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Combined Estimation of Degradation and Soiling
Losses in Photovoltaic Systems

Åsmund Skomedal and Michael G. Deceglie

Abstract—Being able to quantify energy production losses in
photovoltaic (PV) systems is important in order to reduce the risk
associated with investing in PV. Two such loss components are
degradation rates and soiling losses. However, in systems where
both these phenomena exist, quantifying them is not straightfor-
ward because of their combined effect on the power output. In
this article, we propose an algorithm that iteratively decomposes
a performance index time series of a PV system into a soiling
component, a degradation component, and a seasonal component.
This makes it possible to simultaneously estimate soiling losses
and degradation rates of PV systems. Bootstrapping is used to
estimate confidence intervals so that both data uncertainty and
model uncertainty is taken into account. Based on simulated data
we show that this method makes more accurate estimates of soiling
losses and degradation rates than relevant state-of-the-art methods.

Index Terms—Data analysis, monitoring, photovoltaics (PV), PV
systems, solar power generation, time series analysis.

I. INTRODUCTION

THE accumulation of soil and dirt, also called soiling, on
photovoltaic (PV) modules blocks incident light and leads

to lost energy production. The severity of soiling depends on
local soiling deposition rates and the frequency of cleaning or
rain. In some locations, because of frequent rainfall, soiling will
never build up enough to lead to any measurable production
loss, while in other locations soiling can lead to a decrease in
performance above 1%/day [1]. In many cases, an active soiling
mitigation strategy is economically beneficial. The choice of
strategy, whether it is manual cleaning, robotic cleaning, or
the application of an antisoiling treatment to the PV module
surfaces, depends on the severity of soiling in each location. If
one is able to quantify the historic performance losses because
of soiling, one is much better placed to select a suitable strategy.
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Åsmund Skomedal is with the Institute for Energy Technology, 2007 Kjeller,
Norway (e-mail: asmunds@ife.no).

Michael G. Deceglie is with the National Renewable Energy Laboratory,
Golden, CO 80401 USA (e-mail: michael.deceglie@nrel.gov).

Digital Object Identifier 10.1109/JPHOTOV.2020.3018219

Degradation is the decrease in PV system performance over
time due to mechanisms not reversed in the relevant field
conditions. It is well known that all PV systems suffer from
degradation [2]. Being able to identify underperforming systems
is important for PV owners, while being able to quantify typical
degradation rates on fleet-scale data is important for the field in
general, in order to reduce the risk associated with investing
in PV. We note that in the present application, unrecovered
soiling manifests as degradation and are indistinguishable from
other degradation modes without the aid of additional sensors
designed to quantify soiling.

Tools for the estimation of both soiling losses [3], [4], and
degradation rates [5] directly from PV production data already
exist. However, because of the combined effect these phenomena
have on PV performance, degradation rates are difficult to extract
in systems with a lot of soiling. Indeed, this was duly noted in
the article first proposing the year-on-year (YOY) method for
the estimation of degradation rates [6], as well as in later work
[7]. This challenge has been addressed in a recent publication
involving one of the authors of this article [8]. In that study, the
degradation estimate was improved by estimating the soiling
component and doing the YOY method on a soiling-corrected
performance index (PI). However, we show that a more accurate
estimate of either component can be made if the two components
are estimated iteratively, and if a seasonal component is also
included in the model.

The tool presented in this work will be published in the PV
analytics package for Python, RdTools1 [9].

II. METHOD

A. Model Assumptions

According to the IEC 61724-1 standard [10], the PI of a PV
system is the measured energy output of the system divided by
the expected energy. In principle, the method we are proposing is
agnostic as to what model is used to estimate the expected energy,
as long as it is on a daily resolution. Daily resolution eliminates
intraday variations in the PI, while still being a sufficiently
fine time resolution to adequately capture soiling patterns. We
propose that the PI can be decomposed into four components,
and that these four components have a multiplicative effect on
the PI. Thus, for each day d

PId = SRd · SCd ·Dd · nd (1)

1Currently, a version is available to the public at https://github.com/asmunds/
rdtools/tree/7592329ef0f6549be5515d4bc04b24452d327739
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where SR = performance of dirty system
performance of clean system ∈ [0, 1] is the soiling ratio,

SC is the seasonal component, D is the degradation trend, and
n is the noise.

The following are assumed for the four components. Accord-
ing to previously reported observations [3], [11]–[13], the soiling
signal consists of a repeated pattern of declining segments
followed by a sudden positive step (a cleaning event), recovering
SR near to 1. We do not assume constant soiling rates between
cleaning events, only that it is slowly changing. The seasonal
component varies slowly, is centered at 1, and has a period of one
year. The degradation trend is linear, starting at 1 at the beginning
of the time series. The noise, also referred to as residuals, is what
remains in the PI-signal after dividing out the other components,
i.e., n = PI

SR·SC·D . The noise is not necessarily centered at 1.
Note that the soiling ratio is typically modeled as a piece-

wise linear function (giving a piecewise constant soiling rate)
with breakpoints at the cleaning events, first suggested (as an
approximation) by Kimber et al. [11]. This is usually a good
approximation that simplifies the modeling, but in many cases
the soiling rate changes between the cleaning events. This can be
resolved by allowing breakpoints between the cleaning events.
However, we take an alternate approach without the assumption
of piecewise linearity, instead assuming slowly changing soiling
rates between the cleaning events.

B. Iterative Solution

In order to decompose the PI into the components in (1), we
propose an iterative, self-consistent solution. Each iteration has
four steps. In these steps, the algorithm infers cleaning events,
and estimates SR, SC, and D, respectively. The soiling compo-
nent is estimated with a Kalman filter, the seasonal component is
estimated with seasonal and trend decomposition using LOESS
(STL) [14], and the degradation component is estimated using
the YOY method [5]. When the four steps have been done, a
new iteration starts, where the estimates made in the previous
iteration is used to get more accurate component estimates. This
algorithm, which we term Combined Degradation and Soiling
(CODS), is illustrated in the flow chart in Fig. 1. In the following
sections we describe each of the estimation models, followed by
some general remarks on the algorithm as a whole.

1) Detection of Cleaning Events: The first step in the CODS
algorithm is the detection of cleaning events. Much as in [3], the
cleaning events are detected by considering shifts in the centered
9-day rolling median of the input signal. If Δ is the day-to-day
change in the rolling median, cleaning events are defined as days
where Δ > Q3 + a · IQR. In this case, Q3 and IQR are the
third quartile and the interquartile range of |Δ|, respectively, and
a decides the sensitivity of the cleaning detection. a is one of
the tuning parameters of the CODS algorithm. In Section II-C,
we will come back to how the tuning parameters are set.

The choice of cleaning detection algorithm was decided by
extensive testing on the synthetic data. These data are described
in Section II-D. In addition to a range of variants of the chosen
method, other methods such as change point detection, total
variation filtering, and shift detection with the Kalman filter,
were also tested. The chosen method was the one that (in our im-
plementation) gave the highest mean F1 score based on around

Fig. 1. Flowchart for the CODS algorithm. The algorithm takes a time series of
daily PI as input, and iteratively decomposes this into a soiling component SR,
a seasonal component SC, and a degradation component D. The input to each
step is indicated in the open arrows. On the first iteration, component estimates
not yet obtained are assumed to be unity. The dashed arrows in the middle of the
chart signify that the order of the steps can be changed, as described in Section
II-B.5.

1000 realizations on the synthetic data. The F1 score is defined
as F1 = 2 · P · R

P + R , where P = TP
TP+FP and R = TP

TP+FN ,
and TP, FP, and FN are the number of true positives, false
positives, and false negatives, respectively. Thus, the F1 score
is the harmonic mean of the fraction of inferred cleaning events
that are true (P), and the fraction of true cleaning events that are
detected (R).

In a dataset coming from the field, we expect missing data. If
a cleaning event has happened in a period of missing data, we
cannot know which of these days the cleaning event happened.
Thus, to account for the effect of missing data on cleaning event
detection, the input to this step is either filled with the value of the
last datapoint before the period (forward filled), or the value of
the first datapoint after the period (backward filled). This makes
up two different model choices for the CODS model. During
bootstrapping, the CODS algorithm is run several times with
different filling modes. In this way, the uncertainty in the date
of the cleaning event is captured. We will come back to how this
is done in Section II-C.

2) Kalman Filter for Estimating SR: In short, the Kalman
filter is an algorithm that takes a series of noisy measurements
and estimates the unknown variables that give rise to these
measurements. In our case, the measurements are the daily
values of the (corrected) PI signal, and the unknown variables are
the denoised signal and its rate of change. In a postprocessing
step, we estimate the soiling component SR, and its rate of
change RSR based on the KF estimate. We note that RSR is not
constrained to be piecewise constant as in the typical sawtooth
model for PV soiling.

We can look at the KF as a method for removing noise from
our signal. The input signal in our case is the PI corrected for
seasonality and degradation; PI

SC· D , where the last found com-
ponent estimates for SC and D are used. Component estimates
not yet obtained are assumed to be unity.
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For each point in time, the KF algorithm combines a prediction
of the unknown variables, based on previous estimates, with
a measurement (i.e., a datapoint in the input signal), giving a
new estimate of the unknown variables. Both the prediction
and the measurement have associated uncertainties, and they
are weighted by the uncertainties when calculating the new
estimate. In this way, the KF combines the measurement with
past estimates of the unknown variables, thus giving a better
estimate of the unknown variables than if the measurements
were considered individually.

We think KF is suitable for estimating SR because it is
computationally efficient compared with e.g., piecewise linear
fitting, and because it allows for slowly varying soiling rates.
Another advantage of using KF is that it handles missing data
well: If a measurement is missing, the estimate of the unknown
variables at this point in time is simply the prediction. Of course,
if there is a long period of missing data (e.g., > 1 month), this
will lead to large uncertainties in the estimate of the unknown
variables. Lastly, it is easy to extend the KF to make predictions
of future states, since a prediction step is already an inherent part
of the algorithm. For further reading about the Kalman filter, we
refer to [15] and [16]. We have used the Python implementation
of the KF found in FilterPy [17].

One assumption of KF is that the noise is Gaussian. In
addition, the uncertainty in the predicted state is expressed by a
Gaussian. Since the product of two Gaussians is another Gaus-
sian, this assumption makes the filter computationally cheap. Of
course, the noise of PI data from the field will not necessarily
be Gaussian. However, in general, the filter performs well even
when this assumption is violated, as long as the noise is symmet-
ric [15]. Systematic measurement errors and asymmetric noise,
though, may bias the results. We discuss the issue of systematic
errors further in Section II-B.5.

The abrupt effect of cleaning events on SR is accounted for
through the so-called control input. This is an input parameter
to the KF algorithm that adjusts the prediction given a known
perturbation. This means that, at the detected cleaning events,
we will provide input to the algorithm that will allow it to adjust
the prediction of the unknown variables according to the abrupt
change in the input signal. The cleaning events are detected
before running the KF, as described in Section II-B.1, but the
magnitude of the control input is decided runtime. The control
input is set so that the prediction of the signal value equals
the median of the input signal in the seven days following the
cleaning event, but the rate of change is not altered.

After the KF has been run (doing a forward pass), the un-
known variable estimate is smoothed by running an Rauch–
Tung–Striebel (RTS)-smoother [18] on the data between the
cleaning events. The RTS-smoother is a KF-based method for
finding the maximum likelihood estimate of the unknown vari-
ables. It can be used when KF is applied to offline data, as
it is in our case. It takes advantage of the information in the
forward pass, and does a backward pass, updating the estimate
of the unknown variables one step at a time, starting at the
last datapoint, going backward. This way, it combines the KF
estimate at each time step with smoothed estimates from the
future. Thus, when the RTS-smoother is used, information from
both future and past data points is used.

In the next step, we take advantage of the smoothed estimate to
prune the cleaning events, removing inferred cleaning events that
are unlikely to be real cleaning events. This is done as follows:
Let the average estimates of the unknown variable in the week
following the cleaning events be denoted by xce. False cleaning
events are numerical outliers inxce, where an outlier is defined as
a xce < Q1 − b · IQR. Here, Q1 and IQR are the first quartile
and the interquartile range of |xce|, respectively. b decides the
sensitivity of the pruning of cleaning events, and is the second
tuning parameter of the CODS algorithm.

In order to estimate SR and RSR, a final postprocessing step
is necessary. This can be done in two ways, one that assumes
perfect cleaning, and one that does not. If perfect cleaning
is assumed, in each period between two cleaning events, SR
and RSR equals the KF estimates of the unknown variables
normalized so that SRd = 1 on the day following the previous
cleaning event. If perfect cleaning is not assumed, SR and RSR

equals the KF estimate. When the latter approximation is used,
SR can be estimated to have a value above 1, which is unphysical.
In these cases, it is capped at 1. The latter approximation makes
sense when sufficiently accurate estimates of SC and D have
been found so that SR is the only component remaining in the
input signal to KF. The CODS algorithm starts out by assuming
perfect cleaning, but drops this assumption after a few iterations,
as explained in Section II-B.5 below.

3) STL for Estimating SC: Seasonal and trend decomposi-
tion using LOESS (STL) is a method for decomposing time
series into trend, seasonal, and residual components [14]. It
works by sequentially fitting a locally estimated scatterplot
smoother (LOESS) to the time series. In our case, we only use the
estimated seasonal component. The advantages of using STL,
instead of methods such as X-11 decomposition or classical
decomposition, is that it is more computationally efficient, it
is robust to outliers, it is simple to implement, and it handles
daily data with yearly periodicity. In the Python implementation
of the CODS algorithm, we use an implementation of the STL
from the statistical modeling library Statsmodels [19], [20]. The
input signal to the STL model is log( PI

SR ). The log transform
is necessary because the components are multiplicative, and the
Statsmodels implementation of STL assumes additive compo-
nents. Although, the original STL algorithm handles missing
data, the current Statsmodels implementation of it does not. We
deal with this by doing a linear interpolation between the two
data points on each side of the period of missing data.

4) YOY for Estimating D: The YOY method for finding
degradation trends in PV production data has been well docu-
mented previously [2], [5]–[7]. In the CODS algorithm, the input
to the YOY method is PI

SR · SC . Although the YOY method is
insensitive to seasonal trends, the YOY method benefits from
removal of soiling component from the input signal, as was
shown in [8]. The YOY method works in spite of missing data,
but it needs a minimum of two years of data. This puts a lower
bound on the amount of data needed to run the CODS algorithm.

5) Putting It All Together: The CODS algorithm will run
until it converges, or until it reaches the maximum number of it-
erations set by the user. In this context, convergence is measured
by the root-mean-squared error (RMSE) of the daily values of
the model fit versus the observed PI. The convergence criterion
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is that the relative change in the RMSE from one iteration to
the next is smaller than 0.5%. However, the model is allowed
to converge twice. Initially, perfect cleaning is assumed during
the estimation of SR, as described in Section II-B.2. When
the algorithm first converges, it is assumed that we have found
sufficiently accurate estimates of SC and D; The seasonality-
and degradation-corrected input signal to the KF is then assumed
to only contain the soiling signal, and the assumption of perfect
cleaning is dropped. The algorithm is then allowed to iterate
further until it converges a second time.

In some cases, two different phenomena may have the same
signature on the PI time series. For instance, in locations with
rain- and dry-seasons, there might be seasonal patterns in the
soiling signal causing the PI to be lower in the dry season
than in the rain season. In some cases, it will be challenging
to differentiate between a seasonal pattern in the soiling and a
seasonal component. The order in which the three components
of the model are obtained often decides which component a
certain data signature is ascribed to. Although the problem of
correctly assigning features to the right component is mostly
relevant for SR and SC, it is possible to change the order in
which all three components are found, or to omit one of the
components entirely. This is indicated by the dashed arrows
in Fig. 1. Each combination of component estimation orders
constitutes a separate model choice. In the bootstrapping proce-
dure, described in Section II-C.2, the algorithm is run alternating
between finding SR before SC, and vice versa, ensuring that
the uncertainty associated with this effect is accounted for.
The choice of component estimation order and the fill-method
for missing data during cleaning event detection described in
Section II-B.1 makes up the possible CODS model choices.

Since the main input to the expected energy term in the PI
is often the daily insolation, the PI is especially sensitive to
systematic errors in this value. Two likely causes of systematic
errors are soiling of the irradiance sensor, which will mostly
bias the SR estimate, and sensor drifting, which will mostly
bias the D estimate. Comparing analysis made on PI-data based
on irradiance data from on-site sensor measurements, satellite
measurements, and a clear-sky model may help mitigate this
source of error [5], [21]. Another prominent source of error
is grid or inverter downtime. It is advisable to remove such
datapoints before running the model. Another possible source of
systematic error is correlation between soiling and temperature.
Ideally, this should be accounted for in the modeling of the
expected energy when calculating PI. Finally, it is advisable
to minimize the noise in the PI. One way to do this is to filter out
cloudy conditions, low solar elevation angles, and high angles
of incidence before aggregating to daily values.

If the soiling signal is smaller than the noise, the algorithm
fails to estimateSR accurately. To avoid this problem, the CODS
algorithm checks the relative magnitude of the soiling signal and
the noise. It does this by comparing the 95-percentile span of
the estimated SR and n as follows:

P97.5 (SR) − P2.5 (SR)

P97.5 (n) − P2.5 (n)
< 0.75 (2)

where Px(S) is the xth percentile of S. If condition (2) is true, the
dataset is flagged as having an insignificant soiling signal, and

the CODS algorithm is not run. Instead, only the YOY method
is run, estimating the degradation rate Rd.

To assess whether the fitting procedure has been successful
or not, we check two conditions: Whether the soiling signal is
significant, and whether the residuals are stationary, i.e., whether
the probability distribution describing the residuals changes
through time. If the residuals are not stationary, it means there
is information in the residuals that has not been captured by the
fitting procedure, and the fit is considered unsuccessful. Whether
the residuals are stationary or not is tested using an augmented
Dickey–Fuller test, which is a statistical test for stationarity in
time series [22]. We use the statsmodels implementation of the
test, checking for both constant, linear and quadratic trends at a
significance level of 5%.

Depending on the length of the time series, a single run of
the CODS algorithm takes between a few seconds and half a
minute.

C. Estimating Uncertainty With Bootstrapping

Bootstrapping is the process of randomly sampling with re-
placement from a pool of data, thus generating new, independent
datasets. In our case, we employ bootstrapping to estimate the
uncertainty of our model fit. We do this in three stages—in
stage 1, we fit a set of CODS models to the original PI data
and generate a set of bootstrap samples based on these fits. In
stage 2, we fit a set of CODS models to the bootstrap samples.
In both stages, we vary the model and parameter choices of
each fit. In this way, uncertainty in the data itself, as well as
uncertainty associated with the choice of model and parameters,
is accounted for. In stage 3, confidence intervals and final com-
ponent estimates are found based on the model fits of stages 1
and 2.

1) Stage 1. Generating Bootstrap Samples: To generate
bootstrap samples from time series data, we use circular block
bootstrapping. The original bootstrap idea requires indepen-
dently and identically distributed samples, which would exclude
the kind of time series we are considering. However, later
variants of bootstrapping, such as sieve bootstrapping [23] and
moving block bootstrapping [24] allow autocorrelated samples
to be bootstrapped, as long as the residuals are stationary. In this
work, we follow the ideas proposed in [25] and [26] to generate
bootstrap samples. Although these studies are about time series
forecasting, the bootstrapping part is relevant for our application.
The bootstrapping approach as implemented for CODS can be
seen in Fig. 2, and is described in the following.

The procedure starts by fitting a CODS model to the data.
Next, bootstrap samples are generated from the model residu-
als using circular block bootstrapping. This involves sampling
random 90-day blocks of residuals with replacement, appending
them to each other until the resampled time series of residuals
has the same length as the original time series. The term circular
refers to the time series being “wrapped in a circle” before
resampling. In other words, sample blocks are allowed to start
close to the end of the time series, “spilling over” into the
beginning of the time series. Doing this, we avoid undersampling
data points close to the edges of the time series. Bootstrapped
PI-signals are then generated by the product of the model fit and
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Fig. 2. Flowchart for the bootstrapping procedure for estimating the uncer-
tainty of the components found by the CODS algorithm. In stage 1, 16 models
with different tuning parameters are fit with the CODS algorithm. Then, M
bootstrap samples are generated by doing circular block bootstrapping of the
residuals, multiplying the bootstrapped residuals by the model fits. In stage 2,
the CODS algorithm is run on each of the M bootstrap samples, fitting M models.
From the results of the M fits, confidence intervals, and final component estimates
are found in stage 3.

TABLE I
DEFAULT PARAMETER AND MODEL CHOICES OF THE CODS MODEL

the bootstrapped residuals, creating a time series similar to the
original PI, but with different noise. We will denote these signals
by PI∗.

The problem with the above approach, if this was all that
happened in stage 1, is that any bias in the initially fitted model
will carry over into the generated PI∗. The total uncertainty can
be viewed as a combination of parameter and model uncertainty,
i.e., uncertainty associated with the choice of parameters and
model, respectively [26]. To account for this uncertainty, instead
of generating the bootstrap samples based on a single initial fit,
we make fits with each possible combination of the two tuning
parameters (cleaning event detection and pruning sensitivity)
and model choices (fill-method for cleaning event detection and
component estimation order) summarized in Table I, for a total
of 16 fits.

We then apply the approach for generating PI∗ signals de-
scribed above to each of the initial 16 model fits, thus generating
a predefined number (M) of bootstrap samples. The default
values for the tuning parameters in Table I have been determined
by manual tuning based on the synthetic data described in
Section II-D. In a dataset from the field, a different set of tuning
parameter values might be needed. We recommend that these are
adjusted by visually validating the cleaning detection sensitivity

and pruning sensitivity. For large scale applications on many
systems, we similarly recommend spot checking results.

2) Stage 2. Fitting the Model to the Boostrap Samples: Once
the M bootstrap signals have been generated, a condensed ver-
sion of the CODS algorithm is applied to each of thePI∗ signals.
In this stage, the seasonal component is not estimated. Judging
from our experience, SC is the most difficult component to
estimate accurately, especially when it is small relative to SR.
However,SC is included in the model to help estimateSR more
accurately, and we are not really interested in its exact value.
Since there is a high uncertainty associated with SC, we need
a heuristic for introducing this uncertainty in the bootstrapping
procedure. We have found that the best way of doing this is
to generate a set of perturbed seasonal components based on
the 16 initial model fits. This is done as follows: Let S̃C be
the weighted average of all the estimated SCs of the 16 initial
model fits. The weights are defined by

w =
1

e (1 +m)
(3)

where e is the RMSE of the daily values of the model fit and
the PI, and m is the fraction of time where SR has been capped
(because it was estimated to be above 1, see Section II-B.2). If
m is high, it means the SR has been overestimated in much of the
time series. Thus, by weighting by w, fits with a low error and a
low fraction of overestimated SR are favored. For each of the M
bootstrap samples, we generate a perturbed seasonal component
SCp by multiplying the amplitude of S̃C by a random factor
between 0.8 and 1.75, and shifting its phase by a random number
of days between −30 and 30. These numbers have been decided
by trial and error on the synthetic data described in Section II-D,
and they ensure that the 95% confidence intervals are consistent.
We then run the CODS algorithm on PI∗

SCp . We now assume the
seasonal component has been removed from the signal, and only
the soiling and degradation components are estimated, in that
order.

To further account for parameter uncertainty, in this stage we
run the model with random tuning parameters and a random
choice of forward filling and backward filling during cleaning
event detection. The tuning parameters are chosen from uniform
distributions. The bounds of these distributions are the parameter
values summarized in Table I.

Furthermore, at this stage there are two additional input
parameters that are varied: the process noise and the SR renor-
malization factor. The process noise is an input parameter to
the Kalman filter that, simply put, determines how quickly the
filter adapts to changes in the input signal. We initialize the
process noise matrix through the built-in function from FilterPy
called Q_discreet_white_noise. The input to this function is
randomly sampled from a uniform distribution between 6.67e−5

and 1.5e−4. These bounds have been determined by manual
tuning based on the synthetic data described in Section II-D.
The SR renormalization factor, on the other hand, adjusts the
absolute value of the SR. It has a 50/50 chance of being ON or
OFF. When it is on, SR is normalized by the kth percentile of the
set of SR values on days just after cleaning events. k is determined
by random sampling from a uniform distribution between 5 and
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95. This accounts for the uncertainty in the absolute value of the
SR, associated with how effective the cleaning has been.

3) Stage 3. Final Component Estimates and Confidence In-
tervals: The confidence intervals for the daily values of SR and
RSR are estimated from the distributions of the bootstrapped fits
of the respective components. The final estimates for SR and
RSR are given by the best of the initial 16 model fits, determined
by the maximum w, defined in (3). When estimating the average
soiling loss over the whole period, we use the weighted average
of the result in each of the successful bootstrap samples, where
the weights are w.

The final estimate of the degradation rate is found in the same
way as the average soiling loss. The confidence intervals are
found from the percentile distribution of the set of bootstrap
estimates of the degradation rate. We note that this is a different
way of estimating confidence intervals than what is done in the
RdTools (version 1.x.x) implementation of the YOY method,
degradation_year_on_year. There, the confidence intervals are
constructed from a bootstrapping of the set of YOY rates in
the data. In the CODS approach, the influence of both data
uncertainty and the uncertainty in the soiling signal and the
seasonal component on the degradation rate is accounted for.
In general, the mutual influence on uncertainty of all three
components is accounted for by our bootstrapping procedure.
This is not the case in the previous RdTools implementation of
the YOY method.

Even if the user is not interested in confidence intervals, we
recommend running the CODS algorithm with bootstrapping, as
this both gives better estimates of the components and inherently
takes care of parameter and model choices. We suggest using 512
bootstrap samples, i.e., M = 512. For a 10-year dataset, this
takes approximately 20 min on a normal laptop from 2018, and
the computation times scales approximately linearly with the
length of the time series. This means the algorithm is applicable
to both fleet-scale level analysis and inverter level analysis in
utility scale power plants.

D. Generation of Synthetic Data

In order to validate the model, a framework for generating
synthetic PI time series was made.2 The advantage of synthetic
data, in contrast with data from the field, is that we can know the
exact value of the separate components, which will allow us to
assess the accuracy of the model on each component. We have
generated the data following the same framework as in [8]:SR is
generated by randomly selecting 120 cleaning events over a ten
year period, and lettingSR reduce linearly from 1 at a soiling rate
randomly sampled from a uniform distribution between rs,min

and rs,max for each section between two cleaning events. SC
is generated as a sine wave centered at 1, with an amplitude
Aseas and a period of one year. D is generated as a linear trend
starting at 1 and decreasing at a rate of Rd = −0.5%/year.
n is generated as Gaussian white noise centered at 1 and with
standard deviation σnoise.

1The Python code used to generate these time series is avail-
able at https://github.com/asmunds/simulate_pv_time_series/tree/
021d5724806e93829dedee376a149199a068ed79

Fig. 3. Realizations of the six different versions of the generated synthetic
daily PI. The parameters of each instance are summarized in Table II.

TABLE II
GENERATION PARAMETERS OF SYNTHETIC DATA SCENARIOS

∗Generated with a seasonal variation in the cleaning frequency

In the field, PI time series will have a wide range of different
soiling intensities, seasonal effects in the soiling, other seasonal
effects (e.g., incident angle, shading, and temperature effects),
and noise levels. Since we do not have access to fielded data
that represents the variation we expect, we have come up with
six different synthetic data scenarios that we believe represents
this variety. One realization of each of these models is shown
in Fig. 3, and the parameter combinations are summarized in
Table II. The hope is that these six parameter combinations span
much of the variety of PI time series from the field, and that
by demonstrating the accuracy of the CODS model on these
datasets, we convince the reader that it will be accurate on data
from the field as well.

Note that instance d) has a seasonal variation in the cleaning
frequency. To achieve this, a probability distribution represent-
ing the probability of cleaning for each day d in the time series

https://github.com/asmunds/simulate_pv_time_series/tree/021d5724806e93829dedee376a149199a068ed79
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Fig. 4. Error metrics for estimated daily values ofSR andRSR based on 2376
realizations of the CODS algorithm. (a) Distribution of MSD of the estimate of
SR versus the truth for the realizations. (b) RMSE for the same. (c) MSD for
the estimate of RSR versus the truth. (d) RMSE for the same.

is constructed as:

P (d) = A

(
1.1 + sin

(
d

365.25
+ x

))
. (4)

Here, x represents a random phase, and A is set so that the
area under the curve integrates to one. The cleaning events are
sampled, without replacement, from the set of days in the time
series with the sampling probability given by this probability
distribution. This emulates environments with periodic variation
in the probability of rain (such as locations with rainy seasons).

III. RESULTS AND DISCUSSION

A. Validation on Synthetic Data

The model was tested on 2376 realizations of the synthetic
data described in Section II-D, with an equal number of each
of the 6 variations shown in Fig. 3, and an equal number of
two-year, five-year, and ten-year datasets. Using these synthetic
data, we were able to confirm the validity of the confidence
intervals of the CODS algorithm. In the following, the accuracy
of the estimates of the soiling ratio (SR), soiling rates (RSR),
and degradation rates (Rd) are assessed.

1) Soiling Ratio and Soiling Rates: The accuracy of the
CODS algorithm’s estimate of daily values of SR and RSR,
measured in mean signed deviation (MSD) and RMSE, is shown
by histograms in Fig. 4. The results are compared with estimates
made with the stochastic rate and recovery (SRR) method,
which is described in [3]. The MSD of the SR estimates show
that the CODS algorithm is clearly less biased than the SRR
method. Further, the RMSE results show that it in general is
more accurate. The same results hold if we look at monthly or
yearly averages, instead of daily values.

When it comes to RSR, the improvement of the CODS algo-
rithm versus the SRR method is smaller. Although CODS seems

Fig. 5. Cumulative percentage of estimated degradation rates based on 2376
realizations of the synthetic data. The true degradation rate is −0.5%/year in all
realizations, illustrated by the vertical grey line. The CODS algorithm generally
estimates degradation rates closer to the truth than the other two methods.

to be slightly less biased, judging from the MSD histogram, and
slightly more accurate, judging from the RMSE histogram, the
improvement is not large. The bias comes from the difficulty of
estimating soiling rates in periods with quick successive cleaning
events, since the soiling signal remains smaller than the noise
in these periods, leading to underestimated soiling rates and a
positive MSD. This issue is not specific to the CODS model; it
is a general issue for all models attempting to estimate soiling
rates based on a daily PI.

2) Degradation Rates: Based on the 2376 realizations, the
degradation rates found with the YOY method alone, the SRR
method combined with the YOY method (denoted SRR in
Fig. 5), and the CODS algorithm, are shown in Fig. 5. The
combined use of SRR and YOY was done according to [8].
In all cases, the true degradation rate is −0.5%/year, which is
shown as a vertical line in Fig. 5. The cumulative distribution of
estimated degradation rates shows that, based on the synthetic
data used in this article, the combined use of SRR and YOY does
not constitute an improvement relative to using the YOY method
alone. This is in contrast with what was found in [8]. The reason
for this, we believe, is that the synthetic data used in [8] was
consistently generated in the same way as dataset a) in Table I,
which has a very large soiling signal relative to the other signals.
When the soiling signal is large, it is indeed useful to correct for
soiling using the SRR method, before running the YOY method.
We were able to reproduce these results when using only dataset
a). However, when the soiling signal is small, when there is a
high amount of seasonality, or when the amplitude of the noise
is large, using the SRR method to correct for soiling does not
necessarily lead to a more accurate estimate of the degradation
rate.

On the other hand, the degradation rates found with the CODS
algorithm are more consistently closer to the true degradation
rate than those found by the YOY method alone. Although this
is not shown in Fig. 5, this holds even in datasets where the
soiling signal is small. This is as expected, because accurately
estimating SR and correcting for it in the input to YOY, which
is effectively what is happening in the CODS algorithm, will
remove bias caused by soiling in the YOY estimate.
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Fig. 6. CODS model applied to field-data. (a) Daily PI along with the model
fit and the estimated degradation trend (−0.6%/year). (b) Inferred SR along
with its 95% confidence interval. The estimated average soiling loss is 2.2%.

B. Validation on Field Data

Fig. 6 shows daily PI for a fielded PV system, along with the
associated CODS results. The PI used here is the temperature
corrected performance ratio [10] of the dc power of an inverter
in a utility scale PV power plant.

Since we do not know the true values of daily soiling losses
and degradation rates, we can only make a visual assessment
of how well the model fits the data. Looking at Fig. 6, the
model seems to fit the data well. Judging from the coefficient of
determination, R2 = 0.71, the model accounts for 71% of the
variation in the data. This shows that, even though the choices
made in the model development, as well as the chosen set of
model parameters, have been made based on synthetic data, the
model works on at least one example of field data.

In the PV system in study, the estimated average soiling
loss is 2.2%, with a 95% confidence interval (CI) between
1.5% and 3.2%. The estimated degradation rate is −0.6%/year,
with a 95% CI between 0.0%/year and −1.1%/year. The large
confidence interval reflects the large amount of noise, and the
large soiling signal. In contrast, applying the RdTools implemen-
tation of the YOY approach with no soiling correction yields
a degradation rate of −0.2%/year, with a 95% CI between
+0.1%/year and −0.6%/year. The estimated average soiling
rate is RSR = −0.1%/day.

IV. CONCLUSION

We have presented an algorithm for simultaneous estimation
of soiling losses and degradation rates in PV systems based on
time series of a daily PI. Based on 2376 realizations of synthetic
data, we have shown that it outperforms related state-of-the-
art models in terms of its accuracy in estimating degradation
rates and daily soiling losses, as well as monthly and yearly
averages. Even in moderate soiling conditions, the model gives
more accurate estimates of the degradation rates than the YOY

method. It takes about 20 min to complete a full analysis of a
10-year dataset on a standard computer from 2018.

A preliminary version of the CODS model is freely available
for anyone to use, and will further be distributed through a future
release of RdTools.
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