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Snow Loss Modeling for Roof Mounted Photovoltaic 
Systems: Improving the Marion Snow Loss Model 
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Abstract—Accurate PV energy yield assessments for cold 
climates necessitate understanding and estimation of snow loss. 
Estimation of snow loss for a specific system requires a snow loss 
model. Multiple models to estimate snow loss are suggested in the 
literature, but extensive validation is lacking. In this work, we 
describe the effect of snow on PV systems by analyzing signatures 
in monitoring data and we evaluate the accuracy of a modified 
adaption of the Marion snow loss model. Eight different systems 
with a total installed capacity of 1.6 MWp, installed on both tilted 
and flat roofs, are analyzed. In the modified model we use different 
snow clearing rate coefficients for thin and thick snow covers to 
model the natural snow clearing process. The snow depth 
dependent coefficients yield lower error in the total modeled snow 
loss and capture climatic variations between locations more 
accurately compared to the standard constant coefficient. For 
most of the systems the total absolute snow loss is modeled with an 
error of less than 11 %, on average 23 percentage points lower 
than with the default implementation of the Marion model.  Some 
of the systems have larger modeling errors, which can be related 
to effects not taken into account in the model, such as the effect of 
building heat leakage and shading on snow clearing. 
 

Index Terms—Photovoltaics (PV), PV performance, PV 
systems, Snow, Snow loss modeling, Soiling  

I. INTRODUCTION 

S cost reductions have made photovoltaics (PV) a 
favorable choice for electricity generation also in 
colder climates, deployment rates in regions with 

snowfalls are rapidly increasing [1], [2]. Snow coverage on PV 
modules will lead to significant power loss. For certain 
locations snow can result in zero electricity production in the 
winter season and more than 30 % annual loss [3]. 
Consequently, it is an important parameter to consider in PV 
system models. In PV simulation software, snow loss is 
typically either not considered [4] or estimated by monthly 
constant soiling values [5], [6]. Snow loss is, however, expected 
to vary between different locations and system configurations, 
and to achieve accurate loss estimates a snow loss model 
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considering the influential parameters is needed. It has been 
shown that both the uncertainty in energy yield assessments 
[7]–[9] and forecasting [10] can be reduced if snow loss models 
are included. Robust snow loss models could also be used in 
monitoring to estimate the probability of snow cover to separate 
snow loss from other loss mechanisms, and to build realistic 
synthetic datasets for use in e.g. system design optimization or 
testing of fault detection algorithms. Because the parameters 
influencing the snow cover and resulting PV system loss are 
manifold, accurate snow loss modeling is challenging. The 
parameters that affect the snow loss include weather/climate 
conditions, system mounting and configuration [2], module 
technology [11] and type of snow [3]. Multiple snow loss 
models for PV have been suggested [3], but extensive 
validation is typically lacking [8].  

Many of the suggested PV snow loss models are based on 
empirical approaches, ranging from simple linear correlations 
[3] to machine learning [12], [13]. In our previous work [14], 
we show that the snow loss model suggested by Marion et al. 
[7], performs better than simpler empirical models where a 
model is built by directly relating snow power loss to system 
and weather data. In the Marion model snow cover and loss are 
estimated by using empirical correlations to predict 1) when 
natural snow clearing of the PV modules occur and 2) how fast 
the snow is cleared off the modules. Ryberg et al. [8] and van 
Noord et al. [15] achieve good estimates of the annual loss in 
PV data using the Marion snow loss model, and the model is 
implemented in the System Advisor Model (SAM) [8] and pvlib 
python [16]. The snow clearing rate used in the model is 
expected to vary between different system configurations. In 
our initial evaluation of the model, we estimate the snow 
clearing rate for a system where modules are installed with a 
low tilt and no additional elevation on a flat roof [14]. We also 
show that for thin snow covers, the natural snow clearing rate 
is faster compared to thicker covers. By including this effect in 
the Marion model, the error in the modeled snow loss is 
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reduced. With a machine learning model specifically trained for 
each PV system in their dataset, the authors of [13] achieve 
lower modeling errors than both the original and the modified 
Marion snow loss model. The models in [13] are, however, 
system specific, and will require historical data from the system 
you want to model. 

For models with empirical coefficients estimated from one 
dataset, it is important to validate the model with the same 
coefficients for other systems with similar system 
configurations to assure model transferability. In this paper, we 
validate the results presented in [14] and evaluate the modified 
adaption of the Marion model where a snow depth dependent 
clearing rate coefficient is used on an extended dataset. PV 
installations in different regions of Norway, with different 
climatic conditions are evaluated. We assess two different 
system types: residential systems on tilted roofs and large-scale 
systems installed with low tilts on flat roofs. Parts of the 
methodology and results have previously been presented in an 
IEEE PVSC proceedings paper [17]. In this enhanced version, 
the dataset, analysis and literature review are extended, and the 
methodology for estimating loss from PV data is updated to 
strengthen the conclusions. A broad validation of snow loss 
modeling on multiple similar systems is necessary to 
demonstrate the generality of the model. This is, however, 
preliminary work, and further validation is needed to broaden 
the model’s applicability and accuracy. 

In Section II, a review of the literature relevant to describe 
snow cover on PV systems is presented. Section III describes 
A. the analyzed data, B. how snow loss is estimated from the 
PV data, and C. the snow loss modeling. In Section IV.A. the 
effect of snow on the production data is described, and the snow 
loss model performance is presented in Section IV.B. and 
discussed in Section IV.C-E. Section V concludes the article. 

II. SNOW COVER ON PV MODULES 

To estimate the effect of snow on PV energy generation, we 
consider 1) what conditions results in snow cover on PV 
modules, and 2) how large loss do the snow covers induce in a 
PV system. Because snow covers can be partial or translucent, 
a snow cover does not necessarily lead to 100 % loss [14]. The 
coverage and transmittance can be non-uniform at both module 
and array level, and to estimate snow loss under partial or 
translucent snow cover, in-depth information about the snow 
cover and the array and module configuration is required. In this 
work, our main focus will be on estimating the presence of a 
snow cover on PV modules as this is a necessary first step in 
snow loss modeling. The presence of a snow cover is related to 
accumulation of snow, and when and how fast snow is cleared.  

During snowfall, snow accumulation on a tilted surface has 
been shown to increase with decreasing tilt [18]. The properties 
of the snow are also influential, and for a tilted surface the 
accumulation of snow is higher for wet snow than for dry snow 
[18]. Compared to dry snow, wet snow is expected to have 
stronger adhesion [19] and cohesion [18], [20]. Very high liquid 
water content can, on the other hand, reduce the snow adhesion 
again, as seen for cable surfaces [21].  Frost on the module 

surface during snowfall is expected to give increased 
accumulation [22]. If snow is falling during windy conditions, 
or the wind conditions and snow properties enable horizontal 
redistribution of snow [20], [23], this can give uneven snow 
accumulation. Whether this impacts the snow cover on the PV 
modules, will depend on wind patterns, amount of snow, and 
the physical layout of the system and surrounding objects. 
Snow moved horizontally by wind will settle in areas with 
lower wind speeds [23]. This can give increased snow 
accumulation on the leeward side of a roof [24], obstructions, 
or elevated PV modules [25]–[27]. The snow cover on PV 
systems is normally described as a snow layer on the module 
surface, but for some occasions PV systems can be fully or 
partly submerged in snow, either because of large amounts of 
snow  [17] or because of snowdrift development [27]. 

Snow cover on PV modules is mainly reduced or cleared by 
sliding or melting [3], [28], but also sublimation [24] or wind 
erosion [20], [23] can have an impact. Whether or not the snow 
slides, will depend on the tilt of the module, friction and 
adhesion between the snow cover and the PV module, and if 
there are elements obstructing snow sliding. Friction and 
adhesion will vary with snow properties and detailed 
quantification   is therefore difficult. Snow properties are 
expected to continuously change, as they depend on 
morphology of snow crystals, liquid water content, snow 
temperatures, mechanical motion of snow, freezing/thawing 
cycles, weather exposure, etc. [19], [29].  Particularly fast 
changes are expected around 0 °C [29] and during rain or sleet. 
High friction/adhesion are expected for conditions with 
freezing between the snow cover and the module surface [28]–
[30]. Water between the snow and module surface is expected 
to act as a lubricant and significantly reduce friction [22]. Snow 
melting can thus also influence snow clearing through increased 
sliding. Elements observed to obstruct snow sliding include the 
module frame [11], [31], and the ground or roof below the 
modules if there are no available space for the snow to slide [9], 
[25], [32], which again is related to the amount of snow. For 
tilted roof systems, interference can be caused by high roof 
friction [29] or snow guards [19]. Because the sliding is 
impacted by many parameters, it can develop in different ways. 
Snow can slide down the module, leaving the upper part of the 
module snow free [28], but it is also observed that the snow on 
the lower part of the module is shed first [31], [33]. 

The most important factors influencing snow melting are 
ambient temperature, irradiance, and the temperature of the 
system. The temperature of the system is influenced by system 
design, as some system aspects can impact the heat 
transfer/absorption of the system. Bifacial modules in ground 
mounted systems [34] and building heat leakage for roof 
mounted systems [20] are for example expected to give 
increased heat absorption and reduced snow load. With 
translucent or partial snow covers, increased heat absorption in 
the PV modules is also expected to give increased snow melting 
on and around the modules [25], [26], [35]. Depending on the 
snow shading pattern and activation of bypass diodes, this could 
either be uniform heat in the unshaded area (with ~20 % 
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reduction if the radiative energy is converted to current) [14], 
or hotspots in the shaded area. 

Both the accumulation and the clearance of snow is thus 
related to both PV system configurations, weather conditions 
and snow properties. Snow properties are again related to the 
development of the weather with time. Modelling snow loss is 
consequently a complex task, which can explain why the 
suggested empirical snow loss models in the literature have 
large variations in input parameters [3]. To make a transferable 
and general model based on a direct empirical correlation, data 
from many different weather conditions and system 
configurations is needed. Even with such data available, it may 
be challenging to extract a general model, because of e.g. non-
linear correlations and the impact of the evolution of parameters 
with time. For building a general model, we therefore find the 
approach used in the Marion model [7] promising, as it aims to 
estimate the presence of the snow cover by predicting 1) snow 
accumulation, 2) when the snow is melting, and 3) how fast the 
snow is cleared during melting. With increased knowledge 
about how different parameters influence these three processes, 
and which parameters has the greatest impact, the model can be 
improved.  

III. METHODS 

A. PV Data 

Eight PV installations located in Norway with crystalline 
silicon modules and a total installed capacity of 1.6 MWp are 
evaluated. Five of the systems are residential installations on 
tilted roofs with modules installed in portrait orientation. Three 
systems are commercial large-scale systems on flat roofed 
buildings where the modules are installed in landscape 
orientation with 10° tilt, array height of one module, and 
east/west orientation. 10° tilt and east/west orientation are not 
optimal for total annual production in Norway but is commonly 
used on flat roofed buildings to increase the packing density and 
reduce the seasonality of the production profile. The tilted roof 
systems (dubbed R1-R5) have all modules connected in one 
string and installed in two or three rows on the roof. The flat 
roof systems (dubbed C1-C3) have multiple arrays of around 20 
modules in series and three series in parallel. All systems have 
variations in exact azimuth, the tilted roof systems have 
variations in tilt, and the flat roof systems have variation in 
packing density. C1 has two subsystems, C1a and C1b, which 
are installed on two different roofs. R1-R3 have no obstructions 
on the roofs, but R4 and R5 have a dormer window next to the 
PV arrays. R4 has two subsystems, R4a and R4b, installed on 
each side of the dormer. Except for this, the design of the 
systems within the two categories are assumed to be similar. 

Geographical position, module tilt, climate zone, and length 
of analysis period for each system is given in Table I. The 
analyzed installations are situated in three different Köppen-
Geiger (KG) [36] climate zones: Humid continental climate 
(Dfb), subarctic climate (Dfc) and oceanic climate (Cfb). 
Average monthly snowfall and temperature during the analyzed 
time period is given in Fig. 1. Estimations of daily snow fall and 
snow depth on the ground are taken from snow maps based on 

the seNorge snow model [37], [38]. Hourly temperature and 
global horizontal irradiation (GHI) pyranometer data are 
collected from nearby weather stations from the network of the 
Norwegian Meteorological Institute [39]. For the flat roof 
systems, the effective in plane irradiance and cell temperature 
are measured by reference cells mounted on the upper frame of 
a PV module. None of the irradiance sensors are regularly 
cleaned, and the pyranometers are not heated. The tilted roof 
systems have no on-site sensors. The production data (current, 
voltage and power) are collected from the inverters. The 
inverters have a nominal power of 3 kW at the residential 
systems, and between 20 and 36 kW at the commercial systems. 
At the time of the analysis, the inverters are between 7 and 3 
years old, and the output is stable, with only a few cases of 
downtime. Clipping or curtailment are not occurring in the 
winter season. Periods with inverter downtime or lacking sensor 
data are removed from the analysis, and nighttime irradiance 
values are set to zero. 

This dataset is chosen because the system types are 
representative for most roof mounted systems, and because the 
systems of the same type are built with similar design. Because 
of the similar design, it should be expected that the snow loss is 
modeled the same way. Additionally, the data are from multiple 
years and different climate zones are represented. The lack of 
on-site sensors for the residential installations will reduce the 
accuracy of the validation, but as systems with this design is 
very common, it is included for proof of concept. 

 
TABLE I 

ANALYZED PV SYSTEMS 
 

System Position (°) Tilt (°) Climate zone Analysis period 

Commercial, flat roof systems 

C1a 59.6, 10.7 10 Dfb 2015-01 – 2021-06 

C1b 59.6, 10.7 10 Dfb 2017-01 – 2021-06 

C2 60.9, 10.9 10 Dfb 2018-01 – 2021-06 

C3 60.4, 5.5 10 Cfb 2018-01 – 2021-06 

Residential, tilted roof systems 

R1 60.8, 11.1 26 Dfb 2019-01 – 2021-06 

R2 61.3, 10.2 24 Dfc 2018-01 – 2021-06 

R3 60.9, 11.0 40 Dfb 2019-01 – 2021-06 

R4a/b 61.1, 10.5 35 Dfb 2018-01 – 2020-12 

R5 60.8, 10.6 38 Dfc 2019-01 – 2021-06 
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Fig. 1. Average monthly snowfall and temperature in the 
analysis period of the different systems. 

B. Estimation of Snow Loss from PV Data 

Estimation of snow loss from PV monitoring data requires an 
accurate model of the system to estimate the lost production 
from the difference between actual and expected output. The 
model needs to estimate all losses in the system not related to 
snow, including both constant system loss and seasonal loss 
caused by e.g. low irradiance and high angles of incidence, 
typical for high latitude locations in the wintertime [40]. It is 
also necessary to separate snow loss from system faults. This is 
achieved by evaluating the periods with substantial loss in the 
winter season, and it is ensured that the loss is related to 
snowfall and that the loss signatures are similar to expected 
snow signatures [14].  

For estimations of snow loss from monitoring data, the 
procedure we describe in [41] is used. To model the system 
output, the expected module DC output is first modeled in pvlib 
python [16]. For the flat roof systems, the measured effective 
irradiance and cell temperature is used together with module 
datasheet values as input to a single diode model. For the tilted 
roof systems GHI and ambient temperature measurements are 
used to model effective irradiance and module temperature, and 
from this the module DC output is modeled. The pvlib models 
used are described in [17], [41]. The constant and seasonal 
losses in the systems are estimated from the daily losses in the 
historical production data for periods without snow. The ratio 
between the production data and the output from the PV module 
model is calculated and seasonal and trend decomposition using 
loess (STL) [42] is used to find the seasonal loss component. 
The periodicity is set to 365 and lowess [43] is used for seasonal 
smoothing. The implementation in version 0.11.0 of the 
statsmodels package in Python is used [44]. STL is designed to 
handle missing values in time series decomposition, which is 
essential in this case, as there are frequent and long periods of 
missing data in the winter season caused by the filtering of snow 
periods. Despite the missing data, the estimation of the seasonal 
trend seems to be sufficient, giving a correction that reduces the 
impact of systematic seasonal losses, and improves the PV 
modeling accuracy through the year. When the seasonal loss is 
corrected for, the constant loss is found. The constant and the 
seasonal loss are added to the modeled module DC output to 
estimate the system energy output, and the difference between 
this value and the production data in periods with snow are 

assumed to be snow loss.  
The uncertainties in the estimation of the energy lost because 

of snow are thus governed by the uncertainty in the PV system 
model. The mean absolute error (MAE) in modeled energy 
generation for months without snow, varies from 2 to 5 
kWh/kWp for the tilted roof systems, and is below 2 kWh/kWp 
for the flat roof systems. No systematic trend in the error of 
modeled monthly energy for the snow free months is observed. 
An additional effect increasing the uncertainty in snow loss 
estimation, is the possibility of snow on the irradiance sensor, 
leading to underestimation of the expected system output. To 
reduce this effect, the reference cell irradiance data was 
compared to and corrected by irradiance measurements from 
nearby pyranometers. Pyranometers are assumed to have lower 
risk for snow cover than reference cells, because of their 
hemispherical shape. To evaluate the risk of snow shading on 
the pyranometer, comparisons were made between the 
pyranometer measurements and satellite-based irradiance data. 
Pyranometer snow cover was not found to be prevalent in the 
dataset. 

C. Modeling Snow Loss with the Modified Marion Model 

In the Marion snow loss model [7] it is assumed that the 
modules will be fully covered after a snowfall. A snowfall 
giving accumulation of snow is in this work defined as a daily 
snowfall of above 1 cm. 1 cm is the default snowfall threshold 
used in SAM and pvlib to improve the robustness in the 
prediction of snow accumulation and is observed to fit well with 
the data analyzed in this work. Further it is assumed that when 
the snow starts to melt, it is cleared by sliding/melting off the 
modules. Snow melting is expected to happen during the 
following conditions: 

 
 𝑇௔௠௕ > 𝐺௉ை஺/𝑚, (1) 

 
where Tamb is the ambient temperature, GPOA is the in plane 
irradiance and m is an empirically defined value of -80 W/(m2 
°C). How much the snow will slide (or melt) during the time 
period where the conditions described with Eq. 1. is true, 
measured in fractions of the total row height, is determined by 
the tilt of the modules and an empirical snow clearing 
coefficient (sc): 
 
 𝑆𝑛𝑜𝑤 𝑠𝑙𝑖𝑑𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑠𝑐 ∗ sin (𝑡𝑖𝑙𝑡). (2) 
 

For roof mounted systems Marion et al. found sc to be 0.20 
[7], which is set to be the default sc in the implementation of 
the model in pvlib python [16] and the PV modeling software 
SAM [8]. This coefficient is, however, expected to depend on 
different system and module designs, because technical aspects 
can either promote or obstruct natural snow clearing and 
consequently impact the snow clearing rate. To our knowledge, 
sc values for other system designs than the ones initially 
evaluated by Marion et al. are not estimated. As previously 
mentioned, we have found that with a snow depth dependent 
snow clearing coefficient, differentiating between thin and 
thick snow covers, the modeling error can be reduced [14]. For 
the C1a system we found that a sc of 0.06 for estimated snow 
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depths larger than 3 cm, and 0.40 for snow depths less than 3 
cm minimized modeling errors [14]. One possible explanation 
for this difference is high roof interference. With modules 
installed with no extra elevation above the roof, giving just a 
few centimeters between the roof and the lower module frame, 
the interference from the roof reduces the possibility for snow 
sliding during thick snow covers, slowing down the snow 
clearing. Snow depths above approximately 10 cm, would 
significantly reduce the possibility for full snow shedding. For 
C1 and C3, around 40 % of the days with snow have estimated 
snow depths on the ground above 10 cm. For C2, this number 
is 70 %. The coefficients found for C1a are compared to 
constant sc values for all the flat roof systems in this study, as 
they have the same system design and are expected to have the 
same snow loss under equal conditions. Additionally, when the 
estimated snow depth is surpassing the height of the upper 
frame of the modules, sc = 0. It is generally assumed that the 
snow load on roofs are lower than on the ground because of 
stronger winds giving less accumulation and higher erosion, in 
addition to heat leakage from the building [20], [26]. The snow 
depth on the ground is thus not expected to be an accurate 
measure of the thickness of the snow cover on the modules on 
the flat roof systems, but it is still used as an indicator of the 
thickness of the module snow cover.  

Modeled snow loss using varying constant sc and a snow 
depth dependent sc is also evaluated for the tilted roof systems. 
Here, because of the higher tilt giving more sliding, snow depth 
on the ground was not found to be representative for the snow 
on the modules. Accumulated snowfall since last time the 
modules were snow free is instead used as an indicator of thin 
or thick snow cover. Based on evaluation of the snow loss 
modeling with varying constant sc values, the optimal values 
for thin and thick snow covers were found to be 0.3 and 0.05, 
respectively. This is quite similar to the identified values for the 
flat roof systems. Considering that the roof interference of the 
two system types is expected to be different, this was not 
anticipated. With no onsite sensors, the modeling is, however, 
less accurate for the residential systems, and optimization of the 
sc parameter is more uncertain.  

From the assumption about full snow cover after snowfall and 
the calculated snow slide amount (Eq. 2.), the snow coverage 
on the modules is estimated. The snow loss is subsequently 
estimated from the calculated snow coverage by estimating how 
many of the module substrings that are covered by snow. If a 
module substring is partially covered by snow, the power output 
is assumed to be zero. The pvlib python implementation of the 
Marion model was used to model the relative snow loss. The 
implemented pvlib version (v0.8.0) does not set the snow 
coverage to zero when the snow depth on the ground is zero 
such as in the SAM implementation [8]. This assumption can 
be useful in certain applications to correct the modeled result 
and reduce the false positive snow cover estimations. In our 
work we aim to investigate how well the model predicts snow 
clearing, and this assumption is therefore not included. To 
estimate the absolute energy loss, the relative snow loss 
estimated from the modified Marion model was multiplied with 
the modeled energy output of the system. 

The accuracy and time resolution of the temperature and 
snowfall data will have impact on the modeled result. Snow 
maps can be based on satellite data, weather models or local 
measurements [38], all impacted by uncertainties in different 
ways. If weather modeling is used, as in this case, 
misinterpretation of snow as rain (or vice versa) when the 
temperature is around zero gives rise to uncertainty in the 
estimation of snow cover. Relying on daily snowfall values 
makes it challenging to separate between situations where the 
snow falls before sunrise, during the day, or after sunset, 
yielding uncertainties relating to the onset of the production 
loss. Inaccurate temperature measurements can give false 
estimation of snow melting/no snow melting, giving high 
uncertainty in the estimation of melting when the temperature 
is close to zero.  

IV. RESULTS 

A. The Effect of Snow in PV Data 

Fig. 2. shows the distribution of the size of the daily loss in 
power, current and voltage for periods with assumed snow loss 
for all the systems. For both system types, the distribution is 

 
Fig. 2. Distribution of the size of the daily loss (power loss > 10 %) in power, voltage and current for time periods with snow 
for, a) the flat roof systems, b) the tilted roof systems. 
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similar for the loss in current and power. Most of the current 
and power loss events are in the range of 90-100 % loss. For the 
flat roof systems, the voltage loss is typically either 90-100 %, 
assumed to be related to full, opaque snow covers, or below 40 
%. The low voltage losses could be related to array 
configuration: the parallel connection of the array limits the 
opportunity to bypass shaded modules because the voltage in 
all the strings in the array is the same. For the tilted roof systems 
all the modules are series connected, and we observe large 
variation in voltage loss. This indicates that modules are 
bypassed, but with no clear pattern in how many modules in the 
string that are bypassed. The modules are installed in two or 
three rows, and when the snow slides or melts, the shading can 
be different in different rows. High loss in current and lower 
loss in voltage indicates that the modules are producing under a 
semitransparent snow cover [14]. It is observed that for 
situations where the loss is not 100 %, there can be large 
variation in the loss of similar arrays in the flat roof systems, 
indicating nonuniformity of the snow cover.  

Gradual loss recovery has been suggested as an identifier for 
snow loss [45]. Gradual recovery of power loss is often 
observed, but there are large variations in the rate of this 
recovery. Both longer periods with 100 % loss, gradual snow 
loss recovery over multiple days, and recovery the same day as 
the snowfall are observed in the data, depending on climatic 
conditions. The recovery of the voltage loss is not necessarily 
gradual. It is for example observed that voltage loss can vary 
from high to low and back to high again for the same snow 
cover, apparently related to the irradiance level: For high 
irradiance the transmitted light will be high enough for voltage 
generation, but that is not the case for low levels. 

The snow signatures observed for the analyzed dataset fits 
with the snow signatures described in [14], and support the 
conclusion that system configuration, and the transmittance and 
nonuniformity of a snow cover impacts the total loss.  

B. Snow Loss Modeling Performance 

In Fig. 3. the mean absolute error (MAE) of modeled absolute 
annual snow loss for all the systems is compared for different 
constant sc values and the snow depth (sd) dependent sc. The 
MAE shows the difference between modeled loss and loss 
estimated from the data. As the absolute values of both the 
modeled and estimated loss is based on the PV system model, 
the error in the model is mainly related to the prediction of snow 
coverage. For the constant sc-values, there are variations in the 
sc-value giving minimum MAE. Most systems have their 
minimum at 0.05, R2 and C1b has minimum MAE at 0.10, and 
only C3 has minimum at 0.2, the value estimated in the original 
development of the Marion model and the default value in the 
implementations of the model. For C2, where the snow depth 
regularly is higher than the height of the system, the MAE is 
large for all the constant coefficients. The snow depth 
dependent sc does not give minimum MAE for each individual 
system, but it appears to be the best choice if one sc value was 
chosen to model all the systems of the same type. The benefit 
of using a snow depth dependent sc is, however, clearer for the 
flat roof systems than the tilted roof systems in this dataset. 
This, and how the MAE varies with the sc values for different 
systems, can be explained by certain variations in system 

parameters and snow conditions, further discussed in Section 
IV.C and IV.D. 

Fig. 4. shows loss estimated from PV data for the two C1 
subsystems together with modeled snow cover for one winter. 
We find that the modeled snow cover fits quite well with the 
losses estimated from the production data, as snow cover and 
loss are expected to be related, but not direct proportional [33]. 
Fig. 5. shows yearly, monthly and daily estimated snow loss for 
all the systems compared to modeled snow loss, using the snow 
depth dependent sc. For yearly and monthly loss, we find a 
linear relationship between modeled and estimated loss, with a 
few examples of large deviations. For daily loss we more often 
find that days with modeled snow loss correspond to days with 
no loss in the data, and opposite, giving a poorer linear 
relationship. The error in modeled total absolute loss is given in 
the legend, varying from 3 % to 46 %. The error is in average 
reduced with 23 percentage points compared to the default 
implementation of the Marion model. 

C. Impact of System Parameters on Modeling Results 

The flat roof systems could be expected to have similar snow 
loss under the same snow conditions, because they have the 
same module tilt, array configuration, and are all installed with 
no additional elevation above the roof. From Fig. 4. it is, 
however, observed that C1b often has lower loss than C1a, 
despite the fact that they are co-located. C1b also has higher 
error in the sd dependent sc (Fig. 3.) and total modeled loss (Fig. 
5.). Based on information from the building owner on indoor 
temperatures and roof isolation for the two buildings, we 
believe that this is caused by differences in heat leakage through 
the roof giving faster snow melting for C1b. Heat leakage from 
buildings is commonly used in roof snow load estimations [20]. 
This suggests that also the melting threshold and the m value in 
the model can be impacted by system design. 

 

 
 
Fig. 3. Comparison of MAE values for modeled absolute 
annual snow loss using different snow clearing coefficients for 
the a) flat roof systems and b) the tilted roof systems. 
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Fig. 4. Estimated daily loss from production data for C1a and 
C1b and modeled snow cover for one winter. 

 
R4a and R4b are also co-located and have the same system 

design. Both the measured loss (as seen in Fig. 5.) and error in 
the modeled snow loss (Fig. 3.) are, however, larger for R4b. 
The systems are installed on each side of a dormer, which will 
shade parts of the R4b system. It is reasonable to believe that 
this will give slower snow melting for R4b, as the actual 
irradiance on the system will be lower than the estimated 
irradiance. Shading from a dormer is also expected to give 
slower snow clearance for R5, but to a lesser degree as the 
house is more south-oriented than R4. This can explain why the 
snow depth dependent sc gives higher MAE for R5 than a sc of 
0.05. An additional effect for these systems, is that we can get 
increased snow accumulation on the modules close to the 
dormer if snow is falling during windy conditions or strong 
winds give redistribution of snow. 

We also see that both the flat roof and the tilted roof systems 
can be modeled with a low sc of around 0.05 for thick snow 
covers. For the flat roof systems, we expect low sc because the 
snow has nowhere to slide away, i.e. high roof interference. 
Roof interference could also occur for the tilted roof systems as 
the PV modules are not installed at the edge of the roof, and the 

roof tiles below the modules typically have higher friction than 
the module surface [29]. Possible explanations can be that the 
roof interference is equally high for both types of systems, or 
that it takes equally long time to fully melt the interface layer 
between the snow and the module surface when we have thick 
snow covers. 

D. Impact of Snow Conditions on Modeling Results 

From Fig. 1. it can be seen that C2 is experiencing lower 
temperatures and larger amounts of snow than the other flat roof 
systems. Situations where the system is fully submerged in 
snow can occur, and sliding is not possible. Snow clearing by 
melting, sublimation and erosion is slow compared to sliding 
and gives high MAE for all the constant coefficients (Fig. 3.). 

With the assumption that no snow clearing will occur for the 
flat roof systems when the snow depth is larger than the system 
height, the sd dependent sc gives much lower MAE than the 
constant coefficients. 

C3 is located in an oceanic climate. This gives higher 
temperatures and less snow compared to the other systems (Fig. 
1.). For this system, a high snow clearing coefficient gives 
lower MAE than the lower coefficients (Fig. 3.). The sd 
dependent sc gives higher MAE than constant sc values larger 
than 0.05, indicating that the snow depth is not always enough 
to separate between situations with fast or slow snow clearing. 
Additionally, because of the higher temperature, we can expect 
increased uncertainty in the classification of the precipitation as 
snow. From Fig. 5. we see that the absolute errors in monthly 
and annual modeled loss are small, but because the total loss 
also is small, the relative modeling errors in total absolute loss 
are large in this case. 

For the tilted roof systems without dormer (R1-R3) there are 
small differences between the MAE in modeled annual loss 
when a constant sc of 0.05 and a varying sc is used in the 
modeling. We do, however, observe from the data that the 
reduction in snow loss is best modeled with a high sc during 

 
Fig. 5. Yearly, monthly and daily modeled loss versus loss estimated from production data for a) the flat roof systems and b) tilted 
roof systems. The loss is modeled with snow depth dependent snow clearing coefficients. Errors in modeled total absolute loss are 
given in the legends. 
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thin snow covers. But as all the systems experience cold 
weather with large amounts of snow (Fig. 1.), this do not occur 
very often, and do not contribute much to the total energy loss.  

E. Snow Loss Model Evaluation 

The fact that allegedly identical arrays in the same system can 
have differences in snow loss (Section IV.A.), underlines that 
accumulation and clearing of snow is a complex process. 
Ambient temperature, irradiance, module tilt, empirical snow 
clearing coefficients, and the assumption that partially shaded 
module substrings will not generate energy, will consequently 
not give sufficiently detailed information to model snow cover 
and resulting loss accurately on high time resolution. The model 
does, however, appear to be useful for estimating the 
probability of snow cover and high loss in the system, and by 
accumulating over multiple days, the errors will be reduced, 
yielding satisfactory modeling results on monthly and annual 
data. 

To transfer the model to new systems we should consider: 1) 
how close the snow accumulation and clearing process follow 
the assumptions in the Marion model, and 2) what the sc and m 
values of the new systems are. For the tilted roof systems 
without a dormer, the snow accumulation and snow clearing are 
expected to follow the assumptions in the Marion model 
closely: snow accumulate during snowfall, and the snow slides 
off the modules when it melts. For systems that are fully or 
partially submerged in snow because of snowdrift or large 
amounts of snow, the assumptions of the model may not be 
valid. The systems in this study within the same type, were 
assumed to have similar design. Because of variations in heat 
leakage and shading, it was, however, found that not all the 
systems were similar in the parameters that influence snow 
clearing. Parameters that can influence the sc value and melting 
threshold must be identified, and before transferring the 
empirical values from one system to another, it should be 
considered if they have the same technical design in the 
parameters that influence snow clearing. 

V. CONCLUSION 

In this paper we describe the effect of snow on a set of roof 
mounted PV systems by analyzing signatures in the monitoring 
data, and we evaluate a modified adaption of the Marion snow 
loss model. Low voltage loss, high current loss, and large 
variations between similar arrays during partial covers, support 
previous results suggesting that non-uniformity and 
transmittance of snow cover is important for explaining snow 
loss. Predicting the resulting loss from a specific snow cover is 
consequently a challenging task. From the literature, we find 
that the process of accumulation and clearing of snow on PV 
modules is complex, impacted by many different parameters. 
Still, in this work we show that it is possible to model total 
absolute snow loss with an error of less than 11 % for most of 
the systems in our dataset, using a model based on a limited set 
of parameters with high impact on PV system snow cover and 
a set of empirical snow clearing coefficients. The systems with 
larger modeling errors are found to either have small absolute 
loss or deviations compared to other systems in parameters that 
impact snow clearing, such as shading and heat leakage from 

building. Compared to the default implementation of the 
Marion model, the error in total absolute loss is reduced with 
23 percentage points on average. 

Multiple aspects should be further investigated to broaden 
the model’s applicability and accuracy. To increase the 
generality in the model, effects that can give variations in the 
snow clearing rate and melting threshold should be identified. 
To use empirical values estimated on one system in the snow 
loss modeling of other systems, we need to ensure that the 
systems are similar in parameters impacting accumulation and 
clearing of snow. Ground mounted systems will e.g. not 
necessarily have the same parameters influencing snow 
accumulation and clearing as roof mounted systems, and further 
validation of the model for these types of systems is required. 
We also find that the model can be further enhanced by finding 
improved methods for considering the effect of different snow 
conditions. The next steps planned, are both further validation 
of the suggested model on ground mounted systems and 
thorough investigation of parameters influencing the presence 
of snow cover. 
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