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Abstract Explosive volcanic eruptions are studied using a two-phase model of polydisperse suspensions
of solid particles in gas. Eruption velocities depend on choking conditions in the volcanic conduit, which
depend on acoustic wave propagation that is, in turn, influenced by the particle size distribution in the
two-phase mixture. The acoustic wave spectrum is divided into three regions of superfast short waves
moving at the pure gas sound speed, purely attenuated domain at intermediate wavelengths, and slower
long waves for a dusty pseudogas. The addition of solid phases with differing particle sizes qualitatively
preserves the features of two-phase acoustic wave dispersion, although it narrows the regions of short-fast
and intermediate-blocked waves. Choking conditions, however, strongly depend on the number and size
distribution of solid phases. Changes in particle sizes lead to variations in the choking conditions, which
determine the eruption velocities and the resulting height of the erupting column. Smaller particles always
exit the choking point faster than big particles, as expected. Even though particle-particle interaction is
neglected, the particle distributions influence each other by momentum exchange through the gas. Therefore,
the structure of the dispersion relation as well as the eruption or choking velocities and subsequent column
height and particle deposition bear information on how eruption dynamics are controlled by size distribution
and relative volume fractions of small and big particles. We suggest that unimodal distributions, with one
dominant small particle size, favor development of vertical plinian eruptions, while bimodal distributions, with a
comparable mean size, lead to pyroclastic lateral flows.

1. Introduction

Eruptions of silicic volcanoes are one of nature’s most dramatic phenomena. Explosive eruptions typically
follow fragmentation of vesicular magma in the volcanic conduit, leading to an ash-gas mixture, which
rapidly decompresses and accelerates toward turbulent flow. Whether the mixture exiting the vent forms a
plinian column or a pyroclastic flow depends on its two-phase dynamics, and in particular, on the eruption
rate and gas volume fraction [Wilson et al., 1980;Woods, 1995]. For example, the rate of phase separation and
interphase drag controls the gas density, pressure, and volume fraction. Thus, the two-phase physics of
mixtures in the volcanic conduit dictates the character of the explosive eruption.

Fluid dynamical models for volcanic eruptions often use the pseudogas approximation, wherein the ash-gas
mixture acts as a single-phase medium in which the phases have identical velocities [Jaupart and Tait, 1990;
Woods, 1995]. This approximation is important for predicting choking conditions, which determine the
maximum flow velocities in a conduit. Choking occurs when expanding and accelerating flows approach the
sound speed and then cannot, in principle, go any faster because they are impervious to any pressure
changes inside or outside of the volcanic conduit [John, 1969; Vergniolle and Jaupart, 1986;Wilson et al., 1980].
The effective sound speed in a pseudogas is much less than for a pure gas [see Drew and Passman, 1999,
chap. 22] because mixture incompressibility is dominated by that of the gas, but its inertia is determined by
the mixture density. The pseudogas model therefore predicts choking in the conduit at low velocities,
between 100 and 200m/s [Bercovici and Michaut, 2010]. Eruptions velocities, however, are estimated to be as
high as 600m/s [Wilson, 1976; Wilson et al., 1980], which is similar to the pure gas sound speed (primarily of
water vapor at 1000 K) and much larger than the pseudogas sound speed [Kieffer, 1977]. If the choking
condition is determined by the slow pseudogas sound speed, then eruption speeds of 600m/s would appear
to be supersonic. This “slow choking” paradox is usually circumvented by appealing to nozzle effects in
the conduit [Mitchell, 2005; Wilson et al., 1980] wherein a de Laval jet engine-type converging-diverging
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nozzle [John, 1969] permits supersonic velocities downstream of the choking point. However, slow choking at
the pseudogas sound speed is a questionable assumption: the pseudogas model is a long-wavelength
approximation [Drew and Passman, 1999], while acoustic shocks and choking are by definition short-wavelength
effects. With phase separation that occurs for short wavelengths or high frequencies, the choking condition
is significantly modified [Bercovici and Michaut, 2010; Kozono and Koyaguchi, 2009a, 2009b; Vergniolle and
Jaupart, 1986] and is typically dictated by pure gas sounds speed of 600–700m/s.

Fragmentation also plays an important role in the dynamics of conduit eruption, since it produces a wide
distribution of magma particle sizes, from micrometer ashes to meter-sized blocks [Kaminski and Jaupart,
1998; Walker, 1980]. In particular, the quantity of fine ash (<300μm) and very fine ash (<30μm) in eruption
products has become an increasingly active research area because of their respiratory health hazards and
their deleterious impact on aircraft operations. Fine ash content has not been extensively studied in the past
since such ash is difficult to sample and is easily eroded and transported away from their original locus of
deposition. However, fairly recent studies reveal that the proportion of fine to very fine ash can be important,
in particular for silicic eruptions, which can contain up to 30 to>50wt % of very fine ash, in contrast to more
mafic explosive eruptions that contain a smaller proportion (1–4wt %) [Rose and Durant, 2009]. These new
data also indicate that silicic eruptions may produce polymodal particle size distribution with a significant
proportion of fine particles; such eruptions are also associated with prominent pyroclastic flows [Evans et al.,
2009; Rose and Durant, 2009]. However, it is not clear how much of the fine ash is generated during the initial
fragmentation sequence, or in the conduit and during explosive eruption at the volcanic vent [Dufek et al.,
2012], or even by comminution within the pyroclastic density current itself [Manga et al., 2011]. Regardless of
the cause for particle size distributions, the size influences the drag and turbulent interaction between solid
and gas phases and thus their separation. For example, smaller and lighter particles are more easily carried by
the gas phase than larger ones [Chojnicki et al., 2006] and likely influence shock development and choking.
Hence, a significant fine ash component in the eruption product or a polymodal particle size distribution at
the vent is likely to influence the eruption dynamics.

In this paper, we extend the theory for the dynamics of a turbulent mixture of gas with dispersed magma
particles by Bercovici and Michaut [2010] and account for the presence of different population of particles
with different sizes. The original model accounts for phase separation, which leads to gravitational
settling, the interaction between compaction and gas compression, and simultaneous acoustic and
porosity waves. Acoustic waves in particular are found to be very dispersive, wherein sound speeds and
attenuation depend on wavelength and interphase drag. Indeed, the maximum sound speed occurs at
shortest wavelengths and determines the choking condition (i.e., the maximum flow velocity that can be
reached before a shock develops).

In this paper, we examine the impact of various size distributions on the two-phase dynamics of eruptions,
and specifically on acoustic wave propagation and the implied choking conditions. In particular, while large
particles will have more inertia, less drag, and be prone to phase separation, smaller particles might be
more tightly coupled and phase-locked with the gas, giving it properties closer to that of a heavy pseudogas.
Thus, the wavelength at which sound speed approaches that of a pure gas will be affected by the particle
size distribution, which thus influences the choking condition. In the following sections we extend the
two-phase theory for various particle size distributions, then examine their effect on linear acoustic waves,
and finally analyze the nonlinear choking conditions at which a discontinuity or shock in gas density occurs.
We show that the dynamics of an explosion at the vent might depend on whether the eruption products
have a unimodal particle size distribution, which would favor a vertical eruption, or if it is polymodal, which
would favor the appearance of lateral pyroclastic flows (possibly accompanied by an eruption column,
depending on the details of the size distribution). Our model suggests that the presence of the second
generation of particles is responsible for (1) different eruption styles, i.e., vertical plinian versus lateral (co)
pyroclastic flows and (2) widening of the acoustic spectrum up to a few orders of magnitude. These
phenomena cannot be captured without including the particle size distribution in the multiphase physics.

2. General 1-D Model of Two-Phase Flow With Particle Size Distribution

The presence of particles of different sizes in a volcanic flow during eruption are treated by assuming
that the dispersed magma/ash phase can be divided into m fractions, each characterized by its own
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particle size and velocity [Nigmatulin, 1991]. The mass conservation equation for the gas phase can
still be written as

∂ρgφg
∂t

þ
∂ ρgφgvg
� �

∂z
¼ 0 (1)

while those for the solid phase particles (i=1, 2,…,m) is

∂φi
∂t

þ ∂ φivið Þ
∂z

¼ 0 (2)

where ρg is density of carrying gas and φg and φi are volume fractions of gas and dispersed particles of type i,
respectively, so that

φg þ
Xm
i¼1

φi ¼ 1 (3)

where vg and vi are the gas and particle velocities, respectively (and vg≠ vi≠ vj for i≠ j ). We have assumed that
magma particles are incompressible, and all have the same constant density ρm. We also assume that there is
no mass exchange between solid and gaseous phases (i.e., no particle vaporization or condensation) and
between different fractions of solid phase (i.e., no aggregation or fragmentation of particles due to collisions).

The conservation of momentum equations for the gas and particle phases are

ρgφg
dgvg
dt

¼ �φg
∂p
∂z

þ ρgg
� �

þ
Xm
i¼1

Igi (4)

ρmφi
divi
dt

¼ �φi
∂p
∂z

þ ρig
� �

� Igi þ
Xm
j¼1; j≠i

Iji (5)

where g is gravity, p is gas pressure (which is assumed the same in each phase given the absence of surface
tension and neglecting deformation of dispersed particles that might happen in densely packed mixtures)
[see Bercovici and Michaut, 2010]. The material derivatives are defined as

dg
dt

¼ ∂
∂t

þ vg
∂
∂z

;
di
dt

¼ ∂
∂t

þ vi
∂
∂z

(6)

To close equations (1)–(5), we need a gas equation of state relating pressure and density, and constitutive
relations for the gas-particle and particle-particle interaction forces Igi and Iji. We assume that gas density
follows the ideal gas law

ρg ¼
pmg

RT
(7)

in which mg is the gas molar mass, R is the gas constant, and T is the temperature, which is assumed to be
constant (given the thermal inertia and buffering of the solid particles) [see Bercovici and Michaut, 2010].

Following Bercovici and Michaut [2010], we assume that gas-particle interaction forces can be divided into
two parts: steady state drag due to viscous laminar and turbulent flow of the gas and unsteady force due to
acceleration of the relative velocity in the form of virtual mass (added mass) effect. We also assume that the
drag force in a polydisperse system is equal to the monodispersed drag force; i.e.,

Igi ¼ ciφi 1þ Γ iρg Δvij j
� �

Δvi þ A
1
2
ρ⌣i

∂Δvi
∂t

þ v⌣i
∂Δvi
∂z

� �
(8)

where for particle motion through a mixture of gas and other particles, the drag coefficients depend on gas
viscosity μ and particle radius ri as follows [Bercovici and Michaut, 2010]:

ci ¼ 3μ=r2i ; Γ i ¼ ri=μ (9)

Relative particle velocity Δvi= vi� vg and effective interface density and velocity

ρ⌣i ¼
ρgρmφgφi

ρmφg þ ρgφi
(10)

v⌣i ¼
ρmφgvi þ ρgφivg
ρmφg þ ρgφi

(11)

are introduced here [see Bercovici and Michaut, 2010]. Various expressions for drag coefficients ci and Γ i were
proposed in the literature [Beetstra et al., 2007; Crowe et al., 1998; Hill et al., 2001; Nigmatulin, 1991]. In general,
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these coefficients also depend on Reynolds number, volume concentration of particles, and some other
parameters. However, whilemore complicatedmodels for these parameters add complexity to the expressions (9),
they are still based on the simplifying assumptions about particles shape and arrangement. There is even
more uncertainty with the particle-particle drag force Iji for which only limited data exist [Holloway et al., 2010;
Yin and Sundaresan, 2009]. We leave the full accounting of these forces for future work and assume that the
volume concentration of particles is small, and thus, the particle-particle interaction force is much smaller than
gas-particle interaction. Indeed, analysis of volcanic pumice suggests that magma fragmentation occurs at
φ=77% [Woods, 1995], at which point solid fragments become highly dispersed and effectively noninteracting.

3. One-Dimensional Acoustic Waves

Explosive gas release during volcanic eruptions produces small amplitude pressure perturbations that may
be detected by microphones and seismometers as seismic or acoustic waves, depending on whether they
travel through the air or through bedrock. Specific features of these waves can give important information
on the eruptive mechanism, dynamics of explosion, source of the volcanic tremor, physical properties of
magmatic fluids, and so on [Bercovici et al., 2013; Chouet, 2003; Jellinek and Bercovici, 2011; Johnson et al., 2004;
Vergniolle et al., 1996]. In order to interpret seismic or acoustic data a model that relates acoustic properties
to the processes in a volcano is needed. Often acoustic waves are studied in a pseudogas approximation
which assumes that gas and suspended particles move with the same velocity [Drew and Passman, 1999].
Phase separation in two-phase flows significantly alters the propagation pattern of acoustic waves leading to
their dispersion and attenuation [Bercovici and Michaut, 2010; Nigmatulin, 1991]. The presence of more
than one dispersed phase results in additional phenomena such as the dependence of the dispersion relation
on interaction forces and physical properties, volume fraction, and size distribution of particles [Gubaidullin
and Nigmatulin, 2000; Gubaidullin et al., 2011; Ishii and Matsuhisa, 1983]. The accuracy of the “one-particle
size” approximation depends on the actual size distribution function and reduces with increasing standard
deviation. Much of the previous work on acoustic wave propagation in multiphase media has been
concerned with gas-water vapor systems representing fogs or dusty gas. Here we study the effect of particle
size distribution on the properties of plane acoustic waves in a volcanic conduit using a simplified model of
a polydisperse suspension. We linearize the system of equations by considering small perturbations to a
steady state, which we denote with a subscript “0” according to

φg ¼ φg0 þ εφg1

φi ¼ φi0 þ εφi1
vg ¼ εvg1

vi ¼ εvi1

ρg ¼ ρ0 1þ εθð Þ
where ε is a small parameter. The 0th order steady state is assumed uniform, which corresponds to the zero-gravity
assumption; in this case the 0th order velocity is the same for all phases, and we therefore represent the system
in the frame of reference traveling with the flow (thereby removing the 0th order velocity) [see Bercovici and
Michaut, 2010]. Substitution of equations (12) into (1)–(5) and (8) leads to the linearized governing equations

∂φg1
∂t

þ φg0
∂θ
∂t

þ φg0
∂vg1
∂z

¼ 0 (13)

∂φi1
∂t

þ φi0
∂vi1
∂z

¼ 0 (14)

φg0 ρ0
∂vg1
∂t

¼ �C2
gφg0 ρ0

∂θ
∂z

þ
Xm
i¼1

ciφi0Δvi1 þ ρ⌣i0
A
2
∂vi1
∂t

� �
(15)

φi0 ρm
∂vi1
∂t

¼ �C2
gφi0 ρ0

∂θ
∂z

� ciφi0Δvi1 �
A
2
ρ⌣i0

∂vi1
∂t

(16)

where Cg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RT=mg

p
is the gas sound speed, Δvi1 = vi1� vg1 is a linearized separation velocity of phase

i (i= 1, 2…,m), and ρ⌣i0 is given by equation (10) (evaluated for φg= φg0, φi= φi0, and ρg= ρ0). Note that
turbulent drag term does not enter the linearized equations (13)–(16) and thus does not influence the
propagation of sound waves in a mixture. Substituting the linearized gas and solid velocities vg1 and vi1 with

(12)
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the separation velocity Δvi1 and mean velocity v ¼ vg1φg1 þ
Xm
i¼1

vi1φi1, equations (13)–(16) can be rewritten
in the form

φg0
∂θ
∂t

þ ∂v
∂z

¼ 0 (17)

∂θ
∂t

� ∂Δvi1
∂z

þ 1
φg0

∂φg1
∂t

� 1
φi0

∂φi1
∂t

¼ 0 (18)

ρ0
∂v
∂t

þ Δρ0φg0
Xm
i¼1

φi0
∂vi1
∂t

¼ �ρ0C
2
g
∂θ
∂z

(19)

φg0Δρ0
∂v
∂t

þ eρi ∂Δvi1∂t
þ
Xm
j¼1

ρ̂ j
∂Δvj1
∂t

¼ �ciφg0Δvi1 �
Xm
j¼1

cjφj0Δvj1 (20)

where

eρi ¼ φg0 ρm þ A
2
ρ⌣i0
φi0

� �
(21)

ρ̂ j ¼
A
2
ρ⌣j0 � φg0φj0Δρ0 (22)

ρ0 ¼ φg0ρ0 þ 1� φg0
� �

ρm (23)

Δρ0 ¼ ρm � ρ0 (24)

Equation (17) is a result of the summation of equations (14) over all m solid phases divided by ρm and
equation (13) divided by ρ0. For each solid phase i (i= 1, 2,…m), equation (18) was obtained by subtraction of
(14) divided by ρmφi0 from (13) divided by ρ0φg0. Equation (19) arises from the summation ofm equations (16)
and (15). The subtraction of (16) multiplied by φ0/φi0 from (15) gives equation (20). In the limit when only
one solid phase is present these equations coincide with equations (21)–(25) from Bercovici and Michaut
[2010]. The complete system of governing equations is thus (3) and (17)–(20).

4. Dispersion Relation

In this section, we look at normal modes and for simplicity consider only a straight conduit (c.f. Fee et al.
[2010b] for an example of variable conduit width). We seek solutions to equations (3) and (17)–(20) in the
form of traveling plane waves so that

θ; v;Δvi1;φg1;φi1
� �

∼ exp ikz � iωtð Þ (25)

where k is the wave number and ω is the angular frequency. The dispersion relation between the wave
number and frequency can be obtained by substituting (25) into the governing equations and then finding
the conditions for the existence of a nontrivial solution. In general, both wave number k and frequency ω
can be complex numbers; their imaginary parts represent spatial and temporal attenuation or growth,
respectively. For wave propagation in a finite domain, wherein time-varying boundary conditions are
prescribed, the frequency is assumed real, the wave number is complex, and the attenuation or growth with
distance is given by [Bourbié, 1987]. If, on the other hand, waves propagate through an unbounded
domain, then only initial conditions are prescribed; in this case, the wave number is real, and the complex
part of the frequency gives wave decay or growth with time [Edelman, 2004; Lopatnikov and Cheng, 2004].
Regardless of setting, it is often convenient to replace the frequency in equation (25) with the wave speed
according to C=ω/k. Here we consider propagation of waves in an unbounded conduit. We introduce a
ratio of magma and gas densities β = ρm/ρ0, the nondimensional wave speed Ĉ=C/Cg, and nondimensional
wavelength λi= ci/(kCgρ0), which varies as the inverse of the particle size and accounts for the attenuation due
to gas drag.
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4.1. Two-Phase System

We start with the simplest case of
magma particles of a single size,
which leads us to the basic two-phase
gas-particle formulation. The dispersion
relation takes the form

Ĉ3φ2g0β
A
2
γ2 þ γ1

� �
þ iĈ2φg0λ1γ1γ2

� Ĉφg0
A
2
β þ γ2

1

� �
�iλ1γ1 ¼ 0 (26)

where
γ1 ¼ 1þ β � 1ð Þφg0
γ2 ¼ β � β � 1ð Þφg0

This equation with slightly different
notations was given by Bercovici and
Michaut [2010]; it is a cubic equation in
wave speed Ĉ and linear in wavelength
λ1. The solutions to this equation, for
φg0 = 0.7, β =1000, and in the absence of
spatial attenuation , are
presented in Figure 1. There are two
nontrivial solutions, corresponding to
upward and downward propagating
plane waves marked by green and
blue lines. The third solution is solely
imaginary (red line). The nontrivial
solutions exhibit three different modes.
For small wavelength, the phase velocity
of either upward or downward

propagating waves is much higher than the pseudogas sound speed Cψ ¼ Cg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0= φg0ρ0
� �r

(see Figure 1,

dashed line). In the limit of very small wavelengths and very weak drag (λ1→ 0), the waves effectively travel
through the gas with little particle motion and thus propagate at almost the pure gas sound speed. The values
at short wavelength are highest that the wave speed can reach in a two-phase mixture. With increasing
wavelength, the drag due to relative motion of gas and particles is large enough to cause overdamping of
acoustic waves and the sound speed reduces rapidly to zero, at which point it reaches a range of λ1 for which
ℜ(Ĉ) = 0; i.e., waves do not propagate or are entirely attenuated and blocked. The existence of nonpropagating
waves was also predicted for poroelastic materials in certain frequency ranges [Lopatnikov and Cheng, 2004].
Beyond this pure-attenuation or “mute” range of wave numbers, at higher values of λ1, acoustic waves emerge
again. However, the gas drag is large and/or particle size is very small so that the gas and solid particles are
effectively locked together and form a dusty gas mixture. In such mixtures, waves are slow and attenuation
due to relative particle motion in the gas is small. The width of each zone in wavelength space depends on
the density ratio β and initial gas volume fraction φg0 (see Bercovici and Michaut [2010] for details). The

dimensionless frequencies ω̂ ¼ ℜ Ĉ=λ1
� �

of fast and slowwaves are distinct from each other. Fast waves have a

wide spectrum of high frequencies (from 0.01 up to 100 in Figure 1), while slow waves are shifted toward lower

frequencies ranging from 2×10� 4 to 2.05× 10� 3 and exhibit a peak frequency of ω̂ ¼ 2:05�10�3 at λ1 = 24
(see Figure 1). Frequencies between 2.05 × 10� 3 and 10� 2 are blocked. Figure 2 shows dispersion relations in
a gas-ash mixture with two different solid particle fractions. The increasing fraction of ash narrows the
domain in which fast waves with small wavelengths exist. These fast waves are more strongly attenuated
than are the slow waves at large wavelength, and the larger the volume fraction of solid particles the greater
the attenuation. At very long wavelength, the waves become virtually nondissipative.

Figure 1. Nondimensional wave speed, temporal attenuation (decay rate),
and frequency of acoustic waves in a two-phasemixture. Three solutions to
characteristic equation (26) are shown; green and blue lines represent
upward and downward propagating waves, respectively, while the red
curve indicates the purely imaginary nonpropagating solution. Dashed
lines indicate the pseudogas sound speed.
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Here the 0th order steady state is assumed
uniform, which corresponds to the
zero-gravity assumption. Bercovici and
Michaut [2010] considered acoustic
waves in a gravitationally separating
column. They show that propagation
of acoustic waves is only very slightly
dependent on the presence of gravity.
Three distinct acoustic modes are
preserved during stratification.
Fast waves at short wavelength and
pseudogas waves at long wavelength
are essentially identical to those in a
zero-gravity limit. The third purely
imaginary nonpropagating mode
transforms into very slow porosity
wave that in the presence of gravity
travels with the separation velocity.
Bercovici and Michaut [2010] also
show that for the typical values of
parameters (ρm ≈ 2500 kgm� 3,
2 kgm� 3 ≤ ρg ≤ 30 kgm� 3, and
0.7 ≤ φg ≤ 0.99 from the top to
the bottom of the column and
Cg ≈ 700 m s� 1) acoustic waves
feel little effect of the background
gradients over increments in height
under 1000m.

Before proceeding to amore complicated
systemwith particles of different sizes, we
examine how inertial exchange between
the phases affects the propagation of
sound waves and at which conditions it
can be ignored. Figure 3 shows solution
to dispersion relation (26) with (A=1) and
without (A=0) the added mass force at
β =1000 and φg0 = 0.8. Two solutions
follow each other very closely at
low-volume fractions of suspended
particles. The effect of the added mass
force on wave propagation is most
profound at low λ1 where it slightly
reduces wave speed and increases
attenuation. This force also slightly
reduces the range of λ1 at which waves
are blocked. The difference between
two solutions increases slightly with
increasing density ratio β and particles
volume fraction. However, its effects at
the low-volume fractions of suspended
particles (as studied here) are insignificant
and therefore can be safely neglected.
Another simplifying assumption of this

Figure 2. Dependence of wave speed and attenuation on gas volume
fraction in a two-phase mixture. Two different cases are shown: solid lines
correspond to φg0 = 0.7 and dashed lines correspond to φg0 = 0.8. All other

parameters are kept the same as in Figure 1 (β =1000, .

Figure 3. Influence of inertial exchange (or added mass force) between
the phases on acoustic wave speed and attenuation. Solid lines reflect
dispersion relation that accounts for addedmass force (A = 1), and broken
lines show solution without inertial exchange (A = 0).
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study is negligible particle-particle andwall drags. For gas-pyroclastic flows after fragmentation, particle-particle
drag can be represented in the form

Iji ¼ F φi;φj; ri; rj; ρs
� �

vj � vi
		 		 vi � vj

� �
(27)

where F is a certain function of particle volume fractions, particle sizes, and densities [Neri et al., 2003] and the
wall drag can be written [Kozono and Koyaguchi, 2009b; Vergniolle and Jaupart, 1986] as

Igw ¼ λ
4rc

ρgv
2
g sgn vg

� �
; for gas phase

Iiw ¼ 0; for dispersed phase
(28)

where rc is the conduit radius and λ is a friction coefficient. Note that the friction coefficient is essentially
independent of the number of solid phases and the particle size. One can see that equations (13)–(17) driving
acoustic waves contain only linear parts of the drag forces. Thus, the nonlinear components of drag given by
equations (27) and (28) do not influence the propagation of acoustic waves, which are linear disturbances.

4.2. Three-Phase System

When magma particles of two different sizes are present, the dispersion relation takes the form

Ĉ4φ2g0β
2 þ iĈ3φg0β λ1γ4 þ λ2γ5ð Þ � Ĉ2φg0 λ1λ2γ2 þ βγ1ð Þ�

�iĈ β λ1 þ λ2ð Þ � λ1φ20 þ λ2φ10ð Þγ3½ � þ λ1λ2 ¼ 0
(29)

where

γ3 ¼ β þ β � 1ð Þφg0
γ4 ¼ φg0 þ βφ10

γ5 ¼ φg0 þ βφ20

In deriving (29), we follow the discussion at the end of the previous section and neglect the addedmass force.
We assume that r1> r2; i.e., smaller particles are assigned the index 2. In case r1 = r2, (29) reduces to (26) with
A= 0. For systems with a binary particle size distribution, there are four solutions to the dispersion relation.
However, only two solutions are nontrivial and correspond to the upward and downward propagating
waves, as with the case for the unary size distribution considered above. Even with the second population of
particles, the main features of acoustic wave propagation are preserved (Figure 4). In particular, there are
still three different regions in the wavelength domain that correspond to superfast propagating waves,
the mute region in which acoustic waves do not propagate and a region where acoustic wave speed
approaches the slow pseudogas limit. With the presence of two particle populations, the mute region shifts
to the left and contracts (Figure 4). Moreover, as the ratio in particle sizes λ2/λ1 increases, the domain of fast
short-wavelength waves also shrinks, and these waves become more attenuated. The proportions of the
two different populations in the mixture also affect the wave speed and attenuation factor. Increasing the
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volume fraction of larger particles
leads to a wider region of fast
short-wavelength waves and reduces
their attenuation relative to mixtures
with identical particles (Figure 5). To
examine the width of the regions with
fast and blocked waves, we consider
the limiting case when large particles
are much bigger than small particles
(λ2/λ1→∞); the blocked region is
defined by Ĉ being purely imaginary,
and thus, we write Ĉ=� iCi. It follows
from equation (29) that

λ1 þ λ1C2
i γ2φg0

þCi γ3φ10 � β � C2
i γ5φg0β

� �
¼ 0

(30)

Values of λ1 for which solutions to
(30) are real determine the mute

region. Ĉwould be purely imaginary (Ci real) if the discriminant of the cubic equation (30) is zero [see Bercovici
and Michaut, 2010], that is, if

4λ41γ
3
2φ

2
g0 þ λ21φg0 27γ25β

2 þ 18γ2γ5β γ3φ10 � βð Þ � γ22 γ3φ10 � βð Þ2
� �

� 4 βγ5 γ3φ10 � βð Þ3 ¼ 0 (31)

This equation is quadratic in λ21, and it, in turn, has nonzero real roots if its own discriminant is nonnegative,
i.e., when

8 βγ5 þ φ10 γ2γ3 � β2
� �

≤ 0 (32)

For example, for β = 1000 and φg0 = 0.7, the inequality (32) gives limitations on the particle volume fractions at
which mute region exists. So at φ10 = 0.29 and φ20 = 0.01 there is a range of λ1 at which acoustic waves do not
propagate but at φ10 = 0.28 and φ20 = 0.02 the mute region does not exist, and thus, all waves propagate,
although the region of fast short-wavelength waves will be very narrow and limited to λ1 close to zero.

4.3. Four-Phase System

The four-phase system consists of gas and magma particles of three different sizes. The characteristic
equation for the sound speed (the solution of which yields the dispersion relation) in the absence of added
mass forces becomes

Ĉ5φ2g0β
3 þ iĈ4φg0β

2 γ4λ1 þ γ5λ2 þ γ6λ3½ ��
�Ĉ3φg0β λ1λ2 γ2 � φ30βð Þ þ λ1λ3 γ2 � φ20βð Þ þ λ2λ3 γ2 � φ10βð Þ þ βγ1½ �þ
þiĈ2βγ3 λ1 φ20 þ φ30ð Þ þ λ2 φ10 � φ30ð Þ þ λ3 φ10 � φ20ð Þ½ ��
�iĈ2 β2 λ1 þ λ2 þ λ3ð Þ þ λ1λ2λ3φg0γ2

h i
þ

þĈ λ1λ2 β � φ30γ3ð Þ þ λ1λ3 β � φ20γ3ð Þ þ λ2λ3 β � φ10γ3ð Þ½ � þ iλ1λ2λ3 ¼ 0

(33)

where

γ6 ¼ φg0 þ βφ30

The dispersion relations for two- and three-phase mixtures follow from equation (33) in the limits when
φ20 = φ30 = 0 and φ30 = 0, respectively. Although equation (33) has five roots, only two of them are nontrivial,
as before. The behavior of wave speed and attenuation in a four-phase system is qualitatively similar to
that of two- and three-phase systems. The role of the additional particle population lies in further shrinking
the window of fast short-wavelength waves and in increasing their attenuation (Figure 6).
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4.4. High- and Low-Wavelength Asymptotics

One can readily demonstrate, using (26), (29), and (33), that particle size distribution in volcanic eruptions
does not affect the asymptotic behavior of acoustic waves. In the limit λ1 = 0 (λ2/λ1→∞) and in the absence
of the added mass effect, all three equations lead to

Ĉ2 ¼ γ1
φg0β

¼ 1þ β � 1ð Þφg0
φg0β

(34)

Thus, at small wavelengths, there are always fast propagating waves. As φg0→ 1 or β→∞ , Ĉ2→ 1; i.e., the
wave speed approaches sound speed of pure gas. With the added mass effect, however, the limit β→∞
(ρm≫ ρ0) leads instead to

Ĉ2→
2φg0

1þ φg0
(35)

which implies that the added mass effect reduces the wave speed slightly. In the limit of very large
wavelength (λ1→∞), equations (26), (29), and (33) give

Ĉ2 ¼ 1= γ2φg0
� �

¼ C2
ψ=C

2
g (36)

which again means that long-wavelength waves travel with the pseudogas sound speed.

5. Choking and Size Distribution

The choking condition for compressible conduit flows is an important problem in volcanological research
since it provides constraints on the maximum eruption velocity in a simple straight conduit. (Supersonic
velocities can be achieved for special conduit geometries, or as the erupting gas exits into colder ambient
atmosphere.) In particular, once a flow reaches its material’s sound speed, no pressure change inside or
outside the conduit can increase the velocity; hence, it is “choked” at the sound speed. Choking is associated
with a discontinuity in gradients of mixture properties, since material downstream of any fluid moving at
the sound speed is impervious to the impinging flow (since pressure cannot be propagated downstream
faster than the flow itself ), and thus, there is zero adjustment length for this material. Thus, determining the
conditions for this shock or discontinuity in our system provides the choking condition [see Bercovici and
Michaut, 2010; Kozono and Koyaguchi, 2009a, 2009b; Vergniolle and Jaupart, 1986].

5.1. Nonlinear Steady State With Size Distribution

Nonlinear steady state solutions to the governing equations (1)–(7) can be obtained by assuming that all time
derivatives ∂/∂t= 0. We also assume that at the fragmentation point, z= 0, all phases have the same velocity

Figure 6. Dimensionless wave speed and attenuation in a four-phase system for two different ratios of particle sizes:
r21 : r

2
2 : r

2
3 ¼ 5:1:1 and r21 : r

2
2 : r

2
3 ¼ 50:10:1 calculated at β = 1000, φg0 = 0.7, φ10 = 0.15, φ20 = 0.1, and φ30 = 0.05.
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vg= vi=W0 and that ρg= ρ0, φg= φg0, and φi= φi0. In this case mass conservation requires

vg ¼
φg0W0

θφg
; vi ¼ φi0W0

φi
(37)

where θ = ρg/ρ0. Substitution of (36) and z ¼ W2
0=g

� �
z’ into the momentum equations leads to

d
dz

φg0
θφg

¼ �α2
φg
φg0

dθ
dz

� θ
φg
φg0

þ
Xm
i¼1

φi0
φg0

ΔLi (38)

d
dz

φi0β
φi

¼ �α2
φi
φi0

dθ
dz

� β
φi
φi0

� ΔLi (39)

where we drop the prime on z ’ after the necessary substitutions. The following notations are used here

ΔLi ¼ DiΔUi (40)

Di ¼ φi
φi0

D0
i þ Dτ

i θ ΔUij j� �
(41)

ΔUi ¼ Δvi
W0

¼ φi0
φi

� φg0
φg

(42)

with α ¼ Cg=W0, D0
i ¼ W0ci

gρ0
, and Dτ

i ¼ 3W2
0

gri
.

5.2. Choking Conditions

Across a choking point flow decelerates because the external pressure does not adjust to the increases in
internal pressure. This leads to transition from dvg/dz> 0 in the conduit to dvg/dz< 0 across the shock. Thus,
a choked flow criterion can be established from (38) and (39) by inferring the conditions at which the
gradients of the gas density and volume fractions of components undergo discontinuous changes, i.e.,
when dθ/dz, dφg/dz, and dφi/dz become singular. For that, we rewrite equations (38) and (39) in the
following form

α2
φg
φg0

� 1

θ2
φg0
φg

 !
dθ
dz

þ φg0
θφ2g

Xm
i¼1

dφi
dz

¼ �θ
φg
φg0

þ
Xm
i¼1

φi0
φg0

ΔLi (43)

φi0β
φ2i

dφi
dz

¼ α2
φi
φi0

dθ
dz

þ β
φi
φi0

þ ΔLi (44)

After substituting dφi/dz with dθ/dz from (44) equation (43) becomes

α2
φg
φg0

� 1

θ2
φg0
φg

þ α2

β

φg0
θφg

Xm
i¼1

φ3i
φgφ

2
i0

 !
dθ
dz

¼ �θ
φg
φg0

� φg0
θφ2g

Xm
i¼1

φ3i
φ2i0

þ ΔLi
φ2i
φi0β

� θ
φ2gφi0
φ2g0

 ! !
(45)

A singularity in the last equation occurs when the bracketed factor on the left-hand side vanishes, i.e., when

θ2
φ2g
φ2g0

þ θ
β

Xm
i¼1

φ3i
φgφ

2
i0
¼ 1

α2
(46)

Equation (46) serves as a choking criterion, and the solution to the quadratic equation gives the nondimensional
gas density θ at the choking point. The precise form of the solution θ(φg) is influenced by the gas-particle density
ratio β, the ratio of the pure gas sound speed and the initial magma ascent velocity α, the initial gas volume
fraction φg0, and the size distribution of solid particles. The choking relation changes, depending on the number
of total phases assumed.

As we know from the previous research [Bercovici and Michaut, 2010], in the pseudogas limit, when
vg= vi (i= 1, 2,…,m) choking occurs at the critical gas density

θc ¼ 1
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φg0
�
β
�
1� φg0

�þ φg0
�q

(47)

and critical porosity

φc ¼
φg0

θc 1� φg0
� �

þ φg0
(48)
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For the two-phase mixture, choking
might occur at any gas volume fraction,
provided the gas reaches sufficient
depressurization and low density
(Figure 7). In that sense the choking
condition depends on various
parameters. For example, as the density
ratio β increases, choking occurs at larger
θ, i.e., with less depressurization.
Moreover, the initial magma input
velocity, characterized by the
dimensionless parameter α, has a very
strong influence on the choking criterion.
For initial velocities in the range
5 m/s ≤ W0≤ 5 m/s, the parameter α
goes from 10 at high velocity to 100 at
low velocity. Smallerα (largerW0) leads to
choking for larger θ, i.e., with less
depressurization. As a rule, the gas

density at the choking point is lower than that in the pseudogas limit. However, at small values of α (high
initial magma velocities) the gas density at the choking point can be higher than that in the pseudogas limit.
For α ¼ 10, the pseudogas is less dense at φg< 0.754 (Figure 7). If choking occurs at very high gas fractions,
the associated gas density in the two-phase system is less than that in the pseudogas mixture.

The presence of one more solid phase alters the choking criterion by making it depend on the volume
fractions of solids. These effects are most pronounced if the flow chokes at low values of φg close to initial gas
volume fraction φg0 (Figure 8). For two solid phases of different particle sizes, the second solid phase reduces
the gas density associated with choking; i.e., it delays the choking event to greater heights. However, as φg
increases, the choking conditions for two- and three-phase mixtures converge on a single criterion.

In this study, we ignore the particle-particle drag, Iji, and the wall drags, Igw and Iiw. The analysis of choking is
unaffected by introduction of these forms of drag given by equations (27) and (28), since the choking
condition for the multiphase mixture (46) does not depend on drag. Introduction of the particle-particle and
wall drag forces, however, might affect the height at which choking occurs and choking velocities.
Nevertheless, the effects of these drag forces are expected to be of secondary importance in comparison to
fluid-particle drag given the order of magnitude comparison of these forces. In general, particle-particle

interaction is important for dense granular
flows. However, theoretical studies show
that even in the dense mixtures with a
particle volume fraction up to 0.4 the
particle-particle drag is at least 1 order of
magnitude less than fluid-particle drag
[Yin and Sundaresan, 2009] and is almost
2 orders of magnitude less for solid
volume fractions ≈ 0.1. We focus on the
dynamics of the flow in the conduit where
gas volume fraction was shown to vary
between 0.77 at the fragmentation point
to close to 1 when gas expands rapidly
near the vent. At these porosity ranges,
direct particle-particle interaction (such as
collision and breakup) is much less.Wilson
et al. [1980] and Bercovici and Michaut
[2010] showed that wall friction has a
small effect on eruption velocities.
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5.3. Choking Velocities

The choking criterion (46) can be
reformulated in terms of fluid and
solid velocities. The combination of
equations (37) and (46) yields

φg
ρgv2g

þ
Xm
i¼1

φi
ρmv

2
i

¼ φg
ρgC

2
g

¼ 1
ρCψ

(49)

For single-phase flow (φg=1, φi=0)
equation (49) reduces to the classical
choking criterion, according to which
the critical velocity is equal to the
speed of sound. For multiphase flows,
the choking velocity is a weighted
average of particle and gas velocities.

In the pseudogas limit (46) holds, and
the choking velocity is

vg ¼ vi ¼
1� φg0
1� φg

W0 (50)

Note that in this approximation the gas and solid are ejected with the same velocity, which depends on
initial gas volume fraction φg0, bulk velocityW0, gas-particle density ratio β, and the pure gas sound speed Cg
(from equation (47)).

In a two-phase mixture, the solid particles and gas separate. The exit velocity of the solid particles is fully
determined by the fragmentation velocity and the gas volume fraction at the fragmentation and exit points
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(equation (37)). The exit velocity of the gas also depends on the decompression of gas density θ, which in
itself depends on the density ratio β, parameter α, drag forces, and details of the size distribution (see
equation (45)). Stronger gas decompression leads to higher exit velocities. The separation of solid and gas
leads to choking velocities that approach the pure gas sound speed. In cases when the gas volume fraction
does not have time to change significantly during the eruption, the gas exit velocity might even slightly
exceed the pure gas sound speed. In either case, the gas velocity is significantly higher than the pseudogas
choking velocity. The exit velocity of solid particles also can be very high (Figure 9) and depends strongly on
the dimensionless parameter α, which reflects the fragmentation velocity and the gas volume fraction at
which choking occurs. At high values of φg, the solid particle velocity might even approach the gas velocity.

Figure 11. Solution to full equations for two-phase (dotted lines) and three-phase (solid lines) systems. In a two-phase
system, (top row) Dτ

1 ¼ 75000 and (bottom row) Dτ
1 ¼ 100. In all cases, D0

1 ¼ 1. In a three-phase system, drag coefficients
for the second solid phase were increased so that D0

1=D
0
2 ¼ 0:01 and Dτ

1=D
τ
2 ¼ 0:1 (second particle size was reduced

10 times). Note that the height of the choking front was reduced accordingly. In this example of a three-phase system,
choking occurs at smaller values of θ and higher values of φg (higher degree of gas decompression and expansion).
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However, since solid particles cannot move faster than the gas propelling them, the point at which vg= vm
marks the maximum possible φg at the choking point. For the case when φg0 = 0.7 represented in Figure 9,
φg,max = 0.97 for α ¼ 10 and φg,max = 0.99 for α ¼ 50. Whether this maximum value will be reached depends

on the details of the full solution to equations (38) and (39) and the values of the drag coefficients D0
1 and

Dτ
1 D0

1 ≪ Dτ
1

� �
. The drag coefficients also determine the height z of the choking front in a conduit. Higher values

of drag coefficients lead to higher choking values of φg and accordingly to higher values of vm. Figure 10
shows an example of the full solution of the nonlinear steady state equations for two-phase system

obtained numerically with an explicit Runge-Kutta method using a standard MATLAB solver. At D0
1 ¼ 1 and

Dτ
1 ¼ 105 exit velocities of solid particles are just 3.6 times less than the exit velocity of the gas. However,

Figure 12. Solution to full equations for two-phase (dotted lines) and three-phase (solid lines) systems. In a two-phase system,
(top row)Dτ

1 ¼ 75000and (bottom row)Dτ
1 ¼ 100. In all cases,D0

1 ¼ 1. In a three-phase system, drag coefficients for the second
solid phase were reduced so that D0

1=D
0
2 ¼ 100 and Dτ

1=D
τ
2 ¼ 10 (second particle size was increased ten times). Note that

the height of the choking front is increased accordingly. In a three-phase system choking occurs at smaller values of φg.
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numerical solutions show that there
is a limit that vm can reach. Five
orders of magnitude increase in Dτ

1

still gives only vg/vm= 2.5.

In a three-phase mixture with solid
particles of two different sizes, the
exit velocities of solid particles are
determined by their own volume
fractions at the beginning of
separation and at the choking point
(see equations in (37)). The presence
of an additional solid phase leads to
the dependence of the choking
velocity, in the gas and solid phases,
on the actual distribution of particles
and on their drag forces (Figures 11
and 12). In Figures 11 and 12 we
consider cases where one
population has particles with the
same size as those in the basic
two-phase mixture, while the
second population is 10 times
smaller (Figure 11) or 10 times
bigger (Figure 12). In both cases,
smaller particles travel faster than
big particles. However, the presence
of the second population of particles
influences the choking velocity of
the first population. In particular, the
first population’s choking velocity is
faster than it would be in the simple
two-phase system if the second
population’s particles are bigger, but
slower otherwise. This happens due
to the changes in the gas pressure
induced by the relative motion of
particles of different sizes. If the
secondary particles are smaller they
make the primary particles “feel” like
they are moving through a dusty
gas with slower sound speed, while if
the secondary particles are big then
the gas moves around them—as if
they are nozzles and constrictions—
which makes both the gas and
primary particles faster. Furthermore,
for a fixed primary population
particle size, the decrease in size of
smaller particles in the secondary
population leads to lower exit
velocities of both small and big
particles (Figure 13). Thus, the exit
velocities of the solid particles bear
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information on their sizes and on their size distribution. The presence of the second particle phase affects gas
density and gas volume fraction. Smaller secondary particles lead to choking at higher gas volume fractions
and lower gas density, while larger secondary particles lead to eruptions at smaller gas volume fractions
and higher gas density (Figures 11 and 12). At low values of Dτ

1 and Dτ
2, the presence of the second population

leads to lower choking point than in a reference two-phasemixture (Figures 11 and 12). However, at high values
of Dτ

1 and Dτ
2 choking in a three-phase mixture might occur higher up (see Figure 12, top row).

6. Discussion and Conclusions

Explosive volcanic eruptions are critically dependent on choking conditions in the volcanic edifice, which
are in turn governed by the characteristics of acoustic waves of the ash-gas mixture in the conduit. In this
paper, we investigate the effect of ash particle mixture ratios and size distributions on acoustic wave
propagation, shock wave development, and choking conditions. Both acoustic data and eruption velocities of
solid particles are strongly influenced by the details of solid particle distributions. We show that solid particles
of different sizes do not qualitatively change the acoustic spectrum, but they do change the wavelength
range of different wave types. Eruptions with very different particle sizes (high λ2/λ1 ratio) have very narrow
bands of fast “hot-gas” sound waves as well as narrow purely attenuating mute bands. Therefore, eruptions
with a large amount of small ashes accompanying large particles will tend to have small-wavelength pressure
variations. For example, if λ2/λ1 = 15 (i.e., r21=r

2
2 ¼ 15) as in Figure 4a, then fast sound waves would have

dimensionless wavelengths ranging from 0 to 0.8. If we assume that initial gas density in a very compressed
state is 100 kg/m3, gas viscosity is μ=10� 5 Pa s, pure gas sound speed is Cg=600m/s, and a mean particle

size is r1 = 2 � 10� 4 m then the dimensional wavelength ranges from 0 to λ ¼ 0:5πr21Cgρ0=μ ¼ 377 m. This
corresponds to the frequency ranging from 0.63 to 500Hz (Figure 14). Fast sound waves in such eruptions are
also strongly attenuated independently of their wavelength. More uniform particle size distributions with small
standard deviation can have slightly wider bands of fast waves and “muteness”. Thus, the structure of the
acoustic spectrum, or dispersion relation, characterizes the degree of particle size variation.

At large wavelength the speed of acoustic waves in a polydispersed mixture approaches that of the
pseudogas, which validates the pseudogas approximation for long waves. The frequencies of fast and slow
waves are also distinct. Fast waves have high frequencies spanning from 0.63 Hz up to more than 500Hz
(see Figure 14). Low frequencies (0.04–0.15 Hz in Figure 14) characterize slow waves, for which the peak
frequency is shifted toward relatively small wavelength (λ1 = 3.2 in Figure 14). Frequencies in between these
two limits are blocked. Slow waves have much lower attenuation. Therefore, for a sustained vertical eruption
the recorded acoustic signal will be dominated by the low frequency of the large pseudogas wavelengths,
especially far from the eruption. Indeed, recent observations by Fee et al. [2010a] who recorded Strombolian
to Plinian activity from Tungurahua Volcano in Ecuador show that most of the seismic energy release
corresponds to relatively narrow band of low frequencies with the dominant frequency ranging from 0.25Hz
to below 0.1 Hz for a sustained plinian eruption. For each eruption, the dominant frequency depends mostly
on the particle size and also on the properties of the surrounding gas (ρ0, β, μ, and φg0) and a number of
different particle populations. One order of magnitude decrease in the dominant (coarse) particle size leads
to almost 2 orders of magnitude increase in the peak frequency. The presence of the secondary population of
fine particles further increases the peak frequency. Thus, our model predicts that the presence of fine ash
broadens the emitted frequency range, which is consistent with observations by Fee et al. [2010a]. Furthermore,
our model shows that the signal recorded in Fee et al. [2010a] of less than 0.5Hz is consistent with a dominant
particle size of 350μm (as given by Eychenne et al. [2012]) and characteristic values for the other parameters.
Thus, systematic acoustic measurements/records of eruption at Tungurhua and other explosive volcanoes
associated with this analysis could give information on the dominant particle size of the plume and help assess
risk at a given volcano.

Eruption velocities, choking, and the structure of the erupting column in the conduit are revealed by steady
state nonlinear 1-D analysis of the two-phase polydisperse system. The degree of gas depressurization at
choking depends mostly on the initial velocity at the fragmentation point relative to the pure gas sound
speed (α). A fast ascending ash-gas mixture has higher gas density (θ) on exiting the conduit because the
mixture does not have sufficient time to depressurize. As expected, both faster initial velocities (lower α) and
lower particle-to-gas density ratio (β) lead to faster exit velocities and hence potentially higher eruption
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columns. However, the size distribution of particles also strongly affects the exit velocity distribution of the
solid particles as well as the gas content and density at the choking point. Indeed, smaller particles not only
travel faster than the bigger ones but they influence the velocity of bigger particles and vice versa. That
is, given a fixed primary particle population, secondary particles will speed up or slow down the primary
particles if they are larger or smaller than the primary particles, respectively. Furthermore, a large difference
between primary and secondary particles leads to choking at higher gas volume fractions and lower gas
density, while distributions with primary and secondary particles of comparable sizes lead to eruptions at
smaller gas volume fractions and higher gas density. Consequently, the size distribution of particles, in
general, and the presence of different populations of particles of different sizes should influence the
dynamics of the explosion at the vent.

In particular, our model suggests that a bimodal distribution in particle size should favor the development of
lateral flows at the vent, while unimodal particle distributions favor a vertical eruption. Indeed, if we consider
a bimodal distribution with large primary and small secondary particles and compare it to a unimodal
distribution with particles of the same size as large particles in the bimodal case (as in Figures 11 and 12)
then the presence of smaller particles tends to decelerate the bigger particles. The velocity of the primary
population depends not only on the presence of the secondary particles but also on their size (Figure 13).
The smaller the sizes in the secondary population, the slower the primary particles become. Therefore, in
eruptions with large amount of very fine ash, the bigger particles would be effectively slowed down and
more likely decelerate and be deviated from a vertical trajectory into a lateral copyroclastic flow. In such a
way, very fast moving particles in unimodal mixtures would be lofted higher and spread less laterally. This is
consistent with observations [Evans et al., 2009] and suggests that two-phase dynamics can be responsible
for the variations in the eruption style. However, our model only constrains the initial conditions for collapsing
gravity currents (i.e., it sets the initial state of the collapsing column or spike), which describe the zeroth
order behavior of most volcanic lateral flows [Huppert, 2006].

Overall, the mixture of small and course particles leads to an effective three-phase mixture that could result
in the development of lateral copyroclastic flows with a buoyant cloud made of very fine ash that can be
propelled very high into the atmosphere. This interaction between different particle sizes (via momentum
transfer through the gas phase) would explain the common observation of simultaneous buoyant vertical
plumes and pyroclastic density currents at silicic volcanoes [Cashman and Sparks, 2013; Clarke et al., 2002].
Deposits from plinian explosive silicic explosion indeed contain a large content of fine and very fine ash
(up to 50% [Rose and Durant, 2009]). For instance, 70% of the total mass of the well-known Waimihia and
Hatepe plinian deposits from the rhyolitic Taupo volcanic center is made of particles finer than 500μm
[Walker, 1981]. These silicic plinian eruptions are also associated with abundant copyroclastic flows. For
instance, the plinian eruption of Mount St. Helens in May 1980 was accompanied by abundant copyroclastic
flows and the total grain size distribution of the deposits shows a distribution characterized by two peaks, one
around ϕ =2 to 3 (diameter d=125–250μm) and the largest around ϕ =6 (d=15μm) [Carey and Sigurdsson,
1982; Rose and Durant, 2009]. Similarly, Dartevelle et al. [2002] proposed that the Mount Pinatubo 1991
eruption’s volcanic ash deposits were substantially derived from coignimbrite clouds, and not only by a Plinian
cloud, because the deposits are substantially rich in very fine ashes (they contain 5–25% of ashes< 10μm).

In contrast, moremafic explosive eruptions tend to show amuch smaller content in fine ash (only a few percent
[Rose and Durant, 2009]) even when they develop a sustained vertical column for hours. Copyroclastic flows are
not always present or only minor to subplinian events. When available, total grain size distributions for more
mafic explosive eruptions indeed show that vertical eruptions are generally unimodal, while lateral eruptions
are often bimodal. For instance the total grain size distribution of the subplinian deposits of the Ruapehu
Volcano, New Zealand, erupted on June 1996, shows a Gaussian distribution (independently of the technique
used) centered at ϕ =�1 to 2 (i.e., mean diameter between 2 and 0.25mm) depending on the technique
[Bonadonna and Houghton, 2005]. The Ruapehu eruption did not show pyroclastic flows. The 1974 Fuego
eruption, Guatemala, produced a sustained column for 5 h but had a very low proportion of fine particles [Rose
and Durant, 2009]. The total grain size distribution of the 14 October subplinian ejecta also yields a relatively
coarse and unimodal initial population with a median value of ϕ equal to 0.58 corresponding to a diameter
between 0.5 and 1mm [Rose et al., 2008]. This eruption produced minor copyroclastic flows that are, on the
contrary, characterized by a large amount of fine ashes [Rose et al., 2008]. The Chaimilla deposit was produced
by mafic explosive eruptions at Villarrica Volcano, Southern Andes, in the late Holocene [Costantini et al., 2011].
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The fallout units are characterized by a unimodal size distribution with amedian value ofϕ between�1 and�3
(i.e., median diameter between 2 and 8mm). On the contrary, the pyroclastic density current deposit (unit E)
shows a bimodal grain size distribution with a significant amount of fine ash, but the median diameter is
similar to the other fallout samples [Costantini et al., 2011]. Similarly, analysis of andesitic eruption deposits
occurring during 2004–2006 at Volcan de Colima, Mexico, shows a marked difference between samples from
separate vertical eruptions and copyroclastic flows. The particle size distribution of vertical eruptions is more
peaked (atϕ =4) than copyroclastic samples, which shows a bimodal size distribution with a high proportion of
very fine ash (<30μm) [Evans et al., 2009].

Furthermore, the difference in fine ash content between silicic and more mafic explosions might be linked to
the process of bubble nucleation and growth and gas escape in two different types of liquid marked by
very different viscosities [Rose and Durant, 2009; Rust and Cashman, 2011]. In mafic melts the diffusion of
volatiles, flow, growth, and expansion of bubbles are facilitated because viscosity is smaller and temperature
is higher than for more silicic magmas. This could yield a unimodal size distribution for bubbles, with bias
toward big bubbles, and a single fragmentation event leading to unimodal size distribution biased toward
larger particle sizes, thereby causing a vertical subplinian eruption. In more viscous silicic melt, diffusion of
volatiles is more difficult, the flow of bubbles in the melt is slow, coalescence might be more difficult, but
there are more volatiles (hence probably many small bubbles nucleating), and this could lead to a wider
bubble size distribution. Following the idea of Kaminski and Jaupart [1998], fragmentation in silicic melt
might thus happen in several steps. If there is only one fragmentation step because the eruption is not very
powerful, only the bigger bubbles and part of the smaller ones fragment (many of the smaller ones get
trapped in the pumice), and this would lead to polymodal particle size distribution that favors lateral
eruptions. If the eruption is very powerful, there would be a complete fragmentation, which would lead to
one, very fine, particle size and a (high) plinian eruption. This would explain that (1) more mafic explosions
tend to develop vertical eruptions (because of their unimodal distributions) and not much lateral eruptions,
while more silicic explosions tend to develop more lateral eruptions, and (2) more mafic eruptions show
unimodal size particle distribution with a mean grain in general larger than more silicic eruptions. Taken
altogether, our modeling and these observations would suggest that the presence of large amounts of fine
ashes in copyroclastic silicic fall might be inherent to the initial fragmentation sequence [Kaminski and
Jaupart, 1998; Rust and Cashman, 2011], whereas subsequent evolution of particle sizes in volcanic conduits
[Dufek et al., 2012] and/or comminution and milling in pyroclastic flows might be less important in producing
fine ashes.

Finally, the vertical size distribution of particles within the eruption column and the horizontal distribution of
sizes in the resulting pyroclastic deposits around the crater can be used to extract information on the initial and
final volume fractions of solid particles as well as on the degree of gas expansion. For example, if the choking
velocities of the gas vg and the two populations of particles v1 and v2 are measured, and the proportions of
small and big particles in a volcanic pumice (φ2/φ1 = κ) are inferred from pyroclastic deposits, then three
equations (37) together with choking condition (46) (along with the constraints that φ1 +φ2 +φg=φ10+φ20
+φg0 = 1) allow the determination of all volume fractions and the relative gas density θ as functions of
fragmentation velocity W0. Thus, in the end, the physics of two-phase polydisperse eruptions can further
elucidate the connection between eruption products and the internal dynamics of the volcanic conduit.
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