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Abstract An understanding of instantaneous and long‐term compaction of porous rocks is important for
reservoir engineering and Earth sciences. Experience from laboratory triaxial compression tests and from
subsurface operations indicates that shear and volumetric deformations are interdependent. Their mutual
dependence results in shear‐enhanced compaction and shear‐induced dilation under short‐term and
long‐term loading. Using a classical averaging approach, we consider the evolution of a single fluid‐filled
pore in a solid elastoplastic or viscoplastic matrix under combined pressure and shear loading to introduce a
new failure envelope and 3‐D constitutive relations for both rate‐dependent and rate‐independent
deformation of porous rocks. Our model provides a simple description of rock behavior under a wide range
of strain rates. The model predictions agree well with experimental data from triaxial instantaneous and
creep tests. Analytical and numerical solutions for solitary porosity wave propagation in viscoplastic rocks in
the presence of shear were obtained. New solutions show that new rheological laws have serious
implications for porosity waves. Plasticity onset leads to compaction‐decompaction asymmetry and the
formation of elongated channel‐like porosity waves. Shear‐induced dilation facilitates porosity wave
propagation at fluid pressures below the lithostatic stress. This makes porosity waves a viable mechanism in
the formation of focused fluid flow structures in crustal rocks.

1. Introduction

Many engineering and natural processes in the Earth involve coupled rock deformation and fluid flow (Cai
& Bercovici, 2013; Connolly & Podladchikov, 2015; Keller et al., 2013; Petrini et al., 2020; Yarushina
et al., 2013). Models describing fluid flow in deformable porous rocks can be based in part on the principles
of irreversible thermodynamics (Yarushina & Podladchikov, 2015). Still, the formulation of closure relations
represents a significant challenge. The compaction relation that describes volumetric deformation and por-
osity evolution during external loading is particularly important because it directly affects fluid flow. The
combination of irreversible thermodynamics and microscale physics places some constraints on the form
of compaction relation (Yarushina & Podladchikov, 2015). It is well known that the short‐term response
of most of the compacting porous rocks is elastoplastic (Fortin et al., 2007; Guéguen et al., 2004; Labuz
et al., 2018; Makhnenko & Labuz, 2016), while, on a longer time scale, rocks also exhibit viscous properties
(Brantut et al., 2013; Chang & Zoback, 2009; Hangx et al., 2010; Makhnenko & Podladchikov, 2018; Renner
et al., 2001; Sabitova et al., 2019). Viscous deformation affects the performance of petroleum reservoirs, lead-
ing to wellbore stability issues, fault reactivation, and seafloor subsidence (Maranini & Brignoli, 1999). In
geotechnical engineering, viscous deformation affects the stability of rock slopes and underground struc-
tures, such as tunnels and nuclear waste repositories (Fabre & Pellet, 2006; Ghanbarzadeh et al., 2015; Ma
& Daemen, 2006; Tsai et al., 2008). Constitutive models that represent the rate‐dependent stress‐strain
response are implemented in the commercial software (Crook et al., 2008) and are used in numerical studies
of reservoir depletion, subsidence, and associatedmicroseismicity (Angus et al., 2015; Yarushina et al., 2017).
Viscous deformation and strong coupling between fluid flow and geomechanical deformation can eventually
lead to the formation of focused fluid flow, often evidenced in the Earth as dikes, veins, volcanic diatremes,
or seismic chimneys (Räss et al., 2014; Yarushina, Podladchikov, et al., 2015; Minakov et al., 2017). Seismic
chimneys are of particular economic importance, as their presence was repeatedly identified as being the
most likely indication of leakage and expulsion of gas, oil, and, possibly, CO2.

Classical theories of poroelasticity and poroviscosity as formulated by Biot (1962) and Mckenzie (1984) treat
shear deformation and compaction as two independent processes. During shear deformation, stress deviator
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is related to deviatoric strain or strain rate, while compaction is fully described by the linear relationship
between effective pressure and volumetric strain or strain rate. However, experimental evidence suggests
that shear deformation in rocks is strongly coupled with volumetric deformation, leading to such phenom-
ena as shear‐induced dilation at low confining pressures and shear‐enhanced compaction at higher confin-
ing pressures (Baud et al., 2006; Fortin et al., 2006; Kohlstedt & Holtzman, 2009; Tsai et al., 2008; Xiao &
Evans, 2003; Zhu et al., 1997). Shear‐enhanced compaction and shear‐induced dilation occur both in the
upper crustal conditions where elastoplastic deformation of the rock prevails and in viscously deforming
partially molten rocks representing Earth's mantle.

Shear‐enhanced compaction has important consequences for engineering practice, as observed during the
depletion of reservoirs (Chin et al., 1993), when pore pressure reduction leads to a nonisotropic change in
stresses. Shear‐enhanced compaction induces considerable permeability and porosity reduction, thus affect-
ing fluid flow (Xiao et al., 2006; Zhu et al., 1997). It is especially pronounced in weak rocks, which are prone
to creep, resulting in many engineering problems such as underestimated subsidence and loss of stability of
underground constructions (Tsai et al., 2008). There is field evidence of shear‐enhanced compaction bands
formed in nature due to the interplay between shear and volumetric deformation in the crust (Eichhubl
et al., 2010; Fossen et al., 2011). In general, shear‐enhanced compaction might be important for geological
settings where shear and compaction act simultaneously, for example, at mid‐ocean ridges where mantle
upwelling due to buoyancy is influenced by the mantle shear caused by spreading oceanic plates
(Connolly & Podladchikov, 2007; Spiegelman & Mckenzie, 1987) and subduction zones (Gerya &
Yuen, 2003). The process of shear‐enhanced compaction is very tightly linked to strain localization. In the
mantle, this leads to the formation of melt‐enriched shear zones, which may significantly contribute to melt
extraction by forming high‐permeability fluid pathways (Katz et al., 2006; Kohlstedt & Holtzman, 2009;
Rudge & Bercovici, 2015; Spiegelman, 2003). In the crust, the transition from shear‐enhanced compaction
to brittle faulting leads to the generation of earthquakes (Regenauer‐Lieb & Yuen, 2003). Enhanced compac-
tion in the presence of shear is usually attributed to plastic deformation. Elastoplastic models from rock
mechanics (Rudnicki & Rice, 1975) or critical state models from soil mechanics (Schofield & Wroth, 1968)
are usually used to describe shear‐enhanced compaction. In viscous rocks, shear localization with dilation
and shear‐enhanced compaction were previously attributed to damage and were accounted for in the
two‐phase damage models (Lyakhovsky et al., 2015; Ricard & Bercovici, 2003). However, there is no current
model that accounts for the effect of shear stresses on bulk viscoelastoplastic deformation of porous rocks
and porous flow. This paper is an attempt to fill this gap.

Recently, Yarushina and Podladchikov (2015) formulated constitutive relations for porous viscoelastoplastic
rocks. While conservation equations were derived based on the principles of irreversible thermodynamics,
closure relations were obtained based on the effective media theory by looking at the effective behavior of
rocks containing idealized cylindrical or spherical pores. This theory was limited to hydrostatic compaction
and decompaction. It was shown that in the linearly elastic limit, the model reproduced well‐known Biot's
equations (Biot, 1941), while in the viscous limit, it was consistent with popular models for porous flow in
magma (e.g., Mckenzie, 1984; Stevenson & Scott, 1991). This model was implemented into several numerical
codes and was applied to studies of fluid flow focusing (Omlin et al., 2018). Now, we elaborate on this model
further by including the effects of shear stresses on (de)compaction processes and, thus, on fluid flow. We
derive new analytical solutions or use classical ones, if available, to predict the mechanical response of
the representative volume element (RVE) to mechanical load. Using a simple averaging procedure, we
derive closure relations for elastic, plastic, and viscoplastic deformation. The resulting equations are formu-
lated in the form which resembles classical elastoplastic flow theories so that numerical implementation of
the new equations would be straightforward. The influence of shear stresses on fluid flow is studied based on
the geological system with propagating porosity waves.

2. Micromechanical Model

Yield surface is a central notion in the plasticity theory. Its shape distinguishes the plasticity of metals from
the plasticity of rocks. However, elastoplastic models largely remain phenomenological and postulate a spe-
cific form of the yield surface. Attempts to obtain the yield surface and stress‐strain relations based onmicro-
scale physics remain limited. Existing models are based mainly on purely elastic solutions in which the first
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occurrence of critical stress is marked as plasticity onset and the manifold
of such yield points is considered a yield surface (Curran & Carroll, 1979;
Sevostianov & Kachanov, 2001). Other attempts postulate a specific sim-
plified form of the yield surface and then use ideally plastic solutions to
constrain the material parameters used in these laws (Green, 1972).
Thus, the evolution of the yield surface during loading, that is, hardening
or softening behavior and complete stress‐strain relation, cannot be cap-
tured by such models. Stress‐strain, or compaction, relations are usually
fitted using complicated hardening laws involving a number of fitting
parameters (Carroll, 1991). The approximate relation between the growth
rate of an isolated void and imposed nonhydrostatic stress and strain
was developed for simplistic cases of rigid‐perfectly plastic materials
(Gurson, 1977; Rice & Tracey, 1969) and nonlinear viscous materials
(Budiansky et al., 1982). These models are based on the simple problem
of the growth (contraction) of an isolated spherical or cylindrical void in
an infinite solid matrix. Duva and Hutchinson (1984) use a similar sphe-
rical model with approximate solutions to obtain complete stress‐strain
relations for nonlinearly viscous materials. A viscous damage theory for
porous low‐cohesion rocks was derived by Ricard and Bercovici (2003),
who considered matrix containing isolated voids. This model provides
the complete stress‐strain relation and predicts enhanced compaction
rates in the presence of shear. Triaxial deformation of elastic‐viscoplastic
porous solid was numerically studied by Koplik and Needleman (1988)
on an array of spherical voids. Their results reflect faster compaction rates
in the presence of shear.

In this paper, constitutive equations are derived for an incompressible isotropic matrix material containing a
dilute distribution of elongated cylindrical pores. The short‐ and long‐term behavior of porous rock is
accounted for by considering both rate‐independent elastoplastic and rate‐dependent viscoplastic deforma-
tion. Our RVE consists of a single cylindrical pore subject to spatially homogeneous fluid pressure and non-
hydrostatic far‐field stresses representing plane strain loading conditions (Figure 1). We explicitly account
for elastoplastic (viscoplastic) deformation of a single pore and its shape evolution during deformation. As
this is an already complicated problem, we choose the simplest dilute distribution averaging scheme. This
scheme ignores the interaction between the pores and, thus, might be inaccurate at high porosities.
However, we show that our model accurately reproduces published experimental data. In the elastoplastic
regime, deformation and stresses around the pore can be described using the classical analytical solution
of Galin (1946). For the viscoplastic regime, we derived a new analytical solution by modifying elastic and
elastoplastic solutions using the viscoelastic correspondence principle. We assume that the initial yield of
the matrix material on the microscale is determined by the von Mises criterion. The interested reader can
find analytical solutions for the stress and strain fields in the representative volume in Appendix A.
Averaging of the analytical solution provides the relation between volumetric strain and stresses for elastic,
elastoplastic, and viscoplastic regimes (see Appendix B for complete derivations). The obtained macroscopic
compaction relations can be rewritten in a form compatible with the plastic flow theory and, thus, can be
further used to derive the functional form of the failure envelope. Because we consider both contraction
and dilation of the pores, our solution provides a complete failure envelope that accounts for tensile, shear,
and compaction failure.

3. Macroscale Constitutive Equations for Porous Rocks

Classical viscous models in geodynamics assume that viscous deformation is accumulated in response to any
stress over time. The stress‐strain rate behavior remains the same for high and low stresses (Gerya, 2019;
Mckenzie, 1984; Stevenson & Scott, 1991). On the other hand, existing viscoplastic models that were applied
largely to metals assume that viscoplastic flow occurs only when stresses reach yield stress (Chaboche, 2008;
Perzyna, 1966; Perzyna & Drabik, 1989). Laboratory experiments show that viscous deformation can be
accumulated even at low stresses and that stress‐strain rate behavior changes at higher stress levels

Figure 1. Schematic of a representative volume element for porous rock.
An infinite body of incompressible elastoplastic (viscoplastic) material
containing a long cylindrical pore with radius R is subject to a uniform
remote stress σ∞

x ≠ σ∞y , σ∞xy¼0. A uniform pressure p is applied at the pore
boundary in fluid‐saturated porous material. In dry rocks, the pore
boundary is traction‐free.
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(Maranini & Brignoli, 1999; Sabitova et al., 2019; Tsai et al., 2008). Viscous
and viscoplastic constitutive equations admit stresses within, on, and out-
side the yield surface. Plastic constitutive laws admit stresses only within
and on the yield surface, which limits the unrealistic stress buildup possi-
ble in viscous models. Thus, to keep classical limits and be consistent with
experimental observations, we assume that the total strain rates _εij can be
split into elastic (i.e., reversible), plastic (i.e., time‐independent and irre-
versible), viscous, and viscoplastic (i.e., time‐dependent and irreversible)
parts as follows:

_εij ¼ _εeij þ _εpij þ _εvij þ _εvpij : (1)

Thus, the total inelastic deformation is a sum of instantaneous plastic
strain and accumulated viscoelastic and viscoplastic strain, reflecting the
evolution of the microstructure. Viscoplastic deformation is independent
of the loading history and is a function of the current stress state only,
while plastic strains depend on the loading history. Volume averaging
procedures show that in homogeneous isotropic rocks, elastic volumetric
deformation is unaffected by shear stresses (Appendix B, see also
Yarushina, Räss, et al., 2015). Thus, the usual incremental poroelastic
constitutive equations that are fully consistent with Biot's theory can be
used for _εeij:

_p
̇

− αBW _pf ¼ Kd _εe; _τij ¼ 2Gd _γeij (2)

where p ¼ φpf þ 1 − φð Þps is the total pressure, pf,ps are fluid and solid

pressures, φ is the porosity, τij is the total stress deviator, _εe is the volu-
metric elastic strain rate, _γeij is the deviatoric elastic strain rate, αBW is

the Biot‐Willis coefficient, Kd is the drained bulk modulus, and Gd is
the drained shear modulus, while dot denotes the material time deriva-
tive (see Table 1 for notations). Positive sign of strain indicates compres-
sion. These equations were derived multiple times based on principles of
irreversible thermodynamics and effective media theory (e.g., Coussy,

2004; Lopatnikov & Cheng, 2004; Yarushina & Podladchikov, 2015, and references therein). Plastic consti-
tutive equations can be written using the nonassociated flow rule:

_εp ¼ _λ
∂Q
∂pe

; _γpij ¼ _λ
∂Q
∂τij

(3)

where Q = Q(pe, τij) is the plastic potential, _λ is the nonnegative plastic multiplier, and pe¼p − pf is the

effective pressure. The plastic flow rule must be accompanied by the yield criterion and standard plastic
consistency conditions, which together limit stress buildup.

Viscous strain rates do not require threshold stress and are linearly related to stresses (e.g., Yarushina &
Podladchikov, 2015, and references therein), namely,

_εv ¼ pe
ηb
; _γvij ¼

τij
2ηs

(4)

where ηb and ηs are the bulk and shear viscosities, which, among other things, might depend on tempera-
ture and porosity. Our micromechanical model suggests that the simplest porosity dependence has the
form

ηb ¼ Cηs 1 − φð Þ=φ (5)

Table 1
List of Principal Notations

Symbol Meaning

C Pore geometry factor
F = F(pe, τ, ε

p) Yield function
G,Gd Shear modulus of intact rock, drained shear modulus of

porous rock
g Gravitational constant
h Linear hardening parameter
Kd Drained bulk modulus of porous rock
m Pressure exponent in the yield function
n Shear stress exponent in the yield function
pe; p; p

f ; pc Effective, total, fluid, and confining pressures

Q = Q(pe, τ) Plastic flow potential
T Time
W = W(pe, τ) Viscoplastic flow potential
Y Reference yield stresses in the yield function
α Ratio of shear and bulk viscosities in porosity wave

solution
ατ Effective pressure coefficient in the yield function
γij Deviatoric components of total strain
ε Volumetric component of total strain
ηb,ηs Bulk and shear viscosities of porous viscous rock,

effective bulk viscosity of viscoplastic rock
ηeff,ηshear Effective bulk and shear viscosities of viscoplastic rocks
κ,κb Permeability and constant background permeability in

solitary wave
λ,Λ Plastic and viscoplastic multipliers
μ Fluid shear viscosity
υ Permeability exponent
ρ; ρf ; ρs Bulk, fluid, and solid densities
σi Principal components of stress tensor
τ,τ0 Equivalent shear stress, critical shear stress in the yield

function
τij Components of total stress deviator
φ,φb Porosity, constant background porosity in porosity wave
ω Nondimensional speed of porosity wave
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where C is the geometrical factor, which is equal to 1 for cylindrical
pores, 4/3 for spheres, and ≪1 for elliptical or crack‐like pores
(Bercovici et al., 2001; Schmeling, 2000; Yarushina &
Podladchikov, 2015). Often, viscoplastic strain rates are described by
means of a viscoplastic flow rule (Chaboche, 2008; Heeres et al., 2002;
Perzyna, 1966; Perzyna & Drabik, 1989). Our micromechanical model
results in the following simplest viscoplastic flow rule:

_εvp ¼ Λ
0 if F pe; τij; ε

p
� �

< 0

∂W
∂pe

if F pe; τij; ε
p

� �
≥ 0

8><
>: (6)

_γvpij ¼ Λ
0 if F pe; τij; ε

p
� �

< 0

∂W
∂τij

if F pe; τij; ε
p

� �
≥ 0

8><
>: (7)

where Y is the yield stress and W is the viscoplastic potential that will be
defined in the next section. The gradient of W determines the direction
of viscoplastic flow. A nonnegative viscosity consistency parameter
Λ ≥ 0 specifies the magnitude of viscoplastic strain rates. Its values must
be calibrated experimentally.

3.1. Yield Criterion

In porous rocks, the yield criterion is a somewhat arbitrary notion, as it
might correspond to the onset of local plastic failure around stress concen-
trators (such as in themodels of Curran &Carroll, 1979 and Sevostianov &
Kachanov, 2001), or it might correspond to the point where plasticity is
significant and plastic zones around individual imperfections have coa-
lesced (e.g., Green, 1972). In our geometrically simple model, plasticity
onset around individual cylindrical pores in a matrix obeying the von
Mises or Tresca yield criterion will be defined by the rhomb centered
around point pe= 0,τ= 0 (black dotted line in Figure 2a). If smaller imper-
fections are present, as in dual porosity materials, the matrix will obey the
Mohr‐Coulomb yield criterion, and plasticity onset around a single pore
will be determined by the same rhomb shifted along pe axis by
p0 = C0tanϕ, where C0 is cohesion and ϕ is the angle of internal friction
of the matrix material (black dashed triangle in Figure 2a). However, plas-
ticity onset around an individual pore is not representative of the macro-
scopic yield condition. Yield onset around individual pores first results in
a nonlinear deformation. Macroscopic plastic flow occurs when growing
plastic zones around individual pores start to significantly influence the
stress‐strain response of the rock. This is illustrated in triaxial compaction
experiments, where rock failure is monitored by acoustic emission.
Indeed, acoustic emission starts much earlier than macroscopic failure
of the sample exhibits itself by deflection of a compaction curve (Fortin
et al., 2006, 2009; Stanchits et al., 2011). Such deflection is accompanied
by a significant increase in acoustic emission. Thus, the shape of the com-
paction curve provides important indications of the plasticity onset. Let us
note that yield function enters into elastoplastic stress‐strain relations

after the plastic flow rule 3 is complemented with the standard plastic consistency condition (e.g.,
Chakrabarty, 1987; Yarushina et al., 2010; Gerbault et al., 1998) (see Equation B17 in Appendix B).
Therefore, yield function can be obtained by integrating the theoretical elastoplastic compaction equation.
The theoretical compaction equation is derived by averaging the analytical solution for deformation of the

(a)

(b)

(c)

Figure 2. (a) Shape of the new proposed yield surface given by Equation 8
at different values of parameters n and m (Y = 1, p0 = 0.5, ατ = 0)
compared to the theoretical plasticity onset around a cylindrical void in a
solid matrix obeying von Mises and Mohr‐Coulomb yield criteria. (b) Shape
of the new yield surface at different values of ατ (Y = 1, p0 = 0.5, m = 2,
n = 4, τ0 = 0.44). (c) Shape of the viscoplastic potential versus yield surface.
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pore in a nonhydrostatic stress field (see Appendix B for derivations). The resulting yield function takes
the form

F ¼ 1þ τ
τ0

� �n� �
exp

pe − αττ − p0
Y

��� ���m − 1
� �

Y − Y −
h
φ
εp (8)

where τ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
2
τijτij

r
is the equivalent shear stress. The shape of the corresponding failure envelope is char-

acterized by six independent material parameters: n, m, τ0, Y, p0, and ατ (Figures 2a and 2b). Linear hard-
ening modulus h defines the evolution of the yield surface, which corresponds to the isotropic expansion
of the initial yield surface. Parameters Y and p0 define tensile and compaction strength. The tensile failure
limit is defined by the critical stress Yd = p0 − Y, while critical pressure for the onset of pore collapse is
given by Yc = p0+Y. Usually, in experiments, this pressure corresponds to the upsurge in the acoustic
emission activity (e.g., Fortin et al., 2009). Because pores and imperfections are present on all scales,
decompaction strength in geological materials is different from pore collapse pressure. In the absence of
imperfections of smaller size, for example, in porous metals, the failure envelope would be symmetrical
with respect to the τ and p axes and ατ = 0, p0 = 0. Exponents n and m define the curvature of the failure
envelope. These depend on the pore geometry and their interaction. In the material with very low porosity

composed of aligned cylindrical pores, n = 2, m = 1, and τ0¼Y=
ffiffiffi
5

p
. The failure envelope for these values

of parameters is shown as a blue line in Figure 2a. Deviations from idealized geometry lead to different
values of these parameters and, thus, to different shapes of the failure envelope. Parameter ατ defines
the asymmetry of the failure envelope with respect to the p axis (Figure 2b), that is, different plastic mod-
uli in extension and compaction triaxial tests. Note that the derived failure surface encircles rhombs
describing failure onset around individual pores.

3.2. Viscoplastic Flow Potential

Viscoplastic flow potential may depend on the yield function, W = W(F). In this case, the viscoplastic flow
rule is associative and viscoplastic flow is normal to the yield surface. For nonassociative viscoplasticity,
Wmight depend on some other stress function. Here, viscoplastic flow potentialWwas chosen in a form that
both reproduces the theoretical compaction relation derived from the micromechanical model and reduces
to zero at the yield surface. The latter requirement guarantees the continuity of strain rates with failure
onset. We suggest the following functional form of the viscoplastic potential:

W ¼ f − Yð Þexp f =Yð Þ (9)

where

f ¼ Y ln
F
Y
þ 1

� �
¼ Y ln 1þ τ

τ0

� �n� �
þ Y

pe − αττ − p0
Y

��� ���m − 1
� �

(10)

Function f is obtained by taking the logarithm of F/Y+1 when hardening is ignored. Thus, it represents an
alternative form of the yield function. One can see that f = 0 when F = 0. The shape of surface W = 0 is
quite like failure envelopes (Figure 2c). Substitution of Equations 9 and 10 results in the following asso-
ciated viscoplastic flow rule.

_εvp ¼ Λ
0 if F pe; τij; ε

p
� �

< 0

f
Y
exp

f
Y

� �
∂f
∂pe

if F pe; τij; ε
p

� �
≥ 0

8><
>: (11)

_γvpij ¼ Λ
0 if F pe; τij; ε

p
� �

< 0

f
Y
exp

f
Y

� �
∂f
∂τij

if F pe; τij; ε
p

� �
≥ 0

8><
>: (12)

where

10.1029/2020JB019683Journal of Geophysical Research: Solid Earth

YARUSHINA ET AL. 6 of 30



∂f
∂pe

¼ m
pe − αττ − p0

Y

��� ���m − 1
sgn pe − αττ − p0ð Þ (13)

∂f
∂τ

¼ nY
τ0

τ
τ0

� �n − 1

1þ τ
τ0

� �n� �−1

− ατm
pe − αττ − p0

Y

��� ���m − 1
sgn pe − αττ − p0ð Þ (14)

To avoid singularities that lead to numerical issues, we suggest using even values of m. In the simplest case
of m = 2 and ατ = 0

∂f
∂pe

¼ 2
pe − p0

Y
;

∂f
∂τ

¼ nY
τ0

τ
τ0

� �n − 1

1þ τ
τ0

� �n� �−1

(15)

Combining viscous and viscoplastic strain rates, we obtain the following total rate‐dependent, or creep, part

of deformation, _εc ¼ _εv þ _εvp, _γcij ¼ _γvij þ _γvpij :

_εc ¼ 1
ηb

pe if F pe; τij; ε
p

� �
< 0

Ληb
f
Y
exp

f
Y

� �
∂f
∂pe

þ pe if F pe; τij; ε
p

� �
≥ 0

8><
>: (16)

_γcij ¼
1
2ηs

τij if F pe; τij; ε
p

� �
< 0

2Ληs
f
Y
exp

f
Y

� �
∂f
∂τ

∂τ
∂τij

þ τij if F pe; τij; ε
p

� �
≥ 0

8><
>: (17)

For the simplest case of m = 2 and ατ = 0

_εc ¼ 1
ηb

pe if F pe; τij; ε
p

� �
< 0

2
Ληb
Y 2 f exp

f
Y

� �
þ 1

� �
pe − 2Λf exp

f
Y

� �
ηbp0
Y 2 if F pe; τij; ε

p
� �

≥ 0

8><
>: (18)

_γcij ¼
τij
2ηs

1 if F pe; τij; ε
p

� �
< 0

Λ
3nηs
2τ20

f exp
f
Y

� �
τ
τ0

� �n − 2

1þ τ
τ0

� �n� �−1

þ 1 if F pe; τij; ε
p

� �
≥ 0

8><
>: (19)

These equations are rewritten in a simpler form

_εc ¼ pe − pd
ηeff

; (20)

_γcij ¼
τij

2ηshear
; (21)

that is reminiscent of previous viscous equations used in many analytical and numerical models (Connolly
& Podladchikov, 2007; Gerya, 2019; Omlin et al., 2018; Schmeling et al., 2012; Yarushina, Podladchikov,
et al., 2015). Here,

ηeff ¼ ηb

1 if F pe; τij; ε
p

� �
< 0

2
Ληb
Y 2 f exp

f
Y

� �
þ 1

� �−1

if F pe; τij; ε
p

� �
≥ 0

8><
>: (22)

is the effective total bulk viscosity of visco‐viscoplastic rocks,

pd ¼
0 if F pe; τij; ε

p
� �

< 0

2Λ
p0ηb
Y 2 f exp

f
Y

� �
2ηb

Λf
Y 2exp

f
Y

� �
þ 1

� �−1

if F pe; τij; ε
p

� �
≥ 0

8><
>: (23)

is the dilation pressure, and
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ηshear ¼ ηs

1 if F pe; τij; ε
p

� �
< 0

Λ
3nηs
2τ20

f exp
f
Y

� �
τ
τ0

� �n − 2

1þ τ
τ0

� �n� �−1

þ 1

" #−1

if F pe; τij; ε
p

� �
≥ 0

8>><
>>: (24)

is the effective shear viscosity.

Our model differs from most of the viscoplastic constitutive laws in that it allows for viscous flow at stresses
below the critical yield, although with much higher viscosity. This is consistent with experimental data

Figure 3. Theoretical predictions for rate‐dependent deformation. (a) Dependence of bulk strain rate _εv þ _εvp on effective
pressure and effective shear stress. The solid white line on the left figure shows the failure envelope, while the thick black
line represents the compaction/dilation boundary. Dilation is possible at compressive effective pressures (pe > 0).
Plasticity onset significantly enhances the strain rate. Colored lines on the right figure correspond to different values of
shear stress. (b) Effective bulk viscosity as a function of effective pressure and shear stress. Effective bulk viscosity
reduces with plasticity onset, with both increasing and decreasing effective pressures. (c) Effective shear viscosity as a
function of effective pressure and shear stress.
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showing that viscous strains would accumulate at both high and low stresses (Crook et al., 2008; Makhnenko
& Podladchikov, 2018). Plasticity onset reduces bulk and shear viscosities significantly, leading to enhanced
deformation rates (see Figure 3). Shear and bulk strain rates depend on both effective pressure and shear
stress. Increasing τ leads to increased compaction rates (Figure 3a) and further reduction of effective bulk
viscosity (Figure 3b). This is known as shear‐enhanced compaction and is observed in creep experiments
as well as in the usual triaxial compaction tests (Skurtveit et al., 2013; Xiao et al., 2006; Xiao &
Evans, 2003; Zhu et al., 1997). As in other viscoplastic models, more complicated hardening laws and more
nonlinearities can be introduced.

3.3. Compaction‐Dilation Boundary

In our model, the transition from compaction to dilation depends on the interplay between elastic, plastic,
and rate‐dependent deformation. For rate‐dependent deformation, the compaction‐dilation boundary can
be directly found from Equation 16 by putting _εr¼0. For the simplest considered case of m = 2 and ατ = 0,
the compaction‐dilation boundary will be defined as

2
Ληbf
Y 2 exp

f
Y

� �
þ 1

� �
pe − 2Ληbf exp

f
Y

� �
p0
Y 2 ¼ 0: (25)

As f depends on both pe and τ, this defines a nonlinear curve, which closely follows the failure envelope at
pe < Y. It is shown as a thick black curve in Figure 3a. As effective pressure increases further, the
compaction‐dilation boundary follows a straight line, which will be vertical in the case of ατ = 0 and more
inclined at higher values of ατ.

The onset of dilation at positive effective pressures is due to the presence of shear stresses. This is known as
shear‐induced dilation, which is commonly observed in compaction experiments (e.g., Makhnenko &
Labuz, 2015; Vajdova et al., 2004). Several groups have recently performed studies involving multiloading
triaxial creep tests on various rock types (e.g., Sabitova et al., 2019; Tsai et al., 2008; Zhang et al., 2016). In
these experiments, the axial stress is applied stepwise to cylindrical rock samples while the lateral confine-
ment is held constant. After each load increment, the specimen is allowed to creep for a time interval ranging
from hours to days, during which deformations are continuously monitored. The experimental results show
that the volumetric strain curves exhibit volumetric compaction at low stresses, followed by dilatancy at
higher stresses. The strain rate during compaction is smaller than the strain rate during dilation.
Moreover, significant strains were developed during dilation before macroscopic failure of the sample
(e.g., Sabitova et al., 2019; Tsai et al., 2008). These results support our model, which predicts viscous dilation
at positive effective pressures and leads to compaction/decompaction asymmetry.

4. Comparison With Experimental Data
4.1. Compaction Data

We aim to derive viscoelastoplastic constitutive equations to model the rheology of geological media with
applications to fluid flow in mind. However, before we proceed further to fluid flow applications, we
compare the derived yield surface and compaction relations with some of the available laboratory results.
In this paper, we do not aim for complete experimental verification of our model, which would require a
good dataset with compaction and creep data on the same material under various relevant loading con-
ditions. This lies outside the scope of the present paper. Most of the rock mechanical tests in the litera-
ture are performed under triaxial conditions. Very few papers present plane strain results (Makhnenko &
Labuz, 2014; Makhnenko & Labuz, 2016). Thus, for comparison, we choose compaction data from triaxial
experiments from the literature (Baud et al., 2006; Tsai et al., 2008). In compaction triaxial experiments, a
cylindrical sample is initially loaded hydrostatically (σ1 = σ2 = σ3) at drained conditions until the desired
level of confining pressure pc = σ2 = σ3 is reached. After that, pc is kept constant and only axial load σ1 is
further increased to facilitate shear loading so that σ1 > σ2 = σ3. The mean effective stress and the differ-
ential stress measured in experiments correspond to our pe and τ = σ1 − σ3, respectively. Volumetric
deformation in compaction experiments is estimated as porosity reduction ε = (φ0 − φ) � 100%. In our
model, the compaction relation for the triaxial stress conditions takes the form (see Appendix B for
derivation)
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_εp ¼ −
∂F
∂εp

� �−1 ∂F
∂pe

dpe
dt

þ ∂F
∂τ

dτ
dt

� �
: (26)

In triaxial experiments, loading follows a specific trajectory in the plane, so that

dτ
dpe

¼ 0; σ1 ¼ σ2 ¼ σ3 < pc
3=2; σ1 > σ2 ¼ σ3 ¼ pc



(27)

Substituting Equations 8 and 27 into Equation 26, one obtains the following compaction relation, which
might be used directly for the description of experimental results:

_εp ¼ 3φ
2h

exp
pe − αττ − p0

Y

� �m
− 1

� �dpe
dt

� m 1þ τ
τ0

� �n� �
2
3
− ατ

� �
pe − αττ − p0

Y

� �m − 1
þ n

Y
τ0

τ
τ0

� �n − 1
" #

(28)

In the hydrostatic limit, this it reduces to

_εp ¼ m
3φ
2h

2
3
− ατ

� �
exp

pe − p0
Y

� �m
− 1

� � pe − p0
Y

� �m − 1dpe
dt

(29)

These compaction equations and this failure envelope were implemented into MATLAB code, which is used
further for comparison of theoretical results with experimental data.

The experimental data that we use for comparison with model output were taken from Baud et al. (2006).
They describe the compaction of Darley Dale sandstone with an initial porosity of 13% (see Figure 2a in
(Baud et al., 2000)). Hydrostatic compaction was performed at effective pressures up to 500 MPa. Five non-
hydrostatic curves were obtained by initial hydrostatic loading up to 150, 180, 200, 240, and 300 MPa, with
confining pressure, pc, kept constant at these levels (Figure 4). At low effective mean stress, data show a non-
linear rapid compaction, which might be explained by the closure of microcracks. A crack porosity can be
introduced here to capture this portion of a compaction curve (Shapiro, 2003). For simplicity, we do not
model an exact compaction trend below the crack closure pressure. Instead, we approximate this stage with
almost instant porosity reduction, assuming that the elastic compaction of stiff porosity starts after ε= 0.75%.
After crack closure pressure, hydrostatic compaction data show almost linear dependence of volumetric

(a) (b)

Figure 4. (a) Modeling predictions (solid lines) versus data (dots) for compaction of Darley Dale sandstone with an initial
porosity of 13% taken from Baud et al. (2006). For nonhydrostatic curves, confining pressures were kept constant at
values indicated next to each curve (in MPa). (b) Comparison between theoretical yield surface and experimental data on
the initial yield stress and evolution of the yield stress as a function of the plastic volumetric strain for Darley Dale
sandstone taken from Baud et al. (2006). Theoretical curves are shown as solid lines, and data are represented
with asterisks (εp = 0), circles (εp = 0.1%), and diamonds (εp = 0.25%). Dotted colored lines correspond to the stress path
during triaxial experiments. The color code is the same as in Figure 4a.
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deformation on effective pressure until pore collapse slightly enhances the
compaction rate, leading to nonlinearity beyond critical stress
p * = 380MPa (black stars in Figure 4). The presence of shear stresses
reduces the critical stress for the onset of pore collapse and significantly
influences the slope of the compaction curves. Compaction data from
Baud et al. (2006) are supplemented by experimental failure envelopes
shown in Figure 4b with an asterisk (εp = 0), circles (εp = 0.1%), and dia-
monds (εp = 0.25%) for different levels of accumulated volumetric plastic
strain. The best fit for all experimental curves was obtained using G = 1.4
GPa, Y= 190MPa, p0 = 190MPa, τ0 = 128MPa, n= 5,m= 1, ατ= 0.2, and
h = 12.5 GPa. Figure 4 shows theoretical predictions (solid lines) plotted
on top of the respective data points for six compaction curves correspond-
ing to different levels of confining pressure and three failure envelopes
corresponding to three different levels of accumulated plastic strain.
Note that once fracturing or strain localization is initiated, full 2‐D or
3‐D numerical simulations of elastoplastic deformation and elastic
unloading are required to describe the experimental results (Stefanov
et al., 2011).

4.2. Viscous Creep Data

Viscous, or time‐dependent, deformation of porous rocks is studied in a number of triaxial creep experiments
recently summarized in a review paper from Brantut et al. (2013). These studies show that time‐dependent
deformation can be very significant in shales, rock salt, tuff, sandstones, and limestones but also present in
hard rocks such as granite and basalt. Most of the creep experimental studies focused on stress‐strain‐time
behavior and the influence of temperature and a pore fluid chemistry on creep. Some studies also report
axial creep strain rates as a function of applied stresses (Brantut et al., 2013; Heap et al., 2015; Rybacki
et al., 2015). Theworks of Zhang et al. (2015),Makhnenko and Podladchikov (2018), and Sabitova et al. (2019)
report volumetric strain rates. Relatively few studies focus on characterizing the yield surface and viscoplas-
tic potentials (Maranini & Brignoli, 1999; Tsai et al., 2008; Weng et al., 2010).

In most of the materials, development of the creep strain in time is characterized by three distinct stages: the
primary, or transient, creep phase with strain rate decreasing with time; the secondary, or stationary, creep
phase with a constant (i.e., time‐independent) strain rate; and a final, accelerating stage followed by speci-
men failure. Tsai et al. (2008) performed multistage triaxial creep experiments on dry samples of Mushan
sandstone from Taiwan, in which both volumetric strain and shear strain were measured. Experiments were
performed under a constant room temperature and the time of each experiment was adjusted so that the sta-
tionary creep stage was reached. Elastic deformation was carefully subtracted from the total strain by using
loading‐unloading‐reloading cycles. Vectors of plastic and viscoplastic strain increments were obtained dur-
ing the short‐term and creep stages of experiments, respectively, and plotted on the (pe, τ)‐plane. After that,
plastic and viscoplastic potential surfaces were plotted, assuming that they are normal to the direction of the
strain increments. Tsai et al. (2008) showed that obtained viscoplastic potential has the same functional form
as the plastic potential and yield surface. Maranini and Brignoli (1999) also documented the viscoplastic fail-
ure envelope during creep tests on porous limestone, which is very similar to the standard failure envelope.
Here, we compare our viscoplastic flow potentials with those obtained by (Tsai et al., 2008). Figure 5 shows a
comparison of the experimental data with the theoretical viscoplastic potential defined by Equation 9 with
n = 2, m = 2, and ατ = 0.2. For the green curve, we used p0 = 37MPa, Y = 21MPa, and τ0 = 33MPa; for the
blue curve, we used p0 = 43MPa, Y = 27MPa, and τ0 = 46MPa; and for the red curve, we used p0 = 46MPa,
Y = 35MPa, and τ0 = 57MPa. The results show reasonable agreement.

5. Porosity Waves in the Presence of Shear

Porosity waves were suggested to be a fast and efficient fluid transport mechanism forming various focused
fluid flow structures (Appold & Nunn, 2002; Barcilon & Richter, 1986; Cai & Bercovici, 2013; Connolly &
Podladchikov, 2015; Jordan et al., 2018; Mckenzie, 1984; Räss et al., 2014; Richard et al., 2012; Scott &
Stevenson, 1984; Yarushina, Podladchikov, et al., 2015). Most of the previous models ignored the

Figure 5. Modeling predictions (solid lines) versus experimental data
(asterisk) for viscoplastic potentials of Mushan sandstone with an initial
porosity of 14.1% taken from Tsai et al. (2008).
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influence of deviatoric stresses on wave propagation, assuming that there is no shear or deviatoric stresses in
the rock. Yet, recent numerical models that include full mechanical formulation with all components of the
stress tensor show that propagation of porosity waves is also associated with changes in shear stresses,
especially ahead of the wave head (Omlin et al., 2018). However, these models used ad hoc rheology with
decompaction weakening only. Here, we investigate how derived rheology influences the propagation of
porosity waves. First, we consider the 1‐D steady‐state compacting porous column and derive an
analytical solution for purely viscous and viscoplastic porosity waves in the presence of shear. After that,
we look at the transient 2‐D numerical solution for porosity waves in a medium, which viscoplastic
behavior is described by using the constitutive equations derived above.

5.1. 1‐D Steady‐State Viscous Solution With Shear

We consider equilibrium compaction or uniform sedimentation of a vertical column of fluid‐saturated por-
ous rock. During sedimentation, low‐density fluid segregates from the deformable porous matrix. Over time,
compaction in the upper part of the sedimentary column evolves toward a steady state, while the porosity
profile becomes independent of time and forms a stationary porosity wave (Figure 6a). One‐dimensional sta-
tionary solutions can be obtained by putting ∂/∂t= 0 and replacing material time derivatives with d/dt= v∂/
∂z, where v= v(z) is a vertical component of solid velocity. Deviatoric stresses are present in themedia. In our
derivation of the one‐dimensional steady‐state solution, we follow the same procedures as in previous pub-
lications from Connolly and Podladchikov (2000) and Yarushina, Podladchikov, and Connolly (2015), which
provide them in more detail. Here, we offer a brief summary of the governing equations and show how they
are modified in the presence of shear.

Mass conservation for fluid and solid phases gives the following nontrivial components of the solid velocity
and Darcy flux:

v zð Þ ¼ −
qs

1 − φ
; qD zð Þ ¼ qs

φ − φb

1 − φð Þ 1 − φbð Þ þ q0 (30)

where φb is the constant background porosity, qs is the sedimentation rate, and q0 is the background Darcy

(a) (b)

Figure 6. Schematic initial model setup. (a) 1‐D steady‐state propagation of the porosity wave. A vertical column of
porous rock with homogeneous porosity φb is subsiding under its own weight, while a steady porosity wave travels
upward through the column with velocity ω. (b) 2‐D porosity wave formation. The elliptical region of high porosity is
located at the lower part of the computational domain of constant background porosity φb.
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flux. The force balance equation in the presence of shear slightly changes in comparison to the hydrostatic
case and gives

dτz
dz

−
dp
dz

− gρ ¼ 0 (31)

where τz is the vertical deviatoric stress, g is the gravity, and ρ ¼ ρfφþ ρs 1 − φð Þ is the total density. The

only nontrivial component of the shear stresses can be related to the vertical velocity using the linear vis-
cous law:

τz ¼ 4
3
ηs
dv
dz

(32)

and, thus, the total force balance becomes

4
3
ηs
d2v

dz2
−

dp
dz

− gρ ¼ 0 (33)

At the remote boundary, we assume the lithostatic pressure gradient, that is,p′ z ¼ ∞ð Þ ¼ − gρ. Equation 33
must be complemented by the Darcy law

qD ¼ −
k
μ

dpf
dz

þ gρf

� �
(34)

where k is permeability, μ is fluid shear viscosity, and pf and ρf are the pressure and density of the fluid.
Introducing effective pressure pe and using Equation 30, the Darcy law may be written in the form

qs
φ − φb

1 − φð Þ 1 − φbð Þ þ q0 ¼ −
k
μ

dp
dz

−
dpe
dz

þ gρf

� �
(35)

We assume that, at the remote boundary, dpe/dz = 0; thus, from Equation 35, it follows that

q0 ¼ gΔρ
kb
μ

1 − φbð Þ (36)

where kb is the constant background permeability and Δρ = ρs − ρf is the difference between solid and
fluid densities. Combining Equations 35 and 33, we arrive at the following hydraulic equation:

dpe
dz

¼ 4
3
ηs
d2v

dz2
þ μqs

k
φ − φb

1 − φbð Þ 1 − φð Þ − gΔρ 1 − φð Þ 1 −
kb
k

� �
(37)

In the limit of d2v/dz2 → 0, it coincides with the hydraulic equation from the models of Connolly and
Podladchikov (2007) and Yarushina, Podladchikov, and Connolly (2015). This equation must be solved
together with Equation 30 for solid velocity and the equation for viscous compaction:

v
dφ
dz

¼ −
φ
ηb
pe (38)

Assuming power law porosity‐permeability dependence

k ¼ kb
φ
φb

� �υ

(39)

Equations 37–39 can be combined into a single ordinary differential equation, the so‐called phase portrait
equation:
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φ 1þ φαð Þ
ω

pe
p*ð Þ2

dpe
dφ

¼ ω
φ − φb

φb

φ
φb

� �−υ

þ φ
φb

� �−υ

−
φα
ω

pe
p*

� �2

− 1 (40)

where

p* ¼ Δρg

ffiffiffiffiffiffiffiffiffi
ηbkb
μφb

s
(41)

is the characteristic pressure scale,

ω ¼ qs
μφb

Δρgkb
(42)

is a nondimensional speed of the porosity wave, and

α ¼ 4ηs
3ηb

(43)

is the ratio of shear and bulk viscosities. Its solution is given by the following expression:

1þ αφð Þ2 p2e
2ω p*ð Þ2 þ ln

φ
φb

−
ω − 1
υ

φ
φb

� �−υ

þ ω − αφb ω − 1ð Þ
υ − 1

φ
φb

� �1 − υ

þ ω
αφb

υ − 2
φ
φb

� �2 − υ

þ αφ − ω
αφbυþ υ − 2
υ υ − 1ð Þ υ − 2ð Þ −

αφbυ
2 þ υ − 1

υ υ − 1ð Þ ¼ 0

(44)

Equation 44 coincides with the solution previously given by Yarushina, Podladchikov, and Connolly
(2015) if α = 0. Depth profiles of porosity and pressure may be obtained numerically by solving coupled
ordinary differential equations

L*
dφ
dz

¼ φ
ω
pe
p*

(45)

1þ αφð ÞL
*

p*
dpe
dz

¼ φ − φb

φb

φ
φb

� �υ

ωþ φ
φb

� �υ

− 1 −
αφ
ω

p2e
p*ð Þ2 (46)

where

L* ¼
ffiffiffiffiffiffiffiffiffi
ηbkb
μφb

s
(47)

Figure 7. Analytic stationary solution (φb = 0.01, υ = 3, ω = 4) for the porosity and effective pressure distribution within
solitary porosity waves in purely viscous rocks in the presence of shear stresses (α = 100). Reference solution without
shear (α = 0) is presented with a dotted line.
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(a)

(b)

(c)

Figure 8. Combined effect of υ and ω on purely viscous porosity waves. (a) Large difference between υ m and ω in the
simulation with the effect of shear. (b) Small difference between υ and ω in a simulation with shear. (c) Reference
simulation without shear effects at α = 0 and the same value of ω. Colors show simulations for different values on υ, as
indicated in each figure.
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is the compaction length. Figure 7 shows the porosity wave solution to Equations 44–46 for α = 100,
φb = 0.01, υ = 3, and ω = 4. The comparison of viscous solutions with shear (α > 0) and viscous solutions
without shear (α = 0) in Figures 7 and 8 shows that shear stresses reduce pressure generated within the
porosity wave. The nonlinear dependence of permeability on porosity plays an important role in this
reduction, especially for rocks with a strong porosity dependence of permeability (i.e., with high values
of υ). For example, shales generally have large permeability exponents, in the range υ = 24.9 − 55.5
(Dong et al., 2010). David et al. (1994) report υ = 4.6 − 25.4 for five different sandstones. Our results show
that for υ = 3, pressure reduces about two times in the presence of shear (Figure 8a) in comparison to a
reference case without shear (Figure 8c). For υ = 20, pressure is reduced over 30 times in the presence
of shear (Figure 8b). Similarly, the amplitude of the wave, that is, the maximum porosity that the wave
can reach, is affected by υ and the magnitude of the shear stresses. Porosity inside the wave is much higher
for rocks with low permeability exponent υ, while in rocks with higher υ, porosity inside the wave does not
increase as much. For example, wave amplitude φ/φb ≈ 13 for υ = 3, while it is only φ/φb ≈ 1.3 for υ = 20.
Yet, implications for permeability change inside the wave can be quite significant, as even a small porosity
change inside the wave can increase permeability orders of magnitude at high values of υ in Equation 39.
It is interesting to note that the presence of shear stresses may also lead to sharp pressure gradients inside
the wave (Figure 8a) when the difference between permeability exponent υ and nondimensional wave
speed ω is too high. These pressure gradients at the pressure front can be responsible for numerical
instabilities in the numerical codes based on poroviscoelastic models with full stress tensor, as implemen-
ted by Omlin et al. (2018) and Räss et al. (2019). Instabilities in these codes arise at high values of the per-
meability exponent, which brings strong nonlinearity into the system of equations. Our 1‐D calculations
for various values of υ and ω presented in Figure 8 indicate that it is not high values of υ in themselves
that cause such problems but, rather, the difference between υ and ω. For example, the pressure profile
for υ = 20 looks smoother (Figure 8b) than the pressure profile for υ = 3(Figure 8a) for ω = 24.

5.2. 1‐D Steady‐State Viscoplastic Solution With Shear

Now we will investigate how plastic deformation alters porosity wave propagation. As in the previous sec-
tion, we will look at the upward rising porosity wave in a setup shown in Figure 6a. The only driving force
is buoyancy arising due to the fluid being less dense than the rock. All previous porosity wave solutions
assumed explicitly or implicitly that pe = 0 at the remote boundary (e.g., Connolly & Podladchikov, 2007;
Rice, 1992). We relax this assumption by allowing fluid pressures to be smaller than lithostatic and assum-
ing, instead, that pe = pd > 0 at the remote boundary, that is, effective pressure corresponds to the dilation
pressure in our viscoplastic constitutive law given by Equations 20 and 21. This assumption is still somewhat
idealistic; in the future, other boundary conditions must be tested.

Rising fluid pressure at the top of the wave will induce viscoplastic failure leading to dilation, even at positive
effective pressures. At the lower part of the wave, pressures are reduced and, thus, will fall into the purely
viscous domain. This will lead to compaction‐decompaction asymmetry, where different constitutive laws
will describe the compacting and dilating parts of the wave. Most of the derivations of the previous section
will be valid for the viscoplastic case. In the compaction domain, that is, at pe > pd, the viscous porosity
Equation 38 from the previous section will still hold, and pressure and porosity evolution will be given by
Equations 40, 45, and 46 from the previous section. With a new nontrivial pressure boundary condition
pe(φb) = pd at the remote boundary, the solution to Equation 40 will take the form

1þ αφð Þ2 p2e
2ω p*ð Þ2 − 1þ αφbð Þ2 p2d

2ω p*ð Þ2 þ ln
φ
φb

¼

¼ φ
φb

� �−υω − 1
υ

−
ω − αφb ω − 1ð Þ

υ − 1
φ
φb

� �1 − υ

−
ωαφb

υ − 2
φ
φb

� �2 − υ

−

αφþ αφb
υ2 − 2υþ ω
υ − 1ð Þ υ − 2ð Þ þ

υþ ω − 1
υ υ − 1ð Þ

(48)

In the dilating part of the wave, the viscoplastic compaction Equation 20might be used to obtain the porosity
equation of the form
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v
dφ
dz

¼ φ
pe − pd
ηeff

(49)

For simplicity, we assume that ηeff and pd are constant. The first assumption means that in Equation 5,
changes in porosity are ignored. The second assumption means that the compaction/dilation boundary is
approximated with a vertical straight line in the plastic domain (see Figure 3a), that is, that an elaborate
expression for pd in Equation 23 is approximated with a constant value. This is reasonable for ατ = 0 in
Equation 8. In the next section, we present a numerical solution that includes the full dependency on pres-
sure and shear stress. Here, we want to explore how the introduction of plasticity and dilatancy at positive
pressures affects the porosity waves. Equation 37 does not include assumptions about the rheology of the
rock and can be used to derive the hydraulic equation. Substituting Equation 49 into Equations 30 and 37
gives

1þ αφð ÞL
*

p*
dpe
dz

¼ φω − φb ω − 1ð Þ
φb

φ
φb

� �υ

− 1 −
αφ
ω

pe − pdð Þ2
p*ð Þ2 (50)

The porosity Equation 49 can be rewritten in the following nondimensional form:

L*dφ
dz

¼ φ
ω
pe − pd

p*
(51)

Excluding z from these equations, we obtain

φ 1þ αφð Þ
ω

pe − pd
p*ð Þ2

dpe
dφ

¼ φω − φb ω − 1ð Þ
φb

φ
φb

� �υ

− 1 −
αφ
ω

pe − pdð Þ2
p*ð Þ2 (52)

Integration of the last equation provides an analytical solution for the phase diagrams at pe ≤ pd, namely,

1þ αφð Þ2
2ω

pe − pdð Þ2
p*ð Þ2 þ ln

φ
φb

¼

¼ φ
φb

� �−υω − 1
υ

−
ω − αφb ω − 1ð Þ

υ − 1
φ
φb

� �1 − υ

−
ωαφb

υ − 2
φ
φb

� �2 − υ

−

− αφþ αφb
υ2 − 2υþ ω
υ − 1ð Þ υ − 2ð Þ þ

υþ ω − 1
υ υ − 1ð Þ

(53)

The viscoplastic porosity wave solution is presented in Figure 9. It shows that the onset of dilatancy at critical
pressure pd significantly alters the porosity and pressure in comparison with a purely viscous solution. As
decompaction plastic viscosity is much smaller than purely viscous compaction viscosity (Figure 3), the wave
becomes asymmetric, which in 2‐D leads to the generation of elongated channels, as we show in the next sec-
tion.Most importantly, the effective pressures associatedwith the porositywave propagation remain positive,
that is, generation of a porosity wave in viscoplastic rocks is possible at fluid pressures below the lithostatic
stress.

5.3. 2‐D Viscoplastic Numerical Solution

We implemented derived rate‐dependent constitutive equations into 2‐D numerical code for porous flow in
deformable porous viscoplastic rocks using the model formulation from (Yarushina & Podladchikov, 2015).
Our numerical solution ignores elastic deformation. We used the same numerical scheme as described in
(Omlin et al., 2018; Poliakov et al., 1993; Räss et al., 2019). The code is available online (at https://doi.pan-
gaea.de/10.1594/PANGAEA.909658). As an initial setup, we use a rectangular domain of viscoplastic
deformable porous rock, containing an elliptical high‐porosity inclusion in the lower part of the domain
formed by, for example, partial melting in magmatic rocks, petroleum generation in source rocks, or dehy-
dration reactions in metamorphic rocks (Figure 6b). Inside the inclusion, the initial porosity is three times
higher than the background value, φb= 0.05. Note that unless inertial (e.g., wave propagation) or elastic pro-
cesses are involved, fluid flow problems in viscoplastic media do not require initial conditions for pressures.
Thus, we do not prescribe any specific values for either fluid or effective pressures. The size of the
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computational domain is 20 × 40 with the unit of compaction length. We impose free‐slip boundary
conditions for the solid velocities (no shear stress and zero normal velocity). For the fluid flow problem,
we assign no flux conditions on the lateral boundaries and constant inflow (bottom) and outflow (top).
The only external force acting on the domain is gravity pointing downward. The parameters used in our
2‐D simulations are summarized in Table 2.

To compare the results of our model with those of previous studies, we
conduct numerical simulations with both viscoplastic and viscous bilinear
rheology. Figure 10a shows channels formed in bilinear viscous rocks
with a compaction viscosity 100 times higher than the decompaction visc-
osity. The 2‐D simulation results show that our new viscoplastic rheology
also leads to the formation of elongated tubular channels (Figure 10b),
which are very similar to channels formed in bilinear viscous rocks with
decompaction weakening, where the ratio of compaction/decompaction
viscosities is R = 100. The rheological asymmetry in the viscoplastic case
is caused by a viscoplastic failure at elevated fluid pressures (low effective
pressures). It is interesting to note that no negative effective pressure is
observed during channel propagation in viscoplastic rocks (Figure 10b).
This is related to the new viscoplastic constitutive relations given by
Equation 20, which cause dilation of the rock at pe= pd, reducing pressure
buildup above dilation pressure pd. The results of 2‐D numerical simula-
tions also confirm predictions of the 1‐D steady‐state analytical solution
presented in Figure 9, which shows that the effective pressures associated
with porosity wave remains positive. This is different from purely viscous

Table 2
Nondimensional Simulation Parameters

Parameter Value

ϕb 0.05
ρs 2
ρf 1
κb 1
μ 1
υ 3
ηb 1
C 10
k0 2
p0 2.7
n 2
m 2
ατ 0
τ0 0.8
Λ 10

Figure 9. Steady‐state depth profiles showing the evolution of porosity, effective pressure, and fluid pressure in
viscoplastic porosity waves with φb = 0.01, υ = 3, ω = 4, pd = p*/2, α = 1, and ηeff = ηb/100.
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rocks, in which channel propagation requires fluid pressures higher than the total pressure (compare
Figures 10a and 10b). Thus, the new rheology leads to the formation of channelized fluid flow without
introducing negative effective pressure, as was the case in previous models. Comparing both models at
the same time step, we see that the fluid channels are slightly bigger and rise faster in the viscoplastic
model than in the viscous bilinear model. This implies that the new viscoplastic rheology promotes fluid
channel formation more efficiently than a decompaction weakening rheology from previous works with
R = 100. Another interesting observation is that shear stresses are unevenly distributed during wave
propagation in both viscous bilinear and viscoplastic case and, thus, the assumption for the hydrostatic
stress state can be very inaccurate in numerical codes.

Figure 10. Porosity, effective pressure, and shear stress during propagation of a 2‐D porosity wave in bilinear viscous
(a) and viscoplastic rocks with shear‐dependent bulk rheology. (b) Channels with elevated porosity evolve upward
during the simulation.
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Five models with different grid resolutions have been run for the sensitivity analysis. The evolution of max-
imum porosity in the channel (Figure 11a) and the position of the wave front (Figure 11b) show quite similar
trends in all the models. The maximum porosity at the initial time steps demonstrates the major difference
among the models. This is due to the strong fluid flow within the reservoir at the beginning of the simula-
tion. The lower the resolution is, the bigger the error it introduces. However, little difference can be seen
from grid resolution 192 × 384 to 256 × 512. Figures 11c and 11d illustrate the effect of resolution on the por-
osity evolution. At nondimensional time = 0.2, two major fluid channels form in all three models, and the
wave front tends to be higher in the low‐resolution model than in the high‐resolution model. The runs with
low resolution diverge from the correct trend. Three small fluid channels can be seen in the low‐resolution
model, while only two small channels are found in the other twomodels. Similar observations were reported
for porosity wave solutions by Räss et al. (2019). Thus, considering both the statistical values and model
images, our model achieved good convergence when the grid resolution increased.

Figure 11. Sensitivity analysis of model results for five grid resolutions. (a, b) The evolution of normalized maximum
porosity and position of the wave front through time for all five models. The time is normalized with characteristic
timescale τc = 0.05. (c–e) The porosity at nondimensional time = 0.2 for models with low (c), intermediate (d), and high
resolutions (e).
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6. Discussion and Conclusions

An essential feature of our constitutive model is that it builds on the effective media theory. We used an ana-
lytical solution for the deformation of a single pore in a nonhydrostatic stress field in our derivation of fully
3‐D viscoelastoplastic constitutive laws. Yield surface, flow potential, and compaction relations are obtained
by simple volume averaging of an analytical solution. Parameters in the compaction relations are general-
ized to account for more complex pore geometry. Our model accounts for the (1) stress dependency of mate-
rial parameters; (2) weakening of the rock with the onset of failure; and (3) possibility of dilatancy at positive
effective pressures, that is, shear‐induced dilation. The model predictions are compared with experimental
data on triaxial mechanical deformation and creep in reservoir rocks. The newmodel was implemented into
2‐D numerical code. New analytical and numerical solutions show that new rheology has serious implica-
tions for the propagation of solitary porosity waves.

Porosity waves were previously proposed as a mechanism for generating fast and focused fluid flow in the
shallow and deep Earth, which is often evidenced in the form of dikes, veins, pockmarks, mud volcanoes,
fluid escape pipes, or gas‐conducting chimneys, among other structures. The contrast in the compaction
and decompaction viscosities is an important parameter that controls the mode of fluid flow focusing on vis-
cously deforming porous rocks (Connolly & Podladchikov, 2007). In rocks with the same compaction and
decompaction viscosity, fluid flow instability gives rise to porosity waves in the form of spherical blobs.
Such blobs can propagate upward as a self‐sustained body at a speed that exceeds the background porous
fluid flow rate but that is still too inefficient to explain the formation of focused fluid flow structures
(Barcilon & Richter, 1986; Mckenzie, 1984; Schmeling, 2000). In rocks with different compaction and
decompaction viscosities, fluid flow instability leads to the formation of elongated chimney‐like structures
(Connolly & Podladchikov, 2007; Omlin et al., 2018; Räss et al., 2014; Yarushina, Podladchikov, et al., 2015).
The ratio between compaction and decompaction viscosity determines the length of the chimney and the
speed of its upward propagation. However, compaction/decompaction asymmetry in the previous models
was achieved in an ad hoc manner by postulating constant but different viscosities at positive and negative
effective pressures. Additionally, these models predicted that fluid pressure must exceed lithostatic pressure
to produce a porosity wave. These deficiencies limited the success of these models. Our new model also has
different compaction and decompaction viscosities. However, the difference is achieved naturally as a result
of developing plastic failure, as we showed in the previous sections (see Figure 3). Because the transition
from compaction to dilation in our model happens at positive effective pressures, fluid pressure does not
need to exceed lithostatic pressure to generate a porosity wave. Thus, in our model, porosity waves are a
viable mechanism for the generation of focused fluid flow structures. Porosity waves can even compete with
hydraulic fracturing, which is often assumed to be responsible for the formation of focused fluid flow (e.g.,
Arntsen et al., 2007; Bodvarsson et al., 2003). Another application in which the proposed model might be
useful is the modeling of shear localization and nonlinear changes in seismic velocity associated with failure
processes. This we leave for future work.

Appendix A: Nonhydrostatic Elasto(visco)plastic Deformation of
Cylindrical Pores
Often, the choice of an RVE is dictated by available analytical solutions. For compaction and decompaction
of porous rock under combined pressure and shear loads, cylindrical pore embedded in an infinite incom-
pressible elastoplastic (or viscoplastic) solid that is subject to homogeneous pressure on the pore wall and
a couple of far‐field compressive or extensional forces (σ∞x ≠ σ∞y , σ∞xy¼0) can be considered as an RVE

(Figure 1). In the elastic regime, deformation of the pore can be obtained using Kolossof‐Muskhelishvili's
method of complex potentials, as shown in (Yarushina & Podladchikov, 2007). In the elastoplastic regime,
pore collapse is described by the classical analytical solution of Galin (1946), which is extensively discussed
in the literature (Chakrabarty, 1987; Kachanov, 1971; Yarushina et al., 2010). Both solutions can be modified
to account for the viscous deformation of the solid using the viscoelastic correspondence principle. Changes
in pore size and geometry are particularly important for constraining (de)compaction. Thus, here we
account only for results reflecting displacements or velocities around the pore. An interested reader can find
the full solution with stress distribution in the references above.

10.1029/2020JB019683Journal of Geophysical Research: Solid Earth

YARUSHINA ET AL. 21 of 30



A.1 Elastic (Viscous) Deformation of the Pore

In the elastic regime, displacements around the cylindrical pore take the form (Yarushina &
Podladchikov, 2007)

2Gur ¼ pe
R2

r
− τR

r
R
þ 2

R
r
−
R3

r3

� �
cos2θ (A1)

2Guθ ¼ τR
r
R
þ R3

r3

� �
sin2θ (A2)

where G is the elastic shear modulus and

p ¼ −
σ∞x þ σ∞y

2
; (A3)

τ ¼ σ∞y − σ∞x
2

; (A4)

pe ¼ p − pf (A5)

are the total pressure prescribed at the far‐field boundary, shear stress, and effective pressure, respectively.
Due to the mathematical similarity of elastic and viscous problems, the viscous solution can be obtained
from Equations A1 and A2 by replacing displacements ur, uθ with velocities vr, vθ and elastic shear mod-
ulus G with shear viscosity η (Goodier, 1936).

A.2 Elastoplastic (Viscoplastic) Deformation of the Pore

With increasing load, the plastic region develops around the pore (Figure 1). This corresponds to grain
crushing and pore collapse in laboratory experiments. This moment marks the onset of shear‐enhanced
compaction. We assume that material around the pore obeys Tresca or von Mises yield criteria, both of
which take the form

σr − σθð Þ2 þ 4σ2rθ ¼ 4Y 2; (A6)

where Y is the yield stress in pure shear. Plastic yielding begins at the pore boundary when external loads
reach critical condition

2 τj j þ pej j ¼ Y : (A7)

When the plastic region fully engulfs the cavity, stresses and displacements in an elastoplastic rock are
given by Galin's analytical solution. Here, we use the similarity of pure elastic and pure viscous formula-
tions to modify the classical elastoplastic solution and find stresses and velocities around the cavity in a
viscoplastic rock. We consider separately elastic (viscous) and plastic regions.
A.2.1 Solution for the Plastic Zone
Following Galin (1946), we assume that plastic flow in the vicinity of the pore has radial symmetry. In this
case, three unknown stress components must satisfy two force balance equations and the yield criterion,
which means that stresses can be found without involving any rheological laws. Therefore, stress distribu-
tion in the plastic zone is the same for elastoplastic and viscoplastic materials and is given by the following
modification of the original Galin's equations:

σr ¼ − pf − 2Y ξ ln r=Rð Þ (A8)

σθ ¼ − pf − 2Y ξ ln r=Rð Þ þ 1ð Þ (A9)

σrθ ¼ 0 (A10)

where the new plastic limit

Y ¼ GY 0= G − hð Þ (A11)

accounts for linear hardening given by parameter h. Without hardening, h = 0 and Equations A8 and A9
reduce to classical equations. Here, ξ distinguishes the direction of the load with ξ = 1 for compaction and
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ξ = − 1 for decompaction. However, no analytical solution in a closed form for displacements in the
plastic zone is available for σ∞x ≠ σ∞y .

A.2.2 Solution for the Elastic (Viscous) Zone
The solution in the elastic zone is found using Kolossof‐Muskhelishvili's method combined with the use of
conformal mapping so that (Yarushina et al., 2010)

2G ux þ iuy
� � ¼ 2G ur þ iuθð Þeiθ ¼ φ ςð Þ − w ςð Þ

w′ ςð Þ
φ0 ςð Þ − ψ ςð Þ (A12)

where ς is a complex variable and

φ ςð Þ ¼ − Y ξw ςð Þ ln
w ςð Þ
Rς

þ pf
2Y ξ

þ 1
2

� �
−
2cτ
ς

(A13)

ψ ςð Þ ¼ c
Y ξ
ς

þ τς
� �

(A14)

w ςð Þ ¼ c ς −
τ

Y ξς

� �
(A15)

c ¼ Rexp
pe − Y ξ
2Y ξ

� �
(A16)

Due to the mathematical similarity of viscous and elastic problems, Equations A12–A16 can also be used in
the viscous zone if displacements and elastic modulus are replaced with viscous counterparts.

The elastoplastic (viscoplastic) solution is valid as long as shear stresses are relatively small (Yarushina
et al., 2010). At high effective pressures pe, the imposed shear load should not exceed approximately 40%

of the yield strength (τ=Y <
ffiffiffi
2

p
− 1). At low effective pressures (approximately), the admissible shear load

grows exponentially with scaled effective pressure that guarantees that the cavity is completely enclosed
in the plastic boundary:

Pej j
2Y

−
1
2
þ ln 1 −

τ
Y

��� ���� �
≥ 0: (A17)

A.2.3 Estimation of the Kinematic Field Within the Plastic Region
Though velocities and displacements in the plastic zone are unknown, some estimations of the relative pore
contraction (expansion) can be made if the solid rock is incompressible. The conservation of mass in the
solid volume of an RVE requires that

d
dt

∫
Vs

ρdV ¼ − ∫
Σ
ρv � ndS (A18)

where Σ is the boundary of the solid volume Vs with an outward pointing normal n, ρ is the constant den-
sity, and v is the velocity vector. For the two‐dimensional problem considered here, Equation A18 can be
rewritten as follows:

dSs
dt

¼ d
dt
∫
Ss

dS ¼ ∮
Ls

−vydx þ vxdy
� �

(A19)

where Ss is the area occupied by the solid in the (x,y) plane. When the solid contains a cavity, the line inte-
gral in A19 is a sum of the integral over the pore boundary Lv and the integral over the external boundary
Lext

dSs
dt

¼ − ∮
Lv

−vydx þ vxdy
� �þ ∮

Lext

−vydx þ vxdy
� � ¼ 0 (A20)

The first of these integrals represents the flux through the pore with area Sv and also gives changes in the
area of the pore dSv/dt. The second integral is the flux through the total area S. Equation A20 essentially
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states that in the incompressible RVE with a single pore, all volume (area) changes are due to pore contrac-
tion (expansion). Furthermore, in the incompressible solid, any volume containing the cavity would change
by the same amount. In particular,

dSv
dt

¼ dSp
dt

¼ ∮
L
− vydx þ vxdy (A21)

where Sp is the area enclosed in the elastoplastic (viscoplastic) boundary L (Figure 1). Displacements (velo-
cities for viscoplastic case) at the plastic boundary L can be found from Equations A12 after substitution of
complex potentials A13–A15:

2G ux þ iuy
� � ¼ Y ξz 2þ ln

ςz
ςz

� �
þ Y 2

τ
z − 2cY ξ ς − c

Y 2 þ τ2

τ
ς (A22)

To express ux, uy through coordinates in the physical z plane, we replaced terms containing 1/ς and 1/ς2

using relations

1
ς
¼ Y ξ

cτ
cς − zð Þ; 1

ς2
¼ Y 2

c2τ2
z2 − czς
� �þ Y ξ

τ
(A23)

that follow from Equation A15. The solution to Equation A15 with respect to ς gives

ς ¼ 1
2c

z ± ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 4c2

τ
Y ξ

r� �
(A24)

where plus and minus signs describe two different half‐planes. On the plastic boundary

z þ zð Þ2
4a2

−
z − zð Þ2
4b2

¼ 1 (A25)

and, therefore, the square root in Equation A24 can be replaced using

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 4c2

τ
Y ξ

r
¼ 1

Y 2 − τ2
2Yτz þ ξ Y 2 þ τ2

� �
z

� �
: (A26)

After this operation, Equation A22 on the plastic boundary may be rewritten in the form

2G ux þ iuy
� � ¼ zY ξ ln

z
z
Y ξz þ zτ
Y ξz þ zτ

� �
−
Y ξ Y 2 þ 3τ2ð Þ

Y 2 − τ2
z −

4Y 2τ
Y 2 − τ2

z: (A27)

To evaluate integral A19, we notice that

−uydx þ uxdy ¼ −I ux þ iuy
� �

dz
� �

: (A28)

Substitution of A27 into A28 after some algebra leads to

−uydx þ uxdy
��
Lp

¼ − c2
Y 2 − τ2

2GY

� 2Yτ 3Y 2 þ 5τ2ð Þcos2θþ Y 4 þ 12Y 2τ2 þ 3τ4ð Þξ
2Y 2τ2cos4θþ 4τY Y 2 þ τ2ð Þξcos2θþ τ4 þ Y 4 þ 4Y 2τ2



þ

þ4τY
Y 2 − τ2ð Þsin2θ

2Y 2τ2cos4θþ 4Yτ Y 2 þ τ2ð Þξcos2θþ τ4 þ Y 4 þ 4Y 2τ2
arctan

τsin2θ
Y ξ þ τcos2θ


dθ:

(A29)

Taking a contour integral of expression A29 over one quarter of the ellipse gives
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∮
Lp

− uydx þ uxdy ¼ 4 ∫
Lp=4

− uydx þ uxdy ¼ − πc2
Y 2 þ 5τ2

GY ξ
: (A30)

According to A21, dSv/dt can be obtained by taking time derivatives of both parts in Equation A30 for elastic
rocks, leading to

dSv
dt

¼ d
dt

−πc2
Y 2 þ 5τ2

GY ξ

� �
: (A31)

Appendix B: Averaging of the Solution
For a chosen model of RVE, the degree of compaction can be estimated via changes in the pore volume frac-
tion as follows (Yarushina & Podladchikov, 2015):

1
φ
dφ
dt

¼ 1
Sv

dSv
dt

: (B1)

B.1 Elastic Compaction

For the circular cavity

dSv
dt

¼ − ∫
2π

0
rvrdθ

�����
r¼R

: (B2)

For elastic rocks, differentiation of radial displacement A1 with respect to time and subsequent substitution
into B2 gives

dSv
dt

¼ −
1
2G

∫
2π

0
_peR

2 − _τR
r2

R
þ 2R −

R3

r2

� �
cos2θ

� �
dθ ¼ − π

_peR
2

G
(B3)

where dot stands for the time derivative. Taking into account that Sv = πR2, the porosity equation for por-
oelastic rocks becomes

G
φ
dφ
dt

¼ −
dpe
dt

: (B4)

Equation B4 implies that, for small elastic deformations around cylindrical pores, shear deformation does
not affect porosity. Effective compressibility in poroelastic rocks is a function of porosity only:

1
Kφ

¼ −
dφ
dpe

¼ φ
G
: (B5)

B.2 Viscous Compaction

A viscous compaction relation can be obtained by the substitution of ur with vr and G with shear viscosity ηs
in Equation B3, resulting in

ηs
φ
dφ
dt

¼ − pe: (B6)

As in the elastic case, the presence of shear stresses during viscous deformation does not influence compac-
tion. Effective viscosity takes the form

ηφ ¼ −
Pe

dφ=dt
¼ ηs

φ
: (B7)
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B.3 Nonhydrostatic Elastoplastic Compaction

For elastoplastic deformation, dSv/dt is estimated using Equation A31, which, together with Sv = πR2, gives
the elastoplastic porosity equation in the form

1
φ
dφ
dt

¼ −
d
dt

c2

R2

Y 2 þ 5τ2

GY ξ

� �
: (B8)

Upon substitution of Equation A16 for c, the elastoplastic compaction relation may be rewritten as

G
φ
dφ
dt

¼ − exp
pej j
Y

− 1

� �
1þ 5

τ2

Y 2

� �
dpe
dt

þ 10
τ
Yξ

dτ
dt


 
(B9)

with effective elastoplastic compressibility

1
Kφ

¼ φ
G
exp

pej j
Y

− 1

� �
1þ 5

τ2

Y 2

� �
: (B10)

Equation B9 reduces to elastic porosity Equation B4 when there is no shear stress and effective pressure
reaches the critical value |pe| = Y for plasticity onset.

B.4 Nonhydrostatic Viscoplastic Compaction

Replacing displacements and elastic moduli with their viscous counterparts in Equation A30 for the rate of
the pore volume change and substituting it into Equation B1, one obtains

1
φ
dφ
dt
¼−

c2

R2

Y 2 þ 5τ2

ηsY ξ
: (B11)

Substitution of c with Equation A16 gives the final form of the viscoplastic porosity equation in the presence
of combined pressure and shear loading:

1
φ
dφ
dt

¼ − exp
pej j
Y

− 1

� �
Y 2 þ 5τ2

ηsY ξ
: (B12)

This equation determines effective viscosity of the form

ηφ ¼ ηs
φ

Y pej j
Y 2 þ 5τ2

exp 1 −
pej j
Y

� �
: (B13)

In the absence of shear, it reproduces the effective viscosity given in our previous work (Yarushina &
Podladchikov, 2015).

B.5 Derivation of Yield Criterion

The compaction Equation B9may be used to derive yield function. For this, we will rewrite elastoplastic con-
stitutive equations for plane strain conditions:

_εp ¼ _λ
∂Q
∂pe

; _γp ¼ _λ
∂Q
∂τ

: (B14)

Plastic multiplier _λ can be found from the consistency condition

∂F
∂pe

dpe þ
∂F
∂τ

dτ þ ∂F
∂εp

dεp ¼ 0 (B15)

resulting in
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_λ ¼ −
∂F
∂εp

∂Q
∂pe

� �−1 ∂F
∂pe

dpe
dt

þ ∂F
∂τ

dτ
dt

� �
: (B16)

Substitution of Equation B16 into B14 gives

_εp ¼ −
∂F
∂εp

� �−1 ∂F
∂pe

dpe
dt

þ ∂F
∂τ

dτ
dt

� �
(B17)

_γp ¼ −
∂Q
∂τ

∂F
∂εp

∂Q
∂pe

� �−1 ∂F
∂pe

dpe
dt

þ ∂F
∂τ

dτ
dt

� �
: (B18)

Direct comparison of Equations B17 and B9, and subsequent integration of Equation B17 with respect to F,
gives yield function of the form

F ¼ 1þ τ
τ0

� �n� �
exp

pe − αττ − p0
Y

��� ���m − 1
� �

Y − Y −
h
φ
εp (B19)

which gives derived compaction equations if τ0¼Y=
ffiffiffi
5

p
, n = 2, m = 1, ατ = 0, p0 = 0, and h = G. Indeed,

substituting Equation B19 into Equation B17, we obtain

_εp ¼
φ
h
exp

pe
Y

− 1
� �

1þ τ
τ0

� �n� �
dpe
dt

þ nY
τ

τ
τ0

� �ndτ
dt

� �
compaction

−
φ
h
exp−1 pe

Y
þ 1

� �
1þ τ

τ0

� �n� �
dpe
dt

−
nY
τ

τ
τ0

� �ndτ
dt

� �
decompaction

8>>><
>>>:

(B20)

Data Availability Statement

Numerical code used to obtain 2‐D porosity wave solutions is available online (from https://doi.pangaea.de/
10.1594/PANGAEA.909658).
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