
on NorSat-1. The density inferences from all methods show good agreement, confirming that either method 
should be a significant improvement over the commonly used OML approach based on β = 0.5. From our find-
ings, direct RBF and the combination of Jacobsen's linear fit with β = 0.5 with an affine transformation, appear 
as being the most promising, and deserving of further study. These two methods provide inferences that are 
consistent and quantitatively similar, while being relatively simple and numerically efficient. The former yields 
the lowest maximum relative error when assessed with synthetic data, whereas the latter is the simplest method 
and produces inferences with comparable accuracy. The spacecraft floating potential is also inferred using RBF 
regression, an adapted OML approach, and the Barjatya nonlinear fit method. The adapted OML inferences are 
inconsistent with the measurements from NorSat-1 data since it indicates that the satellite potential is below 
−6 V, while measurements indicate that the +6 V probe is collecting electron current. Conversely, spacecraft 
potentials inferred with RBF regression are consistent with measured currents from the +6  V biased probe, 
showing that the satellite potential must have been at or above −6 V for most of the one-and-a-half orbital periods 
considered. This failure to produce acceptable values of the satellite potential using Equation 14, and the fact that 
the Barjatya nonlinear fit approach with ne, Vf, and β as fitting parameters, results in β values appreciably larger 
than one, shows that in situ measurements on NorSat-1 generally do not closely follow the empirical expression 
in Equation 1. One possible cause of this is that there might be an offset for the +8 V probe current which is often 
lower than expected for a downward concavity in I as a function of Vb. Thus a re-calibration of the instrument, if 
it were possible, might improve the situation.

The analysis presented here has been focused on fixed bias multi-needle Langmuir probes, with the same dimen-
sions as the ones mounted on NorSat-1, to which it has been applied as a case study. We stress, however, that the 
simulation-regression approach to infer space plasma parameters, is not limited to fixed bias probes or to this 
particular configuration of probes. With kinetic solutions capable of reproducing analytic results under condi-
tions when they are valid, and also capable of accounting for more physics, and more realistic geometries than 
theories, solution libraries, training, and validation sets can just as well be constructed for different probes, 
mounted on satellites, operated in fixed or sweep bias voltage mode. By following standard machine learning 
procedures, whereby models are trained on a subset of a solution library of known independent and dependent 
variables, and tested by applying them to distinct subsets, we can estimate uncertainty margins specifically 
associated with different inference techniques. Another important strength of the proposed simulation-regression 
approach is that it enables relatively straightforward incremental improvements to a model, by accounting for 
more physical processes or more detailed geometries; something that would be very difficult to do in a theory. 
Implementation of regression models and affine transformation of the Jacobsen linear fit model involves simple 
arithmetic expressions with pre-calculated coefficients and can easily be programmed for onboard processing 
of low-level data. These approaches, however, would require the creation of custom data sets, when applied to 
a given mission, so as to account for the geometry relevant to the measuring instruments, and the space envi-
ronment conditions expected along a satellite orbit. In cases where probe characteristics are well approximated 
with analytic expressions such as Equation 1, the BNLF technique should prove fast and convenient, as it does 
not require extensive simulations. Custom simulation-regression models, on the other hand, would require more 
computational resources, which would necessitate optimization in order to be implemented onboard a satellite. 
Despite their complexity, however, such models would have the advantage of being more general than models 
based on fits made with empirical analytic expressions. The work presented here is by no means final. The devel-
opment of improved inference approaches based on simulations and regression techniques will require signifi-
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cantly more efforts, involving collaborations between experimentalists and modelers; an effort well worth doing, 
considering the cost and years of preparation involved in scientific space missions, and the possible scientific 
payoff.

Data Availability Statement
Simulation data can be accessed through https://doi.org/10.5281/zenodo.7508167.
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