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Abstract
New approaches are presented to infer plasma densities and satellite floating potentials from
currents collected with fixed-bias multi-needle Langmuir probes (m-NLP). Using synthetic data
obtained from kinetic simulations, comparisons are made with inference techniques developed
in previous studies and, in each case, model skills are assessed by comparing their predictions
with known values in the synthetic data set. The new approaches presented rely on a
combination of an approximate analytic scaling law for the current collected as a function of
bias voltage, and multivariate regression. Radial basis function regression (RBF) is also applied
to Jacobsen et al’s procedure (2010 Meas. Sci. Technol. 21 085902) to infer plasma density, and
shown to improve its accuracy. The direct use of RBF to infer plasma density is found to
provide the best accuracy, while a combination of analytic scaling laws with RBF is found to
give the best predictions of a satellite floating potential. In addition, a proof-of-concept
experimental study has been conducted using m-NLP data, collected from the Visions-2
sounding rocket mission, to infer electron densities through a direct application of RBF. It is
shown that RBF is not only a viable option to infer electron densities, but has the potential to
provide results that are more accurate than current methods, providing a path towards the further
use of regression-based techniques to infer space plasma parameters.

Keywords: ionospheric plasma, regression, multi-needle Langmuir probes (m-NLP),
3D kinetic simulations, space

(Some figures may appear in colour only in the online journal)

1. Introduction

Our reliance on space technology requires good first prin-
ciple understanding of the complex dynamics occurring in
our near space environment. Space weather events can affect
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communications, remote sensing, and scientific satellites in
orbit, as well as large power grids and pipelines at Earth
surface. Monitoring the state of our space environment is
the most basic requirement for understanding and develop-
ing reliable interpretive and predictive models. Among the
many parameters characterizing the state of a plasma, the
density, temperature, and plasma flow velocity are the most
fundamental, as they are always affected by changes in our
environment, and consequently, they can serve as proxies to
infer the state of the ionosphere and magnetosphere. Many
instruments have been developed over the years, to meas-
ure these parameters. Ionospheric plasmas can be monitored
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remotely with ground-based instruments such as incoherent
scatter radars (ISR) and ionosondes [26, 27] but such meas-
urements lack the spatial and temporal resolution of in situ
measurements made with instruments mounted on rockets or
satellites. Ground based instruments are generally not mobile,
which limits their use to specific regions of space. In com-
parison, in situ measurements made with satellites provide
a broader coverage, and higher spatial and temporal resolu-
tions. Among those, Langmuir probes have been the instru-
ments of choice in labs and in space, because of their relative
simplicity and the many theories developed to describe their
interaction with plasma. Langmuir probes are typically oper-
ated in sweep mode, where a bias voltage with respect to a
ground is varied periodically between negative, and positive
values, resulting respectively in ions and electrons being col-
lected. Parameters such as density or temperature can then be
inferred from probe characteristics (current as a function of
applied voltage), based on convenient analytic inference pro-
cedures. In this study we consider the use of fixed-bias multi-
Needle Langmuir probes (m-NLP), first proposed by Jacobsen
et al to infer plasma density. Many articles have been written
on the inference of plasma parameters from Langmuir probe
characteristics. Over the years, several different probe geo-
metries have been considered theoretically [1, 24, 25, 41] and
experimentally [4, 13, 19], for plasma in different regimes.
The approach considered here is to use multi-needle Lang-
muir probes (m-NLP) with fixed-bias voltages with respect to
a spacecraft, to infer the density, and possibly other physical
parameters. Compared to sweep-voltage probes, the advant-
age of fixed-bias Langmuir probes is that they can provide
a much higher temporal and, owing to the high speed of
spacecraft, spatial resolution. Assuming a sufficiently long
and thin probe, the orbital-motion-limited (OML) approxim-
ation for probe current collection, implies that the square of
the current collected by such a probe should vary linearly
with the square of the density times the probe voltage. This
led Jacobsen et al to propose fixed positively biased multi-
needle Langmuir probes as ameans ofmeasuring plasma dens-
ity independently of the temperature or the satellite floating
potential. This approach was justified by the fact that electron
thermal speeds are much larger than combined satellite speeds
in low Earth orbit (LEO), and ionospheric winds. As a res-
ult, electrons appear as stationary in a satellite rest frame, and
the current collected by a long, positive cylindrical probe is
approximated as

I= neeA
2√
π

√
kTe

2πme

(
1+

e(Vf +Vb)

kTe

)β

, (1)

with β= 0.5, and where e, ne, Te and me are the elementary
charge, the plasma density, the electron temperature and mass,
A is the surface area of the probe, k is the Boltzmann con-
stant, Vb is the probe bias voltage, Vf is the spacecraft floating
potential, and Vf +Vb is the probe potential with respect to
the background plasma. In equation (1), and in what follows,
I is the absolute values of electron collected current. From
this expression, it readily follows that I2 varies linearly with

the bias voltage, with a slope that is independent of the tem-
perature. As a result, the slope K of I2 as a function of Vb,
obtained from two or more currents from probes biased to dif-
ferent voltages, can be used to infer the density with

ne =

√
π2meK
2e3A2

. (2)

This result has motivated laboratory and rocket experiments,
and it led to the use of m-NLPs on several of CubeSats
deployed in the QB50 program [12, 37], and to the use of such
an array of probes on the larger NorSat-1 satellite [14]. One
point to keep in mind when considering equations (1) and (2)
however, is that OML equations are derived under somewhat
stringent simplifications. In particular it is assumed that (a) the
probe radius is much smaller than the plasmaDebye length, (b)
plasma is unmagnetized, (c) the background plasma velocity
distribution function is Maxwellian, (d) plasma flow speed is
negligible compared to the thermal speed of the species being
collected, and (e) the probe is much longer than the Debye
length in order for end effects to be negligible. For probe dia-
meters of order 0.5 mm or less, assumption (a) is satisfied.
The thermal gyroradius of electrons in the ionosphere being
of order 1 cm or more, (b) is also satisfied. Frequent colli-
sions with neutrals cause electron velocity distributions to be
nearly Maxwellian at low and mid latitudes, where (c) is sat-
isfied. As for electron thermal speeds, they are typically more
than an order of magnitude larger than low Earth orbit satel-
lite speeds, so that (d) is well satisfied as well. The problem
with equation (2) stems from the use of the OML theory, in
which probe lengths are assumed to be sufficiently long for
end effects to be negligible. Indeed as demonstrated experi-
mentally [19, 41], and theoretically [22, 23, 33], probe lengths
have to be much larger than the Debye length, by factors ran-
ging between several tens, to hundreds, for the OML approx-
imation to be applicable with β= 0.5. This condition, how-
ever, is generally not satisfied with needle probes mounted
on CubeSats or NorSat-1 in ionospheric plasma. As a res-
ult, while equation (1) can still provide a good scaling law
for the collected current as a function of voltage, the value
of β is no longer 0.5, and equation (2) no longer provides an
accurate estimate of the density. For finite-length probes, in
which end effects contribute to the collected current, β is found
experimentally and theoretically to range between 0.5 and 1.0,
and the technique used to infer the density must be modified
accordingly.

In response to this predicament, two solutions were pro-
posed by Hoang et al [16], and Barjatya et al [2], in order to
improve the inference of the plasma density, while accounting
for the fact that β may be different from 0.5. In both stud-
ies, the scaling law given in equation (1) is assumed, but β is
now treated as a parameter to be determined. In their approach,
Barjatya et al use a nonlinear fit to determine the unknown
parameters ne, Vf, Te, and β appearing in equation (1), in order
to match the currents collected by the four probes in the m-
NLP. Similar fits had previously been used by Barjatya et al
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to determine β, the floating potential, and the electron dens-
ity, from the Floating Potential Measurement Unit attached to
the International Space Station [3]. While the determination
of four parameters from four independent measurements is
possible in principle, it was found that the determination of
the temperature could not be made accurately in this straight-
forward approach. Noting that the inference of other para-
meters was relatively insensitive to Te, the solution proposed
consisted of specifying an approximate value for the temper-
ature, and then using a nonlinear fit to determine the remain-
ing three parameters from the currents collected by the probes
with the three largest bias voltages. This was justified by the
fact that, based on synthetic data generated with equation (1),
assuming a range of β values between 0.5 and 0.65, signific-
antly more accurate inferences of the density were made than
with Jacobsen’s original technique (that is, assuming β= 0.5)
even if the temperature used in the nonlinear fit was varied by
±100% relative the actual temperature used to generate the
data set.

Alternatively, Hoang et al assessed two approaches; the
first one being based on Jacobsen’s original least squares lin-
ear fit to multiple collected currents assuming β= 0.5, and
a second one, based on different implementations of nonlin-
ear fits, similar to those considered in [2]. With nonlinear fits,
four or three currents with different relative weights are con-
sidered to determine β, Vf, and ne. As in [2], it was noted
that nonlinear fits were relatively insensitive to the temper-
atures assumed in equation (1). Temperature values are non-
etheless needed in order to perform nonlinear fits and obtain
good accuracy for the inferred parameters. In space, it was
suggested that temperature estimates be obtained from the
International Reference Ionosphere (IRI) model [5] or inco-
herent scatter radar measurements. The article also reports
comparisons of inferred densities with those obtained from
the IRI model, and independent measurements in a laboratory
plasma [10]; both being deemed satisfactory, and constituting
an improvement over estimates made with Jacobsen’s original
technique.

In the following we present yet two alternative approaches
based on a combination of analytic approximation, and mul-
tivariate regression, for which inference skills are assessed,
using a synthetic data set obtained from simulations, as well
as from actual data from a rocket mission. While model val-
idation should ideally be made with actual measurements, the
advantage of synthetic data is that it enables the assessment
of predictive models with known plasma densities, temperat-
ures, and floating potentials. Constructing such data sets also
avoids biasing the data set which would result, for example,
from an assumed analytic expression for the scaling of current
as a function of voltage. In the next section we explain how
kinetic simulations were used to construct a synthetic data set,
and present our two inference approaches. In section 3, infer-
ence skills are assessed for each of these two approaches, and
compared with those of previous models. The application of
radial basis function (RBF) regression to experimental data
collected from the Visions-2 [39] sounding rocket is presented
in section 4. Finally, a summary of our findings and conclud-
ing remarks are presented in section 5.

2. Methodology

In order to train and validate inference models as those from
m-NLP, it is necessary to have data sets with low level (L1B
in satellite data parlance) currents and associated plasma and
satellite parameters (ne, Te, Vf). Ideally such a data set should
be constructed from actual accurate measurements, cross-
validated with different instruments, but this is rarely pos-
sible in practice, owing to challenges in making such meas-
urement in space or lab plasma [13, 40–42]. An alternative
is to use synthetic data sets using analytic models [2, 7], or
computer simulations [31, 33], from which precise values of
collected currents and corresponding plasma parameters are
known. Admittedly, computer simulations, while more accur-
ate than analytic models, do not account for all processes at
play in an experiment or in space. They nonetheless make it
possible to construct self-consistent data bases from which
inference models can be tested and predictive skills quantified.
Data sets constructed from simulations are also free from bias
which would result from using analytic expressions. This is
particularly important, when these same expressions and scal-
ing laws are used to construct and asses inference predictive
models. Given data sets, the next step is then to construct and
validate models capable of inferring plasma parameters from
measured currents. These procedures are described in detail
below.

2.1. Data sets

Two distinct synthetic data sets are constructed and used in
our model skill assessments. The first one uses the three-
dimensional particle-in-cell (PIC) simulation code PTetra to
simulate a needle probe in a flowing plasma, with velocity per-
pendicular to the probe axis. In PTetra, the simulation domain
consists of an unstructured adaptive tetrahedral mesh in which
Poisson’s equation is solved at each time step using Saad’s
GMRES sparse matrix solver [36]. The validity of simula-
tion results obtained with PTetra has been assessed in previ-
ous publications, in which results were compared with theory
[28], and those obtained with independently developed com-
puter models [8, 29, 30]. More information about the code
can be found in [28, 29]. The probes simulated have the same
radius, r= 0.255 mm, as the ones on the QB50 CubeSats, but
they are twice as long with a length L= 50 mm instead of
25 mm [17]. Longer probes would have the advantage of col-
lecting more current with higher signal-to-noise ratio, while
being less affected by end effects. The probe dimensions and
plasma parameters used in the simulations are given in table 1.
Variations in the plasma flow speed by 1 km s−1 in different
directions relative to the probe, as well as different ion com-
positions have been considered in selected cases, which res-
ulted in only minor effects on collected currents. This is why
we limited our study to the parameters listed in table 1. Sim-
ulations are made for 25 combinations of densities and tem-
peratures (five densities, each with five temperatures), and we
consider four probes biased to 2, 3, 4 and 5 V with respect to
the spacecraft. However, since the spacecraft floating poten-
tial varies, it is necessary to obtain collected currents for a
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Table 1. Probe dimensions and plasma environment conditions
assumed in PTetra simulations. All probes are on the ram side of the
satellite, and oriented perpendicularly to the ram direction.

Probe length 50 mm
Probe radius 0.255 mm
Densities 1010, 3× 1010, 1011, 3× 1011, 1012m−3

Temperatures (Te = Ti) 0.07, 0.095, 0.12, 0.145, 0.17 eV
Ion species 100% O+

Plasma flow speed 7672 km s−1

Floating potentials −2 V to +2 V in steps of 0.2 V
m-NLP bias voltages 2, 3, 4, 5 V

large number of different probe voltages from the simulations.
To reduce the number of PIC simulations, only a few (at least
four) probe voltages V with respect to the background plasma,
in the range 0–7 V with respect to the background plasma,
are in fact simulated for each combination of density and tem-
perature. The resulting currents are then fitted to the analytic
expression

I= a

(
b+

eV
kTe

)c

(3)

in order to enable the calculation of collected current for arbit-
rary bias and floating voltages in the range 0 V⩽ V= Vf +
Vb ⩽ 7 V. This analytic expression involves three adjustable
parameters a, b, c, which are determined from the four or more
currents obtained from simulations, and calculated with a non-
linear least squares fit, with differential evolution [9] as the
optimization algorithm. Clearly, equation (3) is very similar
to equation (1) found in the OML approximation for a probe
of infinite length. The parameter b however has no counterpart
in equation (1), and it was introduced to relax possible bias in
the fits with the expression resulting from the OML approxim-
ation, and assumed in some of the inference approaches con-
sidered below. This parameter is introduced to account for the
fact that equation (1) is not exact, even if it is generally a good
approximation for the collected current. By setting the fitting
parameter b to unity, we would constrain the interpolation of
our simulation results to have exactly the form prescribed in
equation (1), while our goal here is to have the best analytic fit
for currents computed in our simulations. In practice, depend-
ing on the parameters, our fits produce values for b ranging
from approximately 0.7 to 1.1. We remark that our simulations
do not account for a guard cylinder that would be supporting
the probe, and be set to the same potential. For that reason, in
order to approximate the effect of a guard, the probes are sub-
divided into five segments of equal lengths (10 mm each), and
the current collected by one of the end segments is replaced
by the current collected by the segment next to it. A correla-
tion plot of fitted currents as a function of actual (simulation)
collected currents in figure 1 shows the excellent agreement
between fits and data. In most cases, the relative error in the
fits is of order 1%, and the maximum relative error among
all the cases, is under 4%. Given coefficients a, b and c for
each of the 25 combinations of densities and temperatures, it

Figure 1. Correlation plot of the fitted current as a function of the
actual simulation current. The solid line represents perfect
correlation.

is then possible to construct a data set with 4-tuples of cur-
rents corresponding to 4-tuples of bias voltages Vb and arbit-
rary floating potentials Vf in a range such that 0⩽ Vf +Vb < 7
V. Several increments have been tried between successive bias
voltages, ranging between 0.75 to 1.5 V, and found to have
relatively little impact on prediction accuracy. In this data set,
bias voltages of 2, 3, 4, and 5 V are considered, with 21 uni-
formly distributed floating potentials in the range (−2, 2) V;
thus forming a set of 25× 21= 525 entries or nodes. Thus,
each entry in the data set consists of a 4-tuple of currents, along
with associated density, temperature and floating potential.

The second data set considered is constructed using the
Langmuir software [32], which uses the fits reported in [33].
In this article, fits were constructed for a thin cylindrical probe
in a wide range of non-dimensionalised plasma parameters.
These can be used to predict the current per unit length along a
probe, as well as the total current collected, for different ratios
of probe length to the Debye length, and ratios between the
probe voltage to the electron temperature. Prescriptions were
also derived to approximate the effect of a guard, which would
reduce or eliminate end effects on one end of a probe. The
simulation results used for the fits in [33] were obtained using
PTetra. Since the work in [33] made similar assumptions to
those in the OML theory, except for the finite length of the
probe, one would expect the results of Langmuir to approach
those of OML for a cylinder as the probe length is increased.
This is indeed the case, the worst-case discrepancy being less
than 5% [32]. Further on, as the probe is shortened to less
than the Debye length, one expects the collected current to be
proportional to the probe voltage, similar to a spherical probe
(though the exact current may not be known, since the effect-
ive spherical surface area may differ from the true surface
area). This is also observed in [33], where the current–voltage
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characteristics for a probe shorter than the Debye length fits
a function similar to (1), but with β∼ 1. This model is used
to generate a data set consisting of 10 000 4-tuples of currents
for randomly distributed temperatures, densities, and floating
potentials in the same range in parameter space, as assumed
in the first data set. The temperature and floating potential are
uniformly distributed within their ranges, whereas the density
is logarithmically distributed (i.e. logne is uniformly distrib-
uted). The bias voltages are also the same as in the first data
set. Contrary to the first data set, however, this one does not
account for a plasma flow, which is deemed negligible, due
to the small drift velocity compared to electron thermal speed.
Moreover, the data set is generated assuming an ideal (infinite)
guard on one end of the probes.

2.2. Inference models

We now turn to the construction of models capable of infer-
ring plasma parameters frommeasured currents. In addition to
themethods alreadymentioned in the introduction, with which
comparisons will be made, two approaches are presented. In
model 1, parameters are obtained in part from the assumed
relation between current and voltage in equation (1), and in
part from multivariate regression. In model 2, inference is
made directly using multivariate regression, without relying
on any analytic scaling law between current and voltage. Since
both models 1 and 2 make use of RBF regressions, we start
with a brief presentation of the method.

2.3. Radial basis function regression (RBF)

Multivariate regression offers a general means of inferring
dependent variables from scattered data in a multidimen-
sional space. Among the several possible approaches, RBF
was chosen for its relative simplicity and accuracy [6, 20, 35].
The method consists of a weighted superposition of functions
of the ‘radial’ distances between points in a multidimensional
space, where regression is to be made. Given a set of N ref-
erence nodes, or ‘pivots’ {(Xi, Yi), i= 1, N}, where Xi and
Y i are respectively independent and dependent vectors, and
assuming an L2 norm, or Euclidean metric for the distance
between two points in X space, RBF regression consists of
approximating Y for an arbitrary X, as

Y≃
N∑
j=1

ajG(|X−Xj|), (4)

where aj are regression coefficients, and G is a radial basis
function. Regression coefficients aj can then be determined by
requiring exact collocation at pivots; that is, by solving the set
of linear equations

Yi =
N∑
j=1

ajG(|Xi−Xj|). (5)

The choice of the G function is arbitrary, with the only con-
straint that the equations in equation (5) be linearly independ-
ent from one another. The construction of an RBF regression

model is done in two steps. The interpolation function and
pivots are first set so as to best approximate dependent vari-
ables in a ‘training set’ in which X and Y are known. The
trained model is then applied to a distinct ‘validation set’, not
used in training, and covering the same range in parameter
space. In each case, model prediction skill is assessed with a
‘cost function’ C, which vanishes if predictionsmatch data val-
ues exactly, and increases with increasing discrepancies. Sev-
eral functions have been tried for training, and G(x)= x1.8 is
used throughout because of the good results that it produces in
our problem. Given a function G, the choice of pivots is crit-
ical in order to construct an accurate model. In our analysis,
training and validation sets are subsets of a larger set, or solu-
tion library, constructed from kinetic simulations, as described
in section 2.1. In training, given a function G, the objective
is to distribute pivots in order to obtain the highest accuracy
when applying the model to a data set in which both X and Y
values are known. Different approaches have been proposed
to achieve this task, including k-clustering [18], and Gaussian
clustering [34]. Assuming a number N of pivots, and a num-
ber N of nodes in the training set, we adopt a straightforward
strategy, consisting of trying all possible combinations of N
pivots amongN nodes in the training set, and selecting the dis-
tribution of pivots for which C is minimum. Two cost functions
are used in this study, depending on the nature of the physical
parameter being modeled. For the density, which varies over
two orders of magnitude, we use the maximum relative error
between predictions and actual values in a given data set. For
the floating potential, which can vary continuously between
negative and positive values, C is the maximum absolute error
between predicted and actual values.

2.4. Model 1: analytic-regression based

The first model considered consists of three steps in which (a)
the exponent β, (b) the floating potential and the temperature,
and (c) the density are successively estimated.

The starting point in (a) is the empirical relation between
collected current and voltage in equation (1). By raising each
side of the equation to the power α= 1/β, we obtain

Iα =

(
neeA

√
kTe

2πme

)α
1
kTe

(kTe + e(V+Vf)) . (6)

Given two currents I1, I2 collected by two probes biased
to voltages V1, and V2, it is straightforward to solve for
Vf + kTe/e in terms of the two voltages and currents and obtain

Vf +
kTe

e
=
V2Iα1 −V1Iα2
Iα2 − Iα1

. (7)

Now, if a third probe is used, with bias voltage V3, collecting
current I3, the following identity must be satisfied:

V2Iα1 −V1Iα2
Iα2 − Iα1

− V3Iα2 −V2Iα3
Iα3 − Iα2

= 0, (8)

since Te and Vf are constants, independent of the bias voltages
or currents. In this equation, only α is unknown, because the
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currents are measured, and the bias voltages are set by design
of the instrument. It is then straightforward to solve for α, and
hence β, using a standard numerical root finder.

In step (b), given β, neglecting kTe/e, which is generally
small compared toVf, equation (7) is used tomake a first estim-
ate of the floating potential, as

Vf1 ≃
V3Iα2 −V2Iα3
Iα3 − Iα2

(9)

where subscript 1 is used to label this first approximation of
Vf. This first estimate of Vf can now be improved by regres-
sion to approximate the error in our first inference, δVf1 =
Vf1 −Vf. This is carried out with RBF, using 4-tuples of meas-
ured currents as input, and as output, the known difference
δVf1 = Vf1 −Vf between the first inference V f1, and the float-
ing potential in our data set. This inferred correction is then
used to construct a second inference of V f2 with improved
accuracy. Referring to equations (7) and (9), it is seen that the
model of the correction δV f1 also provides an estimate of the
electron temperature: kTe/e∼ δVf1.

Finally in step (c), given the estimates β, V f2, and Te, it
is possible to make a first inference of the density ne1 analyt-
ically from equation (1). As a final improvement, the relat-
ive difference between ne1 and the known value from our data
set, δne1 = (ne1 − ne)/ne1 is modeled with RBF, again with the
4-tuples of currents as input. The modeled correction is then
applied to ne1 to yield a further improved density estimate ne2.
In practice, the increase in accuracy between ne1 and ne2 is
only modest, but ne2 is found to be better centered around the
exact values. For that reason, only inferred ne2 is considered
below.

To summarize, model 1 involves several steps consisting of
analytic and regression estimates, from which the four para-
meters β, Vf, Te, and ne are estimated from 4-tuples of cur-
rents obtained with four given bias voltages as the only input.
It is noted that the procedure involving equations (8) and (9)
only requires 3-tuples of currents and bias voltages. The RBF
corrections to Vf and ne however, are done using the four cur-
rents and voltages, owing to the fact that four parameters (β,
Vf, Te, and ne) need to be determined. Results obtained with
both three and four sets of collected currents are presented in
section 3.3 below.

2.5. Model 2: direct RBF regression

In this approach, RBF regression is used to directly infer phys-
ical parameters, without relying on any analytic approximation
for the currents and bias voltage, as in method 1. The advant-
age here is that the resulting models are unbiased relative to
any approximate theory; that is, they are purely data-driven.
The added challenge however, is that they must accurately
reproduce the full dependence of parameters such as densit-
ies and satellite floating potentials, directly from 4-tuples of
collected currents.

3. Assessment of model inference skills

In this section, themodels proposed independently by Barjatya
et al [2], and Hoang et al [15], and models 1 and 2 described in
2.4 and 2.5 are assessed with data sets obtained from kinetic
simulations as described in section 2.1. For models 1 and 2,
200 randomly selected nodes are used for training, and the
remaining 325 nodes are used for validation.

The models are assessed using different skill metrics. For
the floating potential we define the error of a data point as
Vf,model −Vf,actual, and compute the maximum absolute error
(MAE) and the root mean square of the error (RMSE). In
addition, we decouple RMSE2 = µ2 +σ2 into a bias/offset µ
and a (population) standard deviation σ of the error to more
clearly identify to which extent the error is caused by a sys-
tematic offset or a less predictable spread. The offset µ is cal-
culated as the average error, and σ is the standard deviation
of the error in a given data set. For the density, because it
spans several orders of magnitude, we use the relative error,
defined as (ne,model − ne,actual)/ne,model. This is chosen rather
than the more usual definition where relative errors are with
respect to exact values, because, from an operational point of
view, model inference is made for variables that are not known
otherwise. It is therefore more convenient to assess margins
of uncertainty with respect to prediction values, which are
known, thanwith exact values, which are not known.With this,
we report the maximum (absolute value of) the relative error
(MRE) and the root mean square of the relative error (RMSrE)
for the density. Again, we decompose RMSrE into the bias/off-
set µr, and standard deviation σr of the relative error. For con-
sistency with past literature, we also report the Pearson correl-
ation coefficient R for both the density and floating potential,
although R is known to be close to unity even for relatively
large errors [2].

3.1. Jacobsen et al’s linear fit approach, with β=0.5

Using the linear fit approach proposed in [21], and summar-
ized in section 1, densities are inferred from the 4-tuples of
currents in our solution library constructed from kinetic sim-
ulations described in section 2.1. The correlation plot of these
results is shown in figure 2, with selected skill metrics. The
linear fit inference is seen to significantly overestimate densit-
ies, by factors ranging from 3 to 9, relative to densities in our
data set. It is interesting to note that each vertical cluster in
the figure consists of 21× 5= 105 circles, which is the num-
ber of combinations in floating potentials and temperatures
considered in the construction of the data set. It follows that
the spread in inferred density, using this approach, is mainly
caused by the spread in floating potentials and temperatures,
which are not accounted for in this linear fit formalism.

The regularity in the discrepancies between inferred and
data base densities, however, suggests that it should be pos-
sible to improve model predictions in this case, using regres-
sion. Thus, RBF was used to construct a model for the rel-
ative difference between predicted and data densities seen in
figure 2. Three pivots were found to be optimal in this case,
to shift the centroid of predicted densities close to the ideal
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Figure 2. Correlation plot of the density obtained with Jacobsen
et al’s linear fit.

Figure 3. Correlation plot of the density obtained with Jacobsen
et al’s fit, corrected with RBF regression using three pivots.

correlation curve, without over-fitting. This model was then
applied to the validation set to assess the skill. As shown in
figure 3, while the spread in the vertical clusters of circles
remains significant, the centroid of the predicted densities is
now much closer to the ideal correlation curve; resulting in a
notable improvement in the skill metrics.

3.2. Nonlinear least squares fits

Nonlinear least squares, similar to those proposed by Barjatya
et al and Hoang et al summarized in section 1 are now con-
sidered for determining the floating potential and electron

density. This is done by considering three possible implement-
ations consisting of (a) a 4-parameter fit using all four currents,
(b) a 3-parameter fit using currents from the three largest bias
voltages (to account for the possibility of a probe with negat-
ive voltage), and (c) a 3-parameter fit using currents from all
four probes. In all cases, nonlinear least square fits are made
using the Python library SciPy, to perform differential evolu-
tion optimization [38]. In both cases (b) and (c), the temperat-
ure appearing in equation (1) is set to the exact value from the
solution library, in order to reduce the number of fitting para-
meters from four to three. This is similar to the approach taken
by Barjatya et al who used estimated values of the temperat-
ure, and by Hoang et al who used estimates from the Interna-
tional Reference Ionosphere (IRI) [5], and EISCAT measure-
ments [11], in their fits. By setting the temperature to its true
value, these results produce the best possible fits with these
approaches. Model skills are summarized in tables 2 and 3 for
each case. In case (a), consistentlywith findings from [2], fitted
temperatures are found to be very inaccurate, which explains
the lower performance of the four-parameter fit approach com-
pared to the other two. From the tables, cases (b) and (c) are
seen to result in nearly identical skills, although three para-
meter fits from the four probe currents (case (c)) is found to be
slightly more accurate. Inference skills obtained in case (c) are
shown in figures 4 and 5 for the floating potential and density,
respectively. Excellent agreement is seen for inferred Vf com-
pared to known values from our validation set, with a max-
imum absolute error of 0.101 V in the range (−2, 2) V of
possible floating potentials. Densities are also modeled with
good accuracy, with a maximum relative error of approxim-
ately ±59% over the (1010, 1012)m−3 range.

3.3. Model 1: analytic-regression based

Following the procedure outlined in section 2.4, which
consists of several steps involving a root finder, analytic
expressions, and regression, models were constructed with
synthetic training and validation sets obtained from simula-
tions. Correlation plots computed with the validation sets are
shown in figure 6 for the floating potential V f2, and figure 7
for the density ne2. Referring to tables 2 and 3, inferred float-
ing potentials are seen to be slightly less accurate compared to
those obtained from three-parameter fits, while inferred dens-
ities are more accurate. We must recall however, that in the
three-parameter fits, known temperatures from the data sets
were used, while in model 1, the temperature is one of the fit-
ting parameters, and that its determination is rather inaccurate.
Thus, in order to have a fair comparison between model 1 and
the three-parameter fit approaches, model 1 inferences were
made in which the known temperatures were used. The res-
ults in the tables show that model 1 predictions of the float-
ing potential are now as accurate as those from the three-
parameter fits, but that the density predictions are significantly
more accurate. For either Vf or ne, model 1 predictions, with or
without specifying known values of Te, are also significantly
more accurate than those obtained from a four-parameter fit,
which would be required should an accurate measurement of
the temperature not be available.
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Table 2. Quantitative skill test results for the floating potential using each of the data analysis methods described. R refers to the Pearson
correlation coefficient, RMSE to the root mean square error, MAE to the maximum absolute error, µ to the offset, and σ to the standard
deviation in the error.

Data analysis method R RMSE MAE µ σ

4 Parameter nonlinear least squares fit 0.9975 0.0983 0.247 −0.048 0.086
3 Parameter nonlinear fit, 4 probes 0.9995 0.0398 0.101 0.0035 0.040
3 Parameter nonlinear fit, 3 probes 0.9995 0.0398 0.101 0.0035 0.040
Model 1 with known values of Te 0.9995 0.0398 0.101 0.0034 0.040
Model 1 with inferred values of Te 0.9995 0.0409 0.130 −0.0091 0.040
Model 2—Direct RBF 0.9970 0.0970 0.361 −0.026 0.093

Table 3. Quantitative skill test results for the electron density using each of the data analysis methods described. R refers to the Pearson
correlation coefficient, RMSrE to the root mean square of the relative error, MRE to the maximum relative error, µr to the offset, and σr to
the standard deviation in the relative error.

Data analysis method R RMSrE MRE µr σr

Linear fit 0.9505 0.77 0.88 0.77 0.073
Linear fit with RBF correction 0.9850 0.24 0.61 0.082 0.23
Linear fit, Langmuir data set 0.9934 0.54 0.75 0.521 0.12
4 Parameter nonlinear fit, 4 probes 0.9819 0.28 1.23 −0.018 0.28
3 Parameter nonlinear fit, 4 probes 0.9949 0.30 0.59 −0.11 0.28
3 Parameter nonlinear fit, 3 probes 0.9949 0.30 0.59 −0.11 0.28
Model 1 with known values of Te 0.9944 0.14 0.32 −0.0055 0.14
Model 1 with inferred values of Te 0.9954 0.13 0.27 0.035 0.13
Model 2—Direct RBF 0.9988 0.075 0.18 −0.0092 0.074
Model 2—Direct RBF, Langmuir data set 0.9962 0.075 0.21 −0.0038 0.075

(V)

(V
)

Figure 4. Correlation plot for the floating potential obtained with
the 3-parameter nonlinear least squares fitting approach and all four
probe currents. In the fits, temperatures are set to the exact value
appearing in our solution library.

3.4. Model 2: direct RBF regression

The most straightforward model consists of using RBF regres-
sion directly to infer the floating potential and plasma density.
This is done without any intermediate analytic steps, which

Figure 5. Correlation plot for the density obtained with the
3-parameter nonlinear least squares fitting approach and all four
probe currents. In the fits, temperatures are set to the exact value
appearing in our solution library.

results in models that are fully data-driven, and unbiased to
analytic approximations. Considering that in this approach
regression is expected to reproduce the full dependence of the
variables of interest from 4-tuples of currents, as opposed to
small corrections to estimates obtained by other means, it is
not clear a priori, whether inferences should be more or less
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(V)

(V
)

Figure 6. Correlation plot of the floating potential obtained with
model 1 and RBF estimates of the temperature using four pivots.

Figure 7. Correlation plot of the density obtained with model 1 and
RBF estimates of the temperature using four pivots.

accurate than those of method 1. Correlation plots are shown
in figures 8 and 9 for inferred floating potentials and densities,
respectively, using RBF with five pivots. While model predic-
tions of Vf follow the ideal correlation line in figure 8, with
nearly the same slope and cluster centroids close to the ideal
correlation line, their vertical spread is larger than in plots ofVf

from other models, and prediction skills are seen to be the low-
est among all models considered. The situation is opposite for
the density however, for which inferred densities show the best
agreement with those from the validation data set. This is also
clear from the skill metrics listed in table 2, which are the best

(V)
(V
)

Figure 8. Correlation plot of the floating potential obtained with
direct RBF regression, with five pivots. In this case, 4-tuples of
currents are normalized by dividing by the largest collected current.

Figure 9. Correlation plot of the density obtained with direct RBF
regression, with five pivots.

among the eight models considered. An interesting observa-
tion is that, with our training and validation data sets, the direct
RBF approach produces the highest accuracy for the density,
and the lowest one for the floating potential. This shows that
different approaches may be better adapted to model different
physical parameters. As a final remark, very little has been
said so far about modeling the temperature. The reason is
that all attempts have produced very scattered and inaccurate
estimates of the temperature, whether with four-parameter fits,
model 1, or with direct RBF. This is consistent with findings
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reported by Barjatya et al and Hoang et al and it is a con-
sequence of the relatively weak dependence of collected cur-
rents on the temperature for these types of probes.

4. Application to other data sets

In this section method 2 is further tested by inferring densit-
ies in two data sets constructed independently from the one
considered in the previous sections. The focus here on method
2 and density predictions is motivated in part by the original
purpose of using m-NLPs, to infer densities independently of
temperatures. Another reason is that method 2 is independent
of a priori analytic expressions such as equation (1), which
makes it applicable under more general conditions, in which
equation (1) may not be a good approximation. The first set is
constructed with the Langmuir program, in which the current
collected by a probe is interpolated from numerically com-
puted currents on a grid of non-dimensionalised plasma and
probe parameters [32]. The second, experimental, consists of
4-tuples of currents measured in the Visions-2 rocket mission,
with densities inferred using two independent techniques.

4.1. Blind test with Langmuir generated data

To better assess method 2, it has been applied to a second data
set in a blind study, where one author (SM) assessed the skill
of predictions made by the other authors. As mentioned in 2.1,
this second data set consists of 10 000 4-tuples of currents for
different plasma parameters. 200 of these were used for train-
ing, and yet another 800 were made available for quick assess-
ments and experimentation during the training phase. The true
plasma parameters behind the remaining 9000 4-tuples of cur-
rents were not seen by the experimenters, and were only used
later to compute skill metrics of the predictions by the last
author.

Correlation plots for predicted densities are shown in
figure 10, with corresponding skill metrics included in table 3.
With Langmuir, currents are calculated for a probe geometry,
and plasma conditions different from what was assumed in
section 2.1. The excellent correlation between given and
inferred densities, with similar metrics to those seen in
figure 9, is promising and provides strong support to the
applicability of the method to experimental data. For compar-
ison, predictions of the density from the Langmuir data set,
using a Jacobsen et al’s linear fit with β= 0.5 is also included.
Compared with the linear fit, which largely overestimates the
density with a 52% bias, model 2 predictions have the low-
est bias and standard deviation; thus providing a significant
improvement to the predicted density.

4.2. Application of RBF to visions-2 experimental data

Method 2, our best density inference technique, is also tested
against experimentally inferred densities from the sounding
rocket 35.039 of the Visions-2 mission. The m-NLP system
aboard rocket 35.039 consisted of four cylindrical Langmuir
probes of length 39 mm and diameter .51 mm, biased to 3,
4.5, 6 and 7.5 V [39]. The model is trained with synthetic

Figure 10. Correlation plot of the density obtained with model 2
(lower) with five pivots, applied to the Langmuir validation set.
Predictions using a linear fit (upper) are included for comparison.
Only a tenth of the points are shown.

data produced by the Langmuir library, and inferences of the
density are compared with those obtained with two techniques
used in this mission. The synthetic training data set of cur-
rents and densities was constructed for probes of diameter 0.51
mm, and length 40 mm. The same bias voltages of 3, 4.5, 6,
and 7.5V were assumed as in the experiment. The data set was
generated with randomly distributed electron densities in the
range 1010–1012m−3 on a logarithmic scale and, using a lin-
ear scale, temperatures from 0.07 to 0.17 eV, and spacecraft
floating potentials between −4 and −0.5 V. The RBF model
was trained with 300 randomly selected currents and densit-
ies from a 10 000 node Langmuir data set, using five pivots.
A comparison of inferred densities with those reported in the
Visions-2 mission, as a function of time and altitude, is shown
in figure 11. The two densities reported in the mission, shown
in the figure, were obtained with Jacobsen’s β= 0.5 linear fit,
and the β= 0.8 non linear fit techniques.

As a final test of our proposed technique, RBF was trained
with, and applied to experimental measurements. This is to
ascertain whether the method is applicable to more general
cases than those obtained with synthetic data constructed from
simulations or computer models. To this end, the model was
trained using five pivots and 300 randomly selected entries
from the Visions-2 data set, consisting of 4-tuples of collec-
ted currents. In one case, the densities used in training and
validation were inferred with Jacobsen’s linear fit technique,
while in the other case, they were inferred with a β= 0.8 non-
linear fit; both inferences being reported in the Visions-2 data
set. A comparison between RBF inferences and experimental
densities, including selected skill metrics, are shown in the
two panels of figure 12 for the full Visions-2 data set. The
ability of RBF to be trained with, and accurately reproduce
densities inferred with these two different techniques, is yet
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Figure 11. Comparison between densities from Visions-2 data inferred with Jacobsen’s linear fit, β= 0.8 nonlinear fit, and RBF regression
trained with data consisting of 300 randomly selected nodes from the Langmuir model, using five pivots.

Figure 12. Correlation plots of the density inferred with RBF trained with a 300 node subset of Visions-2 experimental data, against more
than 4M experimentally inferred densities. Training and validation were made with densities inferred with the Jacobsen β= 0.5 linear fit
(left), and the β= 0.8 nonlinear fit (right) technique.

another demonstration of the applicability of method 2 based
exclusively on RBF regression. While the comparison made
here cannot be used to ascertain the accuracy of either infer-
ence technique used in the experiment, it clearly shows that
given accurately measured currents and densities, RBF can be
used to construct high skill inference models for the density.

5. Summary and conclusion

New procedures are presented to infer a satellite floating
potential and plasma density from currents collected with
fixed-bias multi-needle Langmuir probes (m-NLP). The use
of such probes was first considered by Jacobsen et al as a
means of inferring plasma density, with high temporal and
spatial resolution, independently of the electron temperature.
Recognizing the limits of the OML approximation, with
β= 0.5, linear and nonlinear least squares fit approaches have

been developed in order to infer the plasma density from probe
measurements. In this paper we revisited these procedures
and introduced two alternatives to infer plasma parameters
from low level (L1B) m-NLP measurements. The first method
makes use of a generalized orbital-motion-limited (OML)
scaling law (see equation (1)), combined with radial basis
function (RBF) regression to correct discrepancies obtained
analytically. The second method relies solely on RBF regres-
sion to infer the density and floating potential. In both cases,
physical parameters of interest are inferred from 4-tuples
of currents collected by as many probes biased to known
voltages. With the first method, the intermediate analytic
expressions involve the plasma temperature, which can be
obtained from independent measurements if possible, or from
the regression procedure itself. In all cases considered, the
inference of temperature comes with significant uncertainties,
consistent with findings from previous studies. These large
uncertainties result from the weak dependence of collected
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currents on temperature which, as noted in previous studies,
enables good quality inferences of the density, evenwith rough
estimates of the temperature. With the second method, infer-
ence of both plasma density and satellite floating potential
relies exclusively on RBF regression. The absence of analytic
approximations in this case, implies that inferences are not
biased to any a priori theory, and are therefore exclusively
data-driven. The added challenge however, is that without
being ‘aided’ by analytic approximations, regression now has
to ‘do all the work’, resulting in possible accuracy loss for
some parameters. The procedures reviewed and presented
were assessed by applying them to a synthetic data set con-
structed with kinetic simulations, consisting of 4-tuples of col-
lected currents with corresponding bias voltages, for a range
of assumed densities, temperatures, and floating potentials.
Although simulations do not account for the full complexity
of processes at play near satellites in space, they do provide
consistent data sets with known density, temperature and float-
ing potential, from which inference algorithms can be tested.
Model prediction skills were assessed graphically and quant-
itatively using adapted metrics. Consistently with what was
reported by Hoang et al the linear fit approach leads to signi-
ficant systematic overestimates of the density. We found that
this can be corrected in part with RBF regression, to bring the
centroid of predicted densities close to actual values. When
inference is made using known (from the data sets) temper-
atures, all approaches provide good accuracy for the floating
potential, but method 1 based on a combination of analytic
scaling laws and regression is found to be appreciably more
accurate. A loss of accuracy is noted in floating potentials res-
ulting from method 1, and particularly from 4-parameter non-
linear fits, when temperatures are inferred from the model.
Interestingly, this is not the case for predicted densities as,
with model 1, inference accuracy is found to be slightly bet-
ter when temperatures are calculated in the model. While the
difference here is small (0.27 vs. 0.32 for the maximum rel-
ative error), this may result from the approximate nature of
equation (1) assumed in method 1. Conversely, method 2 rely-
ing exclusively on RBF regression is found to have a relatively
low inference skill for the floating potential, but an excellent
one for the density. This indicates that an optimal strategy
might require different algorithms to infer different physical
parameters from a given instrument.

Finally, to show the applicability of direct RBF inference,
to more general data sets, a proof-of-concept study was con-
ducted using two additional and independent data sets. One
was generated with the Langmuir code in which assumed
plasma conditions and probe geometry were different from
the ones assumed in our first assessments. The other consisted
of currents measured experimentally in the Visions-2 mission,
with densities inferred with two distinct inference algorithms.
Although the true electron densities were unknown in this
case, RBF produced results similar to those obtained when
considering β= 0.8, which is believed to be more accurate
than the original β= 0.5 method. Just as importantly, to show
that RBF has the potential to accurately infer densities in
experiments, given accurate training data (either through sim-
ulations or more accurate experimental methods), two RBF

models were constructed by training on small subsets of the
Visions-2 data with densities inferred from (a) Jacobsen’s lin-
ear fit, and (b) the β= 0.8 nonlinear fit technique. It was then
shown that RBF accurately reproduces densities, when trained
with subsets of experimental data, independently of the experi-
mental data analysis technique used to infer the density. These
results provide strong evidence that direct RBF methods can
be used to accurately infer densities from experimental data,
given that the models are trained using sufficiently accurate
data sets.

In conclusion, methods have been presented as promising
to improve the accuracy of plasma density and satellite float-
ing potentials inferred from m-NLP measurements. Our ana-
lysis shows that RBF alone (method 2) should be the pre-
ferred approach to infer densities from m-NLP measurements,
whether training is made with synthetic simulation-based data
or with data measured and validated experimentally. Con-
versely, based on our assessments made with data sets con-
structed with kinetic simulations, for which the empirical
equation (1) is a good approximation, method 1 (combining
regression and an empirical expression for the collected cur-
rents) should be preferred for inferring a satellite potential.
More generally however, with different configurations of the
probes relative to other satellite components, or plasma envir-
onment conditions, equation (1) might not accurately describe
currents collected by the probes, which would then result in a
loss of skill in inferences made with method 1. The possible
variations on multivariate regression techniques and data sets
are of course endless, and it would be possible to compare sev-
eral more variants and data sets, which could of course lead to
different results. While the determination of plasma density
with m-NLP is not as straightforward as initially assumed on
the basis of OML theory and the assumption of sufficiently
long probes, this type of instrument offers interesting possib-
ilities for measuring the density, as well a satellite floating
potential. Part of our analysis is based on synthetic data gen-
erated with kinetic simulations, in which many processes at
play in actual measurements are not accounted for. The results
obtained are nonetheless sufficiently encouraging to motiv-
ate further computational and experimental studies with more
physics, more detailed geometry, and broader expected space
environment conditions, to support specific space missions.
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