
IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 11, NO. 3, MAY 2021 819

Robust and Fast Detection of Small Power Losses in
Large-Scale PV Systems

Åsmund F. Skomedal , Mari B. Øgaard , Halvard Haug, and Erik Stensrud Marstein

Abstract—Due to the fast growth in global installed photovoltaic
(PV) capacity, performance monitoring for large-scale PV systems
is an increasingly relevant and important topic. A large volume of
research exists in this field, but there is a need for comparison of
different methods and their performance toward relevant metrics, a
broad discussion of the different choices involved, and subsequent
consolidation. In this article, we focus on the detection of small
power losses on string-level. We discuss the different choices in-
volved in building a robust string performance monitoring scheme.
We suggest the following approach: 1) identify bad data quality
and do data-filtering; 2) calculate the daily specific yield on string
level; 3) calculate the relative difference in specific yield between
the strings (relative yield); 4) identify historical faults; 5) correct
for seasonal variations; and 6) apply control charts to detect per-
formance losses in new data and issue alarms/report to the system
operators. Based on data from a utility scale PV power plant we
compare different control charts in terms of detection time and
sensitivity. We show that the cumulative sum (CUSUM) median and
the Tukey-CUSUM charts are the most promising fault detection
methods of the ones we have tested. We can robustly detect faults
causing a performance loss of about 1% within 35 days of the drop
in performance.

Index Terms—Data analysis, monitoring, photovoltaics (PV), PV
systems, solar power generation, time series analysis.

I. INTRODUCTION

THE motivation for automatic fault detection in photovoltaic
(PV) systems is twofold: The first goal is to avoid safety

hazards and system breakdown, the second is to avoid revenue
loss due to reduced production. Although large-scale PV systems
are reliable compared to other sources of power, having the
lowest outage rate of all power sources in the US [1], robust
and fast detection of faults can avoid large revenue losses, and
is important if we want to increase the competitiveness of PV
energy.

Severe faults, such as blown fuses, open circuits, and in-
verter outages are easily detected by considering the production
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data, and many PV systems today apply manual or automatic
monitoring schemes to handle these issues. Less severe faults,
such as cell cracks, potential induced degradation, broken front
glass, cell and busbar corrosion, shunts, and other problems at
module level, cause small power losses, and are most commonly
detected through aerial infrared thermography. However, a ther-
mographic image is only a snapshot of the situation, and the
thermal signatures depend on the ambient conditions during
imaging. There is little research on how to estimate energy
losses based on thermal images, making it difficult to make
mitigation actions that are proportional to the severity of the
faults. In a recently published paper, we try to mitigate this lack
of knowledge by combining aerial thermographic imaging with
power loss analysis on string level [2].

Here, we focus on fast detection of small and medium sized
power losses (faults) in large commercial and utility scale sys-
tems through production data monitoring on string-level. By
“large” we mean systems that have at least 20 subarrays that are
individually monitored in terms of power or current. We do not
consider fault diagnosis.

In the literature, there is no shortage of suggestions for differ-
ent PV fault detection routines (FDRs) (see, for instance, [3]–
[6]). Many publications propose novel techniques/algorithms for
fault detection, and many of these techniques are undoubtedly
very useful. However, the performance of any FDR depends
heavily on the choices made in the preparation stages, and few
publications focus on these choices. A couple of recent papers
propose data quality routines for performance monitoring [7],
[8], but this is an area that needs more research. Furthermore,
there is no standardized way of benchmarking different FDRs.
Hence, there is little comparison and consolidation of different
FDRs in terms of performance, making it difficult for PV system
operators to choose the right option.

In this study, we contribute toward filling these gaps by
discussing what kind of PV performance metric should ideally
be used in an FDR, and the choices involved in calculating
this metric. Of the countless FDRs that exists in the PV fault
detection literature, we have chosen to consider a certain subset
of methods that have been used extensively in other industries
for almost a century, namely control charts.

II. INTRODUCTION TO CONTROL CHARTS

The control chart was developed by Walter A. Shewhart in the
1920s [9], as he was addressing need for quality control for the
quickly growing manufacturing industry. In its original version,
the control chart is a graphical tool made to enable detection of
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Fig. 1. Flowchart over the suggested methodology. Blue boxes represent
different kinds of time series data, while green boxes represent the steps involved
in the method.

unwanted changes in a process [10]. One plots a control metric,
representing the quality of the process, on a graph, and for each
sample checks whether the quality falls outside either the upper
or lower control limits (UCL and LCL). If it does, a corrective
measure is made. In our case, “quality” is represented by the
performance of the individual strings in the PV system.

With the (original) Schewart chart, the UCL and LCL are
defined by the mean +/– 3 standard deviations (3σ) of the distri-
bution [10]. Each sample is considered individually and deemed
either in-control (if the quality value falls within UCL or LCL)
or out-of-control. Later variants, such as the Cumulative Sum
(CUSUM) [11] and Exponentially Weighted Moving Average
(EWMA) [12] control charts, consider aggregates of samples
over time, thus taking into account the evolution of quality. These
aggregating charts are typically able to detect smaller changes
and are less sensitive to noise.

Over the years, countless variations of control charts have
been proposed, each with their own advantages. To name a few,
there are control charts for autocorrelated time series data [13],
multivariate data [14], nonparametric control charts [15], and
robust control charts [16]. For a more detailed introduction to
control charts, we refer to [10], [17], [18], as well as the above
cited papers and the references therein.

A. Control Charts in the PV System Literature

The advantage of control charts, as compared to alternative
fault detection methods for PV, is that they are simple to use
and interpret. Of the countless publications on FDRs for PV
systems, there are only a few that consider the use of control
charts. In these papers, we may differentiate between two main
approaches: those that require modeling PV output data and
those that rely on comparison of the output of strings.

1) Approaches Based on Modeling: Platon et al. [19] model
the ac power with an empirical model, and applies a 3σ Schewart
chart to the ratio between the measured and modeled power.

Livera et al. [20], [21] apply Schewart charts to the difference
between the measured and modeled DC power, using the same
parametric model as [19]. While Livera et al. in [20] use a 3σ
detection rule, Platon et al. [21] use a 1σ rule, without justifying
this choice.

In [22]–[27], Harrou et al. and Garoudja et al. parametrize
the PV system through fitting the single diode model to a set
of outdoor I–V measurements, and simulate the dc operating
current, voltage, and power of the system. They then apply
different control chart variants to monitor the difference between
measured and modeled values. Platon et al. [19] and Livera
et al. [20] apply CUSUM and multivariate CUSUM charts,
respectively, Ramirez and Ramiŕez [18] and Livera et al. [21]
apply EWMA and multivariate EWMA charts, respectively, and
Harrou et al. in [22] and [23] apply a combination of wavelet
multiscale representation of the data and EWMA charts (dubbed
MW-EWMA). The multivariate variants simultaneously moni-
tor the current, voltage, and power residuals, thus accounting for
correlations in these values, reportedly giving better detection
sensitivity. Unfortunately, no paper summarizing and comparing
these approaches has been published. However, these papers
demonstrate the advantage of using aggregating control charts,
as opposed to basic Schewart charts.

2) Approaches Based on String Comparison: A string is an
array of PV modules connected in series. Typically, the current
of each string, or group of strings (hereafter referred to as a
stringset), is measured, making it the smallest sub-array with
electrical measurements in most PV systems.

Zhao et al. [28] makes the point that the different strings in
a PV system is expected to have the same current, as long as
they have the same installation conditions. Thus, they consider
differences in current between strings, detecting faults through
three different outlier rules: the 3σ rule, the Hampel identifier,
and the Tukey (boxplot outlier) rule. The latter two are deemed
more useful since they are robust to contaminated data. Although
Zhao et al. do not mention control charts explicitly, their methods
may be seen as variations of the basic Schewart chart.

Mallor et al. [29], too, compare different detection rules,
although they use the cumulative range of power of the strings
in the PV system as their control metric, where the range is
the difference between the maximum and minimum power of
the strings at each moment. In addition, they use functional
principal component analysis to remove noise. This method is
unique in the PV monitoring literature and seems to be effective
in detecting faults. However, its weakness is that the PV system
is monitored as a single unit, instead of monitoring each string
separately. In addition, neither of the two methods mentioned in
this section account for preexisting differences in performance
between the strings. This means that a performance loss in the
best performing string is less likely to be discovered than in the
worst performing string.

III. METHOD

In this section, we will discuss the choices involved in setting
up an FDR. One of the main contributions of this article is the
proposed six step method shown in Fig. 1, which follows from
the discussion. The steps and the associated choices will be
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considered in an order that follows logically from the discussion,
and this is not in their chronological order. Hence, in Subsection
III-A we argue for the use of the relative difference in specific
yield between the strings (Step 3), in Section III-B we consider
data quality and filtering (Step 1) and different levels of time
aggregation (Step 2), in Section III-C we discuss the correction
of seasonal effects (Step 5), in Section III-D we introduce the
different control chart variants (Step 6), and in Section III-E we
consider the effect of historical faults in the data (Step 4).

One of the biggest challenges of PV performance monitoring
is bad data quality. Typical data quality issues are missing
data, values outside physical limits (corrupted data), sensor
drift, nonconforming sensor installation, lacking maintenance
of sensors, and wrong metadata. In addition, phenomena such
as inverter and plant downtime, clipping, curtailment, irregular
shading, irregular orientation of PV arrays, irregular ambient
temperature patterns, and soiling cause features in the data that,
unless adequately accounted for, may be treated as data quality
issues.

One of the most important aspect of a robust FDR is how
it deals with these data quality issues. Here, we make the use
of data filtering, discussed in Section III-B2, time aggregation
(Section III-B3, and robust statistics, i.e., statistics that work on
data that are not normally distributed and that contain outliers
(Section III-D).

In Section III-F we consider how to set the parameters of the
control charts, and in Section III-G we describe how we generate
a validation dataset by introducing synthetic performance losses
in data from the field.

A. String Comparison Versus Modeling

Following [28] and [29], we argue that, in the case of string
performance monitoring in large-scale PV systems, using string
comparison instead of modeling the output of each string is
preferred for the following reasons: If the strings are mounted
similarly (both electrically and physically), the response to
ambient conditions is virtually identical. Thus, by considering
relative differences between the strings, we implicitly account
for ambient conditions. The effect of curtailment and inverter
clipping (which would have to be accounted for in a model) is
also implicitly accounted for, assuming it affects all fault-free
strings in each comparison group similarly.

Similar strings imply that they are mounted at the same
inclination angle, or with the same tracker configuration, they
have the same module and inverter type, and the same shad-
ing conditions. In a typical large-scale PV power plant, these
conditions are fulfilled for all the strings except at the edges.

Furthermore, in the context of fault detection, the main ad-
vantage of a modeling based approach, in our view, is that it
can be applied to systems with only one, or a few, stringsets.
The main disadvantage is that it relies on sensor measurements,
which themselves are prone to error. For instance, a pyranometer
needs to be cleaned weekly and calibrated every year (in the
case of class A monitoring systems [30]) to mitigate sensor
drifting, and this is not always done. In addition, it can be
time consuming (and hence expensive) to model a PV system,
especially if I–V measurements have to be made or sensor

equipment has to be installed. Finally, we know of no evidence
that modeling-based approaches have any advantage in terms of
accuracy as compared to approaches based on string comparison.
For these reasons, we recommend an approach based on string
comparison.

We propose using the relative yield, defined by (1), as the
basis for measuring the performance (or quality) of individual
strings. For a given period, the relative yield is defined by

yrel,j =
Ys,j − Ỹs

Ỹs

· 100% (1)

where Ys,j =
Ej

PSTC,j
is the specific yield of string(set) number

j, Ej is its energy output in the period, PSTC,j is the STC power
rating of the string, and Ỹs is the median specific yield of the
group of strings associated with string j. The use of specific
yield means it is possible to compare the output of strings
with different power rating. In the case of central inverters, we
recommend grouping strings connected to the same inverter, as
these strings are likely to be co-located and operating under the
same maximum power point tracker, and hence have similar
operating conditions. In the case of string inverters, we propose
creating groups of about 50 co-located strings with equal mount-
ing configuration. In Fig. 2(a) and (b), we show unfiltered and
filtered variants of yrel.

B. Sources of Variation

Any variation in yrel between the strings in a PV system is due
to either 1) string-level performance deviations, 2) intrasystem
variations in ambient conditions, or 3) measurement noise.

1) Performance Deviations: It is useful to differentiate be-
tween pre-existing and currently occurring performance devia-
tions. The former is present already from the start-up of the PV
system. Such deviations are caused primarily by variations in the
capacity of PV modules, installation angle, and (in the case of
central inverters) distance from inverter (causing different series
resistance due to different cable lengths). This also necessarily
includes any deviations due to damage during transport and
installation. Pre-existing performance deviations can be dealt
with by subtracting the (fault-free) historical performance (rep-
resented by x0 in Section III-D) from the day-to-day perfor-
mance. We will come back to this in Section III-D.

Currently occurring performance deviations, on the other
hand, are caused by electrical faults, avoidable shading (e.g.
vegetation and soiling), or any of the module faults summarized
in, e.g., [31] that develop during operation. For simplicity, we
refer to occurring performance deviations simply as faults. Of
course, it is the detection of faults we are addressing in this
study. But to do this effectively, we need to account for the other
sources of variation in yrel in a satisfactory manner.

2) Variations in Ambient Conditions: Intrasystem variations
in ambient conditions are primarily caused by partially cloudy
conditions (covering parts of the system), shading, or variations
in ambient temperature. Our preferred strategy to deal with this
is filtering, ensuring the comparison is made at times with as
uniform conditions as possible. By using the clearsky detection
algorithm provided in pvlib Python [32], we can filter away times
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Fig. 2. Field data from two stringsets in the PV system used in this study (see Section III-G), showing the progression of the method presented in this article. (a)
Unfiltered relative yield. (b) Filtered relative yield. (c) Seasonally corrected relative yield. (d) Normalized CUSUM median control statistics of the two stringsets.
In (c), the solid horizontal line represents the expected value x0,j of zj , and the dashed line represents the reference value (x0 −K) of stringset 2. Stringset 2 has
a fault approximately at day 625 which is detected on day 635 (when C/LCL < −1). Note that C has been limited to a minimum value of −1.25 · LCL.

of cloudy conditions. This algorithm works by comparing the
measured global horizontal irradiance signal to the theoretical
irradiance given clear skies. Furthermore, we suggest following
the framework proposed in [33], where we filter by minimum
solar elevation angle and maximum angle-of-incidence. This
removes morning and evening data, ensuring a minimal amount
of inter-row shading and shading from the surroundings, and
minimal angle-of-incidence effects. Following [33], we find op-
timal filtering thresholds by minimizing the ratio of the standard
deviation of y∗rel to the fraction of remaining data.

We denote the filtered relative yield by an asterisk: y∗rel. In
Fig. 2(a) and (b), we show the difference between unfiltered and
filtered yrel.

Sometimes, intrasystem variations in ambient conditions can
have a seasonal pattern, causing seasonal effects in yrel. We will
come back to how these seasonal effects can be accounted for
in Section III-C.

3) Measurement Noise: Measurement noise is an unavoid-
able source of variation in y∗rel. In the following, we will treat all
unexplained and unfiltered variations as noise. Thus, after filter-
ing, any remaining variation caused by differences in ambient
conditions (such as temperature) is also treated as noise. The
magnitude of the noise will determine how small performance
deviations we will be able to detect. Hence, it is desirable to
minimize the noise. In addition to filtering, there is another
strategy for minimizing noise, namely time aggregation.
Ys (and yrel) is defined for a given period, and this period

might be anything from a minute to a year. Even though the
string currents are typically logged with a periodicity between 1
and 15 min, it is advantageous to aggregate the data into hourly
or daily values, because this reduces the random noise in the
data. By comparing the median absolute deviation of yrel on
a 10 min basis to hourly and daily aggregates of yrel and y∗rel,

we can get a sense of what choice gives the smallest amount
of noise. Obviously, the noise levels decrease with increasing
aggregation level. As an example, the median absolute deviation
(MAD) of the unfiltered 10 min data is 1.42%, while the MAD
of the filtered daily data is 0.27%.

Of course, by aggregating to daily values we lose the op-
portunity to detect and mitigate faults on a minute-to-minute
or hour-to-hour basis. However, in the case of PV monitoring
we would argue that, unless there is a large outage disabling
many arrays, the revenue loss of a faulty string is negligible on
an intraday basis. Thus, daily values constitute a good balance
between minimizing noise (maximizing detection sensitivity)
and minimizing detection times. We also assume that an outage
causing a non-negligible revenue loss on an intraday basis (e.g.,
inverter outage) will be discovered independently of our fault
detection routine.

C. Correcting for Seasonal Variations

In Fig. 2(b), there is a systematic seasonal pattern in the
relative yield. These seasonal variations are present in the y∗rel
of many PV systems, and they likely stem primarily from small
differences in installation angle. Other effects that might give
rise to seasonal variations are systematic temperature differences
between the strings and inter-row shading that has not been
filtered out. In any case, this introduces a seasonal component
in y∗rel which we need to account for.

The most straightforward approach to dealing with the sea-
sonal component is to adjust the detection thresholds to account
for the extra variation [34]. A more advanced approach that does
not reduce the detection sensitivity is to model the data with a
time series model, such as an autoregressive integrated moving
average (ARIMA) model, and to run the fault detection routine
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on the residuals of the model [35]. The seasonal ARIMA is not
designed for periodicities as large as 365, as is the case here.
Instead we choose to model the seasonality with Seasonal and
Trend Decomposition using Loess [36]. This is a convenient
analysis tool for decomposing time series into a trend and a
seasonal component. The model is simple to instantiate, only
requiring the specification of the periodicity, and it is robust to
outliers [37]. We make use of the implementation in version
0.11.0 of the statsmodels package in Python [38]. Of course,
we are only interested in the seasonal component, but the trend
component allows seasonal components to be detected even in
the presence of small shifts in the trend, as is the case in stringset
2 in Fig. 2.

After finding the seasonal component SCj of each stringset j,
we can correct for seasonality by subtracting the seasonal com-
ponent from the filtered relative yield, giving us the seasonally
corrected relative yield, which we denote by zi,j for each day i
and each string j

zi,j = y∗rel,i,j − SCi,j . (2)

zi,j is the performance metric we will use for the fault detec-
tion routine, i.e., the measure of performance (or quality) that
we will apply the control charts to.

In Fig. 2(c) we show the seasonally corrected relative yield
of two stringsets from the PV system we have studied. By
filtering and correcting for seasonality, we magnify the effect
of performance losses relative to the variation in the data.

D. Control Charts

We will now introduce six different control charts: the
Schewart control chart, three variants of the CUSUM chart,
one variant of the EWMA chart, and one variant employing
the moving median. As we want to monitor the performance of
each individual string, we apply one univariate control chart to
each string (the subgroup size is one). The control charts all have
a lower control limit (LCL), which is defined by

LCLj = h · ξj (3)

where ξj represents the variation in zi,j , and h is a multiplier that
can be adjusted according to the desired detection sensitivity of
the control chart. The statistic used to estimate ξj depends on
which control chart is used. An alarm is issued on day i if the
control statistics is smaller (more negative than) −LCLj . In the
following, we will present the control statistics of each control
chart.

1) Schewart Chart: The Schewart chart is defined by the
control statistics

Si,j = zi,j − x0,j (4)

where x0,j represents the expected (in-control) value of zj ,
estimated by the mean. In this sense, the control statistics is
simply zi,j corrected to its mean value. The use of x0,j ensures
that differences in zi,j caused by pre-existing performance devi-
ations is accounted for. ξj is estimated by the standard deviation
of fault-free (in-control) values of zi,j . We will come back to
how fault-free samples are identified in Section III-E.

2) CUSUM Charts: The cumulative sum chart is defined by
the control statistics

Ci,j = min

(
0,

Ci−1,j + zi,j − (x0,j −Kj)

)
(5)

where Kj = k · ξj is the reference value, and C0,j = 0. Note
that Ci,j represents the cumulative sum of zi,j − (x0,j −Kj)
limited so that it never goes above 0. Note also that ifCi−1,j = 0,
zi,j needs to be smaller (more negative) than x0,j −Kj to affect
Ci,j . Hence, K determines the distance between zi,j and x0,j

needed for Ci,j to start aggregating. Thus, the reference value
multiplier k is decisive for the sensitivity of the chart, i.e., how
small faults the method will be able to detect.

Robust CUSUM charts, based on metrics such as the me-
dian and the median absolute deviation have been proposed in
previous research [16], [39]–[41]. Inspired by [9] and [29], we
propose three different estimators for x0 and ξ: In the standard
CUSUM chart, x0 and ξ are estimated respectively by the mean
and the standard deviation of historic in-control values of zi,j .
In the CUSUM median chart [40], x0 and ξ are estimated by the
median and the median absolute deviation (MAD) respectively,

where MAD(zi,j) =
˜|z′i,j − z̃′i,j | . Here, z′i,j is the set of historic

in-control values of zi,j,, and z̃′i,j is the median of z′i,j . In the
Tukey-CUSUM chart [41], x0 and ξ are estimated by the first
quartile and the interquartile range of z′i,j respectively.

Note that a computationally effective way of calculating Ci is
the cumulative sum of Di = zi − (x0 −K) (over all i), minus
the cumulative max of the cumulative sum of Di (where D0 =
0).

3) EWMA Chart: The exponentially weighted moving aver-
age chart is defined by the control statistics:

Ei,j = Ei−1,j (1 − λ) + (zi,j − x0,j)λ (6)

where λ ∈ (0, 1] is the smoothing parameter and E0,j = 0.
The EWMA statistics is simply a weighted mean of previous
observations, where the weights decrease exponentially from
the latest observation and backwards in time. If λ is large, more
weight is given to recent observations, giving a control chart
with a fast response, but a higher sensitivity to outliers. If λ is
small, the opposite is true. Typical values for λ is between 0.2
and 0.3 [10].

4) Moving Median Chart: We propose the moving median
chart, which is defined by the control statistics:

Mi,j = ˜(zi,j − x0,j)SM,d (7)

which denotes the simple moving median of zi,j − x0,j over the
d days before day i, and whereM0,j = 0.x0,j is estimated by the
median, and ξj is estimated by the MAD of historic in-control
samples. Note that the moving median chart is similar to the fault
detection scheme that was proposed in our previous publication,
except that we proposed using a moving max [33]. We do not
think a moving max is the best option, however, as the max is
more sensitive to outliers (less robust) than the median.

5) Control Parameters: All the four control chart categories
mentioned above contain control parameters that need to be
set. All four categories have h in common, which decides the
value of the lower control limit, LCL. In addition, we need to
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set the reference value multiplier k of the CUSUM charts, the
smoothing parameter λ of the EWMA chart, and the number of
aggregation days d in the moving median chart. These should
be set in order to minimize the detection time, without creating
false positives (false alarms). We will come back to how optimal
control parameters are found in Section III.F

E. Identifying Fault-Free Samples

Usually, two phases are involved in any FDR. If phase II is
the online fault detection phase, phase I is an offline analysis
where the control parameters are set. This involves identifying
fault-free samples in historical data and testing the control charts
at different settings. We will discuss how phase I can be done in
the following three sections.

In a small dataset, the fault-free samples can be found man-
ually. In our case, however, since there may be thousands of
strings in the PV system, and each of these is to be treated as
a separate unit, we need a robust way of identifying fault-free
samples automatically. It is important that we know that the data
is actually fault-free, so we would rather brand too much data
as faulty (“out-of-control”) than too little. Hence, we propose a
relatively “strict” offline fault detection routine:

We propose using a combination of the moving median and
the Hampel identifier [42], identifying both individual outliers
and periods of lower performance. To be specific, we suggest
first identifying individual outliers by

zi,j < z̃j − 3 · ξ′ (8)

where z̃j is the median of zi,j and ξ′ is the median absolute

deviation of zi,j − ˜(zi,j)SM,31. Next, outliers are removed from
zi,j , giving us z∗i,j . Longer periods of performance loss are
identified by (̃

z∗i,j
)
SM,31

< P75
(
z∗i,j

)− 2 · ξ′ (9)

where P75(z
∗
i,j) is the 75th percentile of z∗i,j . Note that the

combination of subtracting the 75th percentile and the small
detection threshold −2 · ξ′ makes for a relatively strict detection
scheme, which is what we aim at. Also note that, by using a 31
day rolling median, the 15 days at the beginning and end of the
time series will be excluded from the analysis. This is acceptable,
assuming that the time series is longer than a year, meaning we
can afford to brand this data as out-of-control for the purpose of
phase I.

The in-control (fault-free) samples is then used to estimate
x0,j and ξj , in addition to determining optimal control param-
eters for the control charts. If available, we recommend using
more than a whole year of in-control zi,j when determining x0,j

and ξj , as this will account for at least some of the remaining
trend or seasonality in the data.

F. Evaluating Control Charts and Setting Control Parameters

The detection time (DT) (called run length in the control chart
literature) is the time it takes from a performance loss occurs
until it is detected. By running the control charts on data with
known faults of size δ, we can determine the average detection
time (ADTδ) for each δ and each control chart. In this way we

Fig. 3. Distribution of median absolute deviations (MADs) for fault-free
stringsets in the field data in this study.

can also test the control charts with different control parameter
settings, thus finding their optimal values.

The choice of FDR will be based on a tradeoff between min-
imizing the number of false positives and the average detection
time, ADTδ . A false positive is an alarm that is raised in the
absence of any fault. In our case, the smaller h, k, and d are, and
the larger λ is, the smaller the ADTδs are. However, smaller
values of ADTδ are correlated with a higher chance of false
positives. For this reason, the control parameters are typically
set by minimizingADTδ under the condition of a predetermined
maximum false positive rate. Here, the requirement is that there
are false alarms in less than 1% of the units over the course of
10 years. We will refer to this condition as the maximum false
positive rate.

Furthermore, if a fault remains undetected for one year after
it sets in, we deem this a false negative. We require the fraction
of false negatives to be less than 10%. We refer to this condition
as the maximum false negative rate.

G. Validation Dataset

To validate the methodology proposed in this article, and
to compare the performance of the different control charts,
we tested the procedure on a dataset from the field. The field
data were from a utility-scale (>10 MWp) power plant in
Sub-Sarahan Africa. In this plant, each inverter had about 150
strings connected to it, operating under one maximum power
point tracker, and hence the same voltage. Power were logged
on a one-minute basis for stringsets consisting of two strings
(of 24 modules) in parallel. The comparison groups (defined in
Section III-A) consisted of 75 parallel-connected stringsets. Due
to business sensitivity, we cannot disclose the exact location of
this power plant.

In order to make validation possible, the field data were
modified by introducing synthetic faults. We first calculated the
seasonally corrected relative yield, zi,j , for each stringset. From
this, we identified a set of 145 fault-free stringsets following the
procedure in Section III.E. The faults were introduced at day 366
and onwards by subtracting zi,j by δ ·MADj , where MADj is
the median absolute deviation of the fault-free zi,j of each time
series. A histogram of the MADs of the stringsets is shown in
Fig. 3. The control charts were tested with δ ∈ [1, 2, 2.5, 3, 4,
5, 10, 20, 30, 50].
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Fig. 4. Minimum average detection times (upper panel) and relative average
detection times (lower panel) of the six control charts for different fault sizes δ
(multiples of the median absolute deviation in the data) for modified field-data.
Crosses signify a false negative rate above 10%. The colors in the upper panel
correspond to which control chart has the minimum average detection time at
each fault size.

IV. RESULTS AND DISCUSSION

The optimal control parameters were found by brute force
optimization. We iterated through a comprehensive set of com-
binations of control parameters, and the combinations enabling
the detection of the smallest fault for each control chart was
chosen. Note that, in addition to the conditions of maximum
false positives and negatives (see Section III-F), the chosen
combination is first the one that makes the control chart able
to detect the smallest changes, and secondly gives the smallest
ADTδs. We make this choice because it is better that a fault is
detected slowly than that it is never detected.

In Fig. 4, we compare the ADTδs of the control charts. The
upper subfigure shows the minimum ADTδ of all the control
charts, and the lower subfigure shows the ratio of the ADTδ of
each control chart to the minimum ADTδ . Crosses (instead of
bars) mean the given control chart was not able to detect the
fault with a false negative rate below 10%.

Our first observation is that the Schewart and EWMA charts
are not able to detect but the largest of the faults. The reason
for this is that they are not able to fulfill the condition of
the maximum false positive rate unless the detection threshold
multiplier (h) is so large that smaller faults remain undetected.
We take this to mean that the versions of the Schewart chart and
the EWMA chart that we have tried are unsuited to do PV string
performance monitoring.

Furthermore, faults of δ < 2.5 could not be detected with any
of the control chart variants. This is because there is a small,
non-constant trend present in many of the zi,j time series. We
do not know the exact source of this trend; it may be a remnant of
the seasonal component, it may stem from a relative difference
in module degradation between the stringsets, or it may stem
from varying soiling conditions through the period. In any case,
the trend forces the control parameters to be adjusted to decrease

detection sensitivity and avoid false positives. This makes the
control charts unable to detect small faults in this dataset.

The minimum ADTδ for δ = 20 is 3 days. Given a MAD of
0.27%, which is the average MAD(zi,j) in our data, this means
that a loss in performance of about 20 · 0.27% = 5.4% can
be detected in about 3 days. Given a stringset with a nominal
capacity of 16 kW, an average of 5 peak sun hours per day, and
a tariff of 0.05 $/kWh, this would mean a lost revenue of 5.4% ·
3 days · 16 kW · 5 h/day · 0.05 $/kWh ≈ 0.65 $ before the fault
was discovered. If this fault was never discovered, it would lead
to lost revenue of about 79 $ per year. We can assume that any
fault more costly than this would likely be detected in 3 days or
less.

The moving median chart gives the smallest ADTδ for the
middle δs, while the standard CUSUM and the CUSUM median
charts give the smallest ADTδ for smallest and largest δs. The
detection time of the moving median chart is determined by
the length of the moving window. If the moving window is d
days, it will on average take d/2 days to detect faults larger than
LCL. Faults in the size range of LCL may take longer than d/2
days to detect, and faults much smaller than LCL will not be
detected. With the CUSUM charts, however, larger faults will
always be detected faster than smaller faults. This is why the
CUSUM charts perform best at high δs. In other words: The
moving median chart may detect some faults faster than the
CUSUM charts, but at the price of detecting larger faults slowly
and being unable to detect the smallest faults.

If we were to choose one control chart, we would choose
one of the CUSUM charts. The main reason for this is that the
moving median chart is unable to detect faults of δ < 4 in our
dataset. Furthermore, the difference in detection times between
the moving median chart and the best CUSUM charts is small
where the moving median chart is faster, but large where the
CUSUM charts are faster. The three variants of the CUSUM
charts perform very similarly. The biggest difference between
them is that the standard CUSUM chart is unable to detect faults
of δ = 2.5. Other than that, it has slightly smaller detection
times than the CUSUM median chart and the Tukey-CUSUM.
All in all, the difference in ADTs between the CUSUM charts
is small, but the median and Tukey variants are more robust to
outliers and unknown data features. This is why they are able to
detect faults of δ = 2.5 better then the standard CUSUM chart.
Therefore, of the control charts we have tested, we recommend
using the CUSUM median or the Tukey-CUSUM charts.

V. CONCLUSION

In this study we discuss the most important choices involved
in building a fault detection routine focused on fast detection
of small performance losses in a robust manner. We discuss
the use of modeling versus string comparison, data filtering,
time aggregation, correcting for seasonality, correcting for pre-
existing performance deviations, and the use of robust statistics.

Our proposed approach is summarized in a six-step method,
where we calculate the daily aggregated, filtered, and seasonally
corrected relative yield as a metric to represent the performance
of PV strings (or stringsets). We compare six different control
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charts, assessing them in terms of average detection time at dif-
ferent magnitudes of performance loss. Of these, we recommend
using the CUSUM median or the Tukey-CUSUM control charts,
as these are the robust methods that most consistently ensures
the detection of the smallest faults. We are for instance able
to detect sudden losses in performance of 4 and 20 times the
median absolute deviation (about 1% and 5.4% power loss) in
about 35 and 3 days, respectively.

APPENDIX

TABLE I
OPTIMAL CONTROL PARAMETER VALUES
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[2] Å. F. Skomedal, B. L. Aarseth, H. Haug, J. Selj, and E. S. Marstein, “How
much power is lost in a hot-spot? A case study quantifying the effect
of thermal anomalies in two utility scale PV power plants,” Sol. Energy,
vol. 211, pp. 1255–1262, Nov. 2020.

[3] A. Mellit, G. M. Tina, and S. A. Kalogirou, “Fault detection and diagnosis
methods for photovoltaic systems: A review,” Renewable Sustain. Energy
Rev., vol. 91, pp. 1–17, 2018.

[4] D. S. Pillai, F. Blaabjerg, and N. Rajasekar, “A comparative evaluation of
advanced fault detection approaches for PV systems,” IEEE J. Photovolt.,
vol. 9, no. 2, pp. 513–527, Mar. 2019.

[5] A. Livera, M. Theristis, G. Makrides, and G. E. Georghiou, “Recent ad-
vances in failure diagnosis techniques based on performance data analysis
for grid-connected photovoltaic systems,” Renewable Energy, vol. 133,
pp. 126–143, 2019.

[6] M. N. Akram and S. Lotfifard, “Modeling and health monitoring of DC
side of photovoltaic array,” IEEE Trans. Sustain. Energy, vol. 6, no. 4,
pp. 1245–1253, Oct. 2015.

[7] S. Lindig, A. Louwen, D. Moser, and M. Topic, “Outdoor PV system
monitoring—Input data quality, data imputation and filtering approaches,”
Energies, vol. 13, no. 19, pp. 1–18, 2020.

[8] A. Livera et al., “Data processing and quality verification for improved
photovoltaic performance and reliability analytics,” Prog. Photovolt. Res.
Appl., vol. 29, pp. 143–158, 2020.

[9] W. A. Shewhart, Economic Control of Quality of Manufactured Product.
New York, NY, USA: D. Van Nostrand Company

[10] Engineering Statistics Handbook, NIST/SEMATECH, Gaithersburg, MD,
USA, 2012.

[11] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1,
pp. 100–115, 1954.

[12] S. W. Roberts, “Control chart tests based on geometric moving averages,”
Technometrics, vol. 42, no. 1, pp. 97–101, Feb. 1959.

[13] S. Knoth and W. Schmid, “Control charts for time series: A review,” Front.
Statist. Qual. Control, vol. 7, pp. 210–236, 2004.

[14] S. Bersimis, S. Psarakis, and J. Panaretos, “Multivariate statistical process
control charts: An overview,” Qual. Reliab. Eng. Int., vol. 23, no. 5,
pp. 517–543, Aug. 2007.

[15] S. Chakraborti and M. A. Graham, “Nonparametric (distribution-free)
control charts: An updated overview and some results,” Qual. Eng., vol. 31,
no. 4, pp. 523–544, 2019.

[16] H. Z. Nazir, M. Riaz, R. J. M. M. Does, and N. Abbas, “Robust CUSUM
control charting,” Qual. Eng., vol. 25, no. 3, pp. 211–224, 2013.

[17] L. E. Mainstone and A. S. Levi, “Fundamentals of statistical process
control,” J. Organ. Behav. Manage., vol. 9, no. 1, pp. 5–21, 1988.
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