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Abstract  

 

A novel numerical algorithm and modeling framework of a front tracking method based on adaptive 

anisotropic unstructured meshes for simulating two-phase interfacial flows is presented. In the traditional 

front tracking methods, a fixed uniform Eulerian Cartesian mesh is used for solving the fluid flow, and 

adaptive unstructured grid markers are used for tracking the phase-interface front. In the new algorithm, 

an adaptive anisotropic unstructured mesh is used for solving the fluid flow, as well as for tracking the 

phase-interface front. Special attentions are focused on developing an algorithm for physical variable 

interpolation between the two sets of unstructured meshes for both the fluid flow and the front movement. 

A modeling framework for the described numerical algorithm is implemented on the platform of the 

commercial CFD package ANSYS Fluent through user-defined functions. The advanced ANSYS Fluent 

fluid flow solver feature of using adaptive unstructured mesh is integrated with the front tracking method, 

which can handle complex boundary geometries and has high numerical efficiency. These advanced 

features are demonstrated through three numerical test examples of simulating a single gas bubble rising 

freely in a viscous liquid, a buoyancy-driven liquid droplet rising in a periodically constricted capillary 

tube, and a pressure-driven droplet passing through a small throat hole in a pipe. The accuracy of the 

simulation results is demonstrated through the comparison with those observed in experiments or 

obtained using other simulation methods.  

 

Keywords: Two-phase interfacial flow; Front tracking method; Adaptive unstructured mesh; Complex 

geometries; Capillary tube; Computational fluid dynamics.  

 

1. Introduction  

 

Front tracking method has been accepted widely as a promising numerical algorithm for simulating 

interfacial multiphase flows (Scardovelli & Zaleski 1999; Shin & Juric 2002; Hua & Tryggvason 2011; 

Wörner 2012). Traditionally, the front tracking method is based on a uniform Cartesian mesh to solve the 

Navier-Stokes equation for the fluid flow (Unverdi & Tryggvason 1992). This limits the solution domain 

to having regular and simple boundary geometry. In fact, multiphase flows interacting with complex 

geometries can be found in a wide range of scientific and engineering applications and natural processes. 

Examples include microfluidic system (Stone 2004; Wang & Luo 2017; Kahouadji et al. 2018), oil 

recovery by chemical flooding (Olbricht 1996; Xu et al. 2014), chemical and biological process (Joshi & 
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Nandakumar 2015; Pozrikidis 2003). Moreover, most of the industrial applications are characterized by 

complex domains (Hua et al. 2018; Pineda-Péreza et al. 2018). Therefore, an extension of the traditional 

numerical algorithm for the front tracking method with the capability of using adaptive unstructured 

meshes for both solving the fluid flow and tracking the interface front may greatly widen its applications 

in scientific researches and industrial process simulation/optimization.  

 

Accurate simulation of the flow behavior in a two-phase fluid system depends upon the capability of the 

numerical models to satisfactorily characterize the flow mechanism for each fluid phase as well as the 

interactions between them. In recent years, significant progress has been made in understanding and 

modeling of single-phase flows by using the advanced flow visualization techniques and flow field 

measurements and developing sophisticated numerical modeling algorithms. In principle, a multiphase 

fluid system could also be simulated numerically using the same governing-equations (Navier–Stokes 

equations and mass conservation equation) for single-phase flow with variable material properties (e.g. 

density and viscosity) upon the phase distribution. However, the physically sharp interface in the 

multiphase fluid system may lead to discontinuities of fluid properties such as density and viscosity in the 

flow field, which may induce numerical instability and difficulties when solving the flow field governing 

equations. If a finite small thickness is used to approximate the sharp interface, a smooth transition of 

material property from one phase to the other phase can be reasonably assumed. Moreover, the surface 

tension force on the interface can be distributed to the finite thick interface region as the source term to 

the momentum equations. Based on these basic assumptions and approximations, the fundamentals of the 

front tracking method are built. The similar modeling concept was approved in the pioneering work of 

Peskin (1977). For numerical implementation, one set of Eulerian mesh is used for solving the flow field 

of “one fluid” with the variable material properties and the distributed surface tension force in the vicinity 

of the interface front. Another set of adaptive Lagrangian mesh is used for tracking its movement and 

position explicitly (Hua & Tryggvason 2011). In the work of Shin & Juric (2002), the front is 

reconstructed using a level contour based on the fixed Eulerian mesh without connectivity. The position 

of front mesh and the finite interface thickness are used to construct a phase distribution function on the 

Eulerian mesh. The surface tension is calculated on the front tracking mesh and distributed to the Eulerian 

mesh by an approximated delta function for solving fluid flow. To make easy communication between the 

flow field on the Eulerian mesh and the interfacial physical variables on the Lagrangian mesh, a uniform 

Cartesian mesh is normally adopted for the Eulerian mesh in the past.  

 

In addition to the front tracking method, various other numerical methods have been developed in the past 

decades to simulate two-phase flow with a sharp front. Namely, they are VOF (volume of fluid) method, 

level set method, phase field method, lattice-Boltzmann method, and direct interface tracking through 

mesh fitting method. Each method has its advantages and disadvantages. The VOF, level set, and phase 

field methods are based on volume capturing approach. Volume functions on the Eulerian mesh are used 

to track the phase distribution and interface movement. Hence, the finite volume based numerical method 

and techniques (e.g. unstructured mesh) for solving single phase flow can be applied easily in these 

methods for two-phase flow simulations. They can be applied to the unstructured mesh to handle complex 

geometry and to handle interface topology changes due to coalescence and breakup straightforwardly. 

However, the numerical diffusion may lead to smearing of the interface, and it is difficult to maintain the 

interface sharpness. Reinitialization approach is introduced in the level set method to keep the interface 

sharp, while it causes errors in conserving the volume of each phase. The lattice-Boltzmann method is 
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based on the regular-shaped lattice for all calculations, which makes it difficult to match the 

computational domain with the complex boundaries accurately. The direct interface tracking method is to 

fit the mesh dynamically through re-meshing or smoothing to follow the interface movement. This 

method can keep the interface sharpness and handle complex geometry. But the re-meshing/smoothing of 

volume meshes normally require more computing time, and the mesh quality cannot always be 

guaranteed. Compared with the above-mentioned methods for simulating multiphase interfacial flows, the 

front tracking method is good at keeping the interface sharpness and conserving the phase volume by 

tracking the interface explicitly. Robust algorithms can be developed to handle the interface topology 

changes explicitly. In addition, various numerical methods for the Navier–Stokes equations are tried to 

solve the fluid flow on the regular Eulerian mesh. A fractional prediction-correction method was used in 

the early works of Tryggvason et al. which could simulate the two-phase flow system with small 

density/viscosity difference, and the further improvements are described in Tryggvason et al. (2001) and 

the book of Prosperetti & Tryggvason (2007). A modified SIMPLE algorithm was adopted by Hua and 

Lou (2007), and it succeeded in modeling the two-phase flow system with large density/viscosity 

difference, e.g. gas-liquid system. The modeling results of the rising of a single bubble in the viscous 

liquids were validated extensively using experiments. The good accuracy and high numerical robustness 

of the front tracking method has extended its applications widely in modeling various multiphase 

interfacial flow problems, e.g. direct simulation of bubbly flow and turbulence (Hua et al 2008; Esmaeeli 

& Tryggvason 1998), phase change and heat transfer due to film boiling (Esmaeeli & Tryggvason 2004), 

solidification in additive manufacturing (Xia et al. 2018), electric charged droplets (Hua et al. 2008) and 

droplet reactor manipulation in microfluidics (Muradoglu & Stone 2005). 

 

A review of the past applications of the front tracking method clearly shows that most of the past 

simulations have regular computational domains. This is due to that uniform structured Cartesian meshes 

are commonly used as the fixed Eulerian mesh for solving fluid flows, and the physical variable 

interpolation and distribution between the fixed Eulerian background mesh and the adaptive Lagrangian 

front mesh are simple and straightforward. To simulate the motion and breakup of buoyancy-driven 

viscous drops through sinusoidally constricted capillaries, Olgac et al. (2006) applied three types of grids 

in the modeling framework of the front tracking method. The governing equations are solved on a fixed 

Eulerian curvilinear grid to fit the sinusoidally constricted capillaries, and the interface between different 

phases is represented by a Lagrangian grid consisting of connected marker points. An auxiliary uniform 

Cartesian grid is used to maintain communication between the curvilinear and the Lagrangian grids. 

Zolfaghari et al. (2017) implemented an immersed boundary method to impose a solid zone with an 

arbitrary-shaped wall boundary on the fixed uniform Cartesian Eulerian mesh. The front tracking method 

is applied to study the motion and deformation of a viscoelastic drop in a pressure driven flow through a 

capillary tube. Although the proposed approaches can extend the capability of the front tracking method 

in handling complex boundary geometries, they also increase the numerical algorithm complexity by 

involving an additional auxiliary uniform Cartesian grid or combing with the immersed boundary method. 

Moreover, to increase the modeling efficiency, a front-position-based mesh adaptation technique can be 

applied to the Eulerian mesh. Mesh refining is adopted at the region near the interface front, and mesh 

coarsening at the region away from the interface front. Since the block-structure based mesh adaption 

strategy is commonly used (Hua et al. 2008; Pivello et al. 2014), it is challenging to extend the current 

method to handle the wall boundaries with complex geometries.  

 



4 
 

To improve the modeling efficiency and the capability of handling wall boundary with complex 

geometries, a new modeling framework for the front tracking method is presented here. The new 

algorithm uses adaptive unstructured Eulerian mesh for solving fluid flow and provides direct 

communication between the adaptive unstructured Eulerian mesh and the adaptive Lagrangian front mesh 

for physical variables interpolation and distribution. The modeling framework is implemented on the 

platform of the commercial CFD software package ANSYS Fluent through User Defined Functions 

(UDF). The advanced flow solver in ANSYS Fluent is applied to solve the fluid flow field on an adaptive 

unstructured Eulerian mesh. The variable-gradient based mesh adaption through refining and coarsening 

in ANSYS Fluent is applied to adapt the Eulerian mesh size dynamically with the movement of the 

interface front. Various UDFs are created to represent the front using a set of connected Lagrangian 

marker points. The front marker points are moved at the velocity interpolated from the flow field 

calculated by ANSYS Fluent on the unstructured Eulerian mesh and are adapted upon the distance to the 

neighboring marker points. A piece of the interface between two neighboring marker points is called a 

front element. The surface tension on the front element is calculated in UDFs and then distributed onto 

the Eulerian mesh cell as a body force source term of the momentum equations solved by ANSYS Fluent. 

UDFs are also created for the physical variable interpolation and distribution between the background 

Eulerian mesh and the front Lagrangian mesh. In order to demonstrate the capability and effectiveness of 

the new front tracking method framework, it is applied to the 2D simulation of a static drop suspending in 

viscous liquid, and the 2D axisymmetric simulations of a single bubble rising in a quiescent viscous liquid 

and a single liquid drop movement in a constricted capillary tube with variable cross-section area by 

buoyancy or pressure. The simulation results are compared with the experimental observations. Effects of 

different meshing strategies (triangle or quadrilateral, uniform or adaptive) are also studied.  

 

The rest of the paper is arranged as follows: The governing equations for two-phase flow and the 

numerical algorithm for the new framework of the front tracking method are presented in Section 2. The 

numerical method and its implementation are described in Section 3. The physical problems of numerical 

test examples are described in Section 3 where the results and discussions are also presented. Finally, 

some conclusions drawn from the studies appear in Section 4.  

 

2. Mathematical formulation  

 

2.1 Governing equations  

The governing equations for two-phase flow are presented here in the context of the front tracking 

method. Following the early works (Hua & Lou 2007; Hua & Tryggvason 2011), “one-fluid” formulation 

for multiphase interfacial flow is used, where a single set of governing equations is applied to the entire 

computational domain with different material properties in each phase. The surface tension is included as 

a body force distributed to the region near the interface. For the studies presented in this paper, the flow is 

assumed to be incompressible and the material properties of each phase remain constant. Hence, in the 

framework of the front-tracking method, the mass continuity, and the momentum conservation equation 

can be written as  

∇ ∙ 𝒖 = 0 ,          (1) 
𝜕𝜌𝒖

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝒖) = −∇𝑝 + ∇ ∙ [𝜇(∇𝒖 + ∇𝒖𝑇)] + 𝜌𝒈 + ∫ 𝜎𝜅𝒏𝛿(𝒙 − 𝒙𝑓)

 

𝛤
𝑑𝑠.  (2) 

Here 𝒖 and 𝑝 are the velocity and pressure fields, respectively; 𝜌 and 𝜇 are the density and viscosity 

fields, respectively; 𝒈 is the gravitational acceleration rate. The last term in Eq. (2) represents the body 



5 
 

force due to the surface tension. In this term, 𝜎, κ, 𝒏 and 𝑠 are the surface tension coefficient, interface 

curvature, unit vector normal to the interface and the interface area, respectively. 𝛤 stands for the phase 

interface. The surface tension on the interface (𝛤) is indicated by a delta function 𝛿 , whose arguments 𝒙 

and 𝒙𝑓 are the points where the equation is being evaluated and an interface point, respectively. The delta 

function 𝛿(𝒙 − 𝒙𝑓) is zero everywhere except at the interface, where 𝒙 = 𝒙𝑓.  

 

To have a better characterization of the two-phase flow problem, we introduce the following 

dimensionless characteristic variables  

𝒙∗ =
𝒙

𝐿
 ; 𝒖∗ =

𝒖

𝑈
  ; 𝑡∗ =

𝑡

𝐿 𝑈⁄
 ; 𝜌∗ =

𝜌

𝜌0
 ; 𝑝∗ =

𝑝

𝜌0𝑈2 ; 𝜇∗ =
𝜇

𝜇0
 ; 𝒈∗ =

𝒈

 𝑈2 𝐿⁄
 ; 𝜅∗ = 𝐿𝜅.   (3)  

Here 𝐿 and 𝑈 are the characteristic length and flow speed, respectively; 𝜌0 and 𝜇0 are the density and 

viscosity of the continuous (primary) phase, respectively. The subscript 0 stands for the continuous phase 

in the two-phase flow. Hence, the governing equations Eq. (1) and (2) can be reformulated as 

∇ ∙ 𝒖∗ = 0 ,           (4) 
𝜕𝜌∗𝒖∗

𝜕𝑡∗ + ∇ ∙ (𝜌∗𝒖∗𝒖∗) = −∇𝑝∗ +
1

𝑅𝑒
∇ ∙ [𝜇∗(∇𝒖∗ + ∇𝒖∗𝑇)] + 𝜌∗𝒈∗ +

1

𝐵𝑜
∫ 𝜅∗𝒏𝛿(𝒙∗ − 𝒙𝑓

∗)
 

𝛤∗ 𝑑𝑠∗, (5) 

The non-dimensional Reynolds number (𝑅𝑒) and Bond number (𝐵𝑜) are defined as  

𝑅𝑒 =
𝜌0𝑈𝐿

𝜇0
 ; 𝐵𝑜 =

𝜌0𝑈2𝐿

𝜎
 .         (6) 

From the above non-dimensional governing equations (4) and (5), it can be derived that the two-phase 

flow problem can be characterized by four dimensionless parameters: Reynolds number (𝑅𝑒), Bond 

number (𝐵𝑜), density ratio (𝜌1 𝜌0⁄ ) and viscosity ratio (𝜇1 𝜇0⁄ ). The subscript 1 stands for the dispersed 

phase, e.g. bubble or drop. For a single bubble rising in a quiescent liquid, other dimensionless parameters 

Morton number (𝑀) and Eotvos number (Eo) are also often used to represent the fluid property,  

𝑀 =
𝑔𝜇0

4

𝜌0𝜎3;  𝐸𝑜 =
𝜌0𝑔𝐷 

2

𝜎
.          (7) 

For a liquid drop motion in a capillary tube, the dimensionless number Capillary number is also often 

used to characterize the flow 

𝐶𝑎 =
𝜇0

 𝑈

𝜎 =
𝐵𝑜

𝑅𝑒
.           (8) 

 

2.2 Property field and phase indicator function  

Since the above “one-fluid” governing equations for the two-phase flow is to be solved numerically on an 

Eulerian mesh, the physical discontinuities of fluid properties (e.g. density and viscosity) across the sharp 

interface is approximated using a smooth phase indicator function 𝐼(𝒙). This indicator function is to be 

constructed from the interface position (𝒙𝒇), and it has the value of one inside the secondary phase 

(bubble/drop) and the value of zero in the primary phase (continuous phase). Hence the distributions of 

the fluid properties over the whole solution domain can be evaluated with the phase indicator function as 

𝜌(𝒙) = 𝜌0 + (𝜌1 − 𝜌0)𝐼(𝒙);           (9) 

𝜇(𝒙) = 𝜇0 + (𝜇1 − 𝜇0)𝐼(𝒙).         (10) 

Here the subscript 0 and 1 represent the primary (continuous) phase and the secondary (bubble/drop) 

phase, respectively. The phase indicator function can be constructed in the form of an integral over the 

whole domain (Ω) with the phase interface (Γ):  

𝐼(𝒙) = ∫ 𝛿(𝒙 − 𝒙′)𝑑𝑣
 

Ω
,          (11) 

where 𝛿(𝒙 − 𝒙′) is a delta function that has a non-zero value where 𝒙′ = 𝒙 and zero where 𝒙′ ≠ 𝒙. 

Theoretically, the phase indicator function 𝐼(𝒙) expressed by Eq. (11) has a sharp jump across the 
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interface, which brings abrupt changes of fluid properties from grid point to the next and leads to 

numerical instability to solve the governing equations. To circumvent the numerical difficulties, the 

interface is not treated exactly sharp but given a small thickness of the order of mesh size. The delta 

function can be approximated by the following distribution function introduced by Peskin (Peskin 1977; 

Peskin and Printz 1993)  

𝐷(𝒙 − 𝒙′) = {
1

(2ℎ)𝛼
∏ (1 + 𝑐𝑜𝑠 [

𝜋

ℎ
(𝑥𝑖 − 𝑥𝑖

′)])𝛼
𝑖=1 , 𝑖𝑓 |𝑥𝑖 − 𝑥𝑖

′| < ℎ,   𝑖 = 1, 𝛼;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .
   (12) 

Here ℎ is the half of the interface thickness and 𝛼 = 2, 3 for two and three dimensions, respectively. 

Subscript 𝑖 stands for the coordinate index. Substituting Eq. (12) into Eq. (11), we can obtain a smooth 

phase indicator function 

𝐼(𝒙) = ∫ 𝐷(𝒙 − 𝒙′)𝑑𝑣
 

Ω
,          (13) 

Taking the gradient of the indicator function, transforming the volume integral into an integral over the 

phase interface yields 

∇𝐼(𝒙) = ∫ 𝒏𝐷(𝒙 − 𝒙𝒇)𝑑𝑠
 

Γ
.         (14) 

Here 𝒏 is the unit normal vector to the phase interface. The gradient of the phase indicator function, 

𝑮(𝑥) =  ∇𝐼(𝒙), is zero everywhere except the region near the interface. The phase indicator function in 

the whole solution domain can be reconstructed by solving the following Poisson equation with proper 

boundary conditions 

∇2𝐼(𝒙) = ∇ ∙ 𝑮(𝒙).          (15) 

 

2.3 Surface tension force  

With the distribution function in Eq. (12), the body force term due to the surface tension in the 

momentum conservation equation can be reformulated as  

𝑭𝑆𝑇
 (𝒙) = ∫ 𝜎𝜅𝒏𝐷(𝒙 − 𝒙𝑓)

 

𝛤
𝑑𝑠.         (16) 

Following the front tracking framework, the surface tension should be calculated on the Lagrangian front, 

and then be distributed to the Eulerian mesh. On a piece of interface front (an element 𝑙 of the Lagrangian 

front mesh), the net force due to surface tension can be evaluated as  

𝑭𝑆𝑇
𝑙 = 𝜎𝜅𝑙𝒏𝑙Δ𝑠𝑙.          (17) 

Here 𝜎 is the surface tension coefficient, 𝜅𝑙 is the curvature of the interface at the centroid of element 𝑙, 

𝒏𝑙 is the unit vector normal to interface, and Δ𝑠𝑙 is the front element size. The net force on the front 

elements can be distributed onto the Eulerian mesh element 𝒆 to construct the body-force term  

𝑭𝑆𝑇
 (𝒙𝒆) = ∑ [𝐷(𝒙𝒆 − 𝒙𝑙)𝑭𝑆𝑇

𝑙 ]𝑙 .         (18) 

 

2.4 Movement of interface front  

Once the governing equation for the flow field on the Eulerian mesh is solved, the velocity on the 

Lagrangian front mesh grids should be interpolated according to  

𝒖𝑓(𝒙𝒇) = ∫ 𝒖(𝑥′)𝛿(𝒙𝒇 − 𝒙′)𝑑𝑣
 

Ω
.        (19) 

Here 𝒖𝒇(𝒙𝒇) is the interpolated velocity on the front mesh grid with the coordinate of 𝒙𝒇. If the 

distribution function 𝐷(𝒙) is used to approximate delta function, Eq. (19) is rewritten in discretization 

form  

𝒖𝒇(𝒙𝒇) = ∑ [𝒖𝒆(𝒙 
𝑒) 𝐷(𝒙𝒇 − 𝒙 

𝑒) 𝑉𝑒(𝒙 
𝑒)]𝑒 ,       (20) 
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where 𝒖𝒆 is the velocity of the solved flow field on an element 𝑒 of the Eulerian mesh with a volume of 

𝑉𝑒 and centroid coordinate of 𝒙 
𝑒. 

With the interpolated velocity on the front mesh grid, the interface position is advected by  
𝒅𝒙𝒇

𝒅𝒕
= 𝒖𝒇(𝒙𝒇).           (21) 

 

2.5 Normalization of the distribution function  

In the front tracking method, the consistency/conservation of the physical variables during the 

interpolation and distribution between the interface front and background flow meshes is essential. This 

requires the numerical implementation of the distribution function should meet the consistency constraint, 

i.e. the sum of the distribution weight factors to all the nearby background mesh elements (𝒙 
𝑒) at the front 

mesh grid with the coordinate of 𝒙𝒇 should be one,  

𝑆𝑑𝑤𝑓
𝑓

= ∑ [𝐷(𝒙𝒇 − 𝒙 
𝑒) 𝑉𝑒(𝒙 

𝑒)]𝑒 = 1.        (22) 

However, due to the effects of the selected distribution function and the background mesh type (e.g. 

unstructured adaptive triangular mesh), the consistency condition as shown in Eq. (22) may not be 

satisfied exactly (𝑆𝑑𝑤𝑓
𝑓

≈ 1) because of the discretization errors in the actual numerical implementation. 

Normally, the satisfaction of the interpolation consistency condition can be improved by using a refined 

background mesh. Alternatively, the consistency condition can be assured by normalizing of the 

distribution function,  

𝐷𝑛(𝒙𝒇 − 𝒙 
𝑒) = 𝐷(𝒙𝒇 − 𝒙 

𝑒)/𝑆𝑑𝑤𝑓
𝑓

        (23) 

 

3. Numerical method and implementation 

 

 
Figure 1. Computational meshes used for the front tracking method: an unstructured Eulerian for the flow 

field and a Lagrangian mesh for the interface front, and the data communications between them by 

interpolation and distribution.  

 

Based on the governing equations presented in Section 2 for the “one fluid” formulation for two-phase 

flows, various numerical methods and techniques can be applied to solve the equation system 

numerically. For example, a fractional prediction-correction method for incompressible flow solver was 
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used in the early works of Tryggvason et al. (1992). A modified SIMPLE algorithm was adopted by Hua 

and Lou (2007). In this paper, a new modeling framework is presented. The commercial CFD package 

ANSYS Fluent is used as the platform to implement the front tracking method. Various User Defined 

Functions (UDF) are created to customize the commercial package for this purpose.  

 

Figure 1 shows the computational meshes used for the front tracking method. In this study, a non-uniform 

unstructured mesh is used as the Eulerian mesh for solving fluid flow. Although the mesh shown in 

Figure 1 is triangles for a two-dimensional flow domain, other type mesh, e.g. quadrilateral, is also 

applicable to the numerical algorithm presented in this paper. An adaptive Lagrangian mesh is used to 

mark the interface front position and track its movement. The Eulerian mesh is input to ANSYS Fluent 

for solving the flow field, and the Lagrangian mesh is created, stored and manipulated through the user 

programming in UDFs.  

 

Before starting to solve the governing equations for fluid flow, it is necessary to construct the phase 

indicator function 𝐼(𝒙) by solving Eq. (15) so that the smooth distribution of variable material poperies 

can be derived. Firstly, the gradient of phase indicator function 𝑮(𝒙) on the Eulerian mesh can be 

calculated by the sum of the contributions of every interface front element with position 𝒙𝒍 and size ∆𝑠𝑙 

𝑮(𝒙𝒆) = ∇𝐼(𝒙𝒆) = ∑ 𝒏𝒍𝐷(𝒙𝒆 − 𝒙𝒍)∆𝑠𝑙 
𝑙 .       (24) 

This is a typical distribution algorithm that spreads the interfacial physical variable from the front 

Lagrangian mesh to the background Eulerian mesh. The distribution function 𝐷(𝒙𝒆 − 𝒙𝒍) used in Eq. (24) 

is not zero only at the vicinity of the interface where |𝑥𝑖
𝑒 − 𝑥𝑖

𝑙| < ℎ,   𝑖 = 1, 2 for the 2D problem. As 

shown in Figure 1, the light grey region is the vicinity of the front element  𝒍 . Hence, a list of Eulerian 

elements which is within the vicinity of a front element is sorted out, and the distribution is calculated on 

the short-listed element instead of all elements in the whole domain to save computing time. The 

distribution algorithm is implemented using UDFs. The calculated gradient of phase indicator function is 

stored in Fluent User Defined Memories (UDM), and the divergence of the phase indicator function ∇ ∙

𝑮(𝒙) can be obtained using the ANSYS Fluent UDF macro functions for calculating the derivatives. 

Hence, the phase indicator function can be constructed by solving Eq. (15). In Fluent, a user-defined 

scalar (UDS) transport equation is configured as a Poisson equation solver for Eq. (15). With the solution 

of the phase indicator function, UDFs can be created to specify the distributions of “one-fluid” material 

properties of density and viscosity according to Eq. (9) and Eq. (10), respectively.   

 

The net surface tension force on an element of the Lagrangian front mesh is expressed in Eq. (17). In the 

early work by Unverdi & Tryggvason (1992), the interface curvature at the front element centroid was 

evaluated from the fitted curve of the grid points of the element and its neighbors. Alternatively, Hua and 

Tryggvason (2011) calculated the surface tension force at each edge of a front element, and the net 

surface tension is obtained by sum up of the surface tension force on all edges. The second approach 

avoids calculating high-order derivatives of the interface and is more robust. Hence, it is adopted in this 

study and implemented in UDF. The net force from the front element is then distributed onto the Eulerian 

mesh according to Eq. (18) as the additional body force term due to surface tension (𝑭𝑆𝑇
 ), which is stored 

in Fluent UDM and added to the source terms of the momentum equations when they are solved.  
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The front moving velocity (𝒖𝒇) can be obtained through interpolating the solved velocity field from the 

Eulerian mesh element to the Lagrangian front mesh grid points according to Eq. (20). Since the 

distribution function is used, the Eulerian mesh element in the vicinity of a front mesh grid point is sorted 

out with the condition |𝑥𝑖
𝑒 − 𝑥𝑖

𝑓
| < ℎ,   𝑖 = 1, 2 for the 2D problem. For a short-listed vicinity element, 

the velocity at the centroid multiplied by the factor from the distribution function and the element volume 

gives its contribution to the front grid velocity. The moving velocity of a front grid point is obtained by 

summing the contributions from all its vicinity Eulerian mesh elements. Certainly, the front velocity 

interpolation in this study is achieved through the user programming in UDF.  

 

Once the interface moving velocity is obtained, the interface position (mesh grid points) can be advanced 

explicitly 

𝒙𝒇
𝑛+1 = 𝒙𝒇

𝑛 + 𝒖𝒇
𝒏 ∙ ∆𝒕.          (25) 

Here subscript 𝑛 indicates the time step in the simulation and ∆𝒕 is the time step size. After the front is 

advected to the new position, the mesh size and quality on the front may be deteriorated due to the 

deformation of the front. For example, some element points may have moved closer resulting in very 

small elements. On the contrary, some elements may become larger. To maintain an adequate resolution, 

we must add additional front elements as the interface stretches and remove elements that become very 

small. The adaption of the Lagrangian front mesh is also programmed in UDF.  

 

With the new front position (𝒙𝒇
 ), the phase indicator function 𝐼(𝒙) can be updated and the distribution of 

body force due to surface tension 𝑭𝑆𝑇
 (𝒙) can also be calculated using UDF. The results are stored in the 

Fluent UDM. The ANSYS Fluent multiphase flow model for the Volume of Fluid (VOF) method is re-

configured in this study to solve the governing equations for fluid flow on the Eulerian mesh. The phase 

indicator function is used to replace the distribution of fluid volume fraction. The governing equations for 

the conversations of mass and momentum are solved in the framework of ANSYS Fluent. In this study, 

the SIMPLE algorithm is chosen to solve the coupling of pressure and velocity (phase continuity and 

momentum). With the advanced features of ANSYS Fluent flow solver, the Eulerian mesh can be of 

different types: structured or unstructured, triangle and quadrilateral for the 2D problem. The Eulerian 

mesh can also be adapted according to the gradient of the phase indicator function that is non-zero near 

the interface only. Hence, the Eulerian mesh can be dynamically refined in the region near the interface 

and coarsened at the region away from the interface. This mesh adaptation feature will significantly 

improve the modeling efficiency than using uniform Cartesian mesh.  

 

4. Computational examples  

 

As discussed in Section 2, the key components of the front tracking algorithm are the interpolation and 

distribution between the front mesh and background mesh. The accuracy of velocity interpolation onto the 

front grid and the surface tension force distribution to the background mesh is verified in a test case of a 

2D static drop. In addition, in order to illustrate the capability and effectiveness of the new modeling 

framework for the front tracking method, three computational examples are tested: (1) a single bubble 

rising in quiescent viscous liquid; (2) a buoyancy-driven liquid drop rising in a periodically constricted 

capillary tube; (3) a pressure-driven liquid droplet passing through a small throat hole in a pipe. 
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4.1 Static drop  

 

The first numerical test is to verify the accuracy of the velocity interpolation process from the Eulerian 

background mesh to the Lagrangian front grid point as described by Eq. (19). For this purpose, two 2D 

test cases with different mesh types are created as shown in Figure 2. The drop diameter is assumed to 

have a scale of unit length. Figures 2(a) shows the square Eulerian meshes with the edge length of 1/30. 

In the vicinity of the front (ℎ =  2/30), the square meshes have one-level refinement. Figure 2(b) shows 

the triangular Eulerian mesh with an average edge length about 1/10. In the vicinity of the front (ℎ =

 2/30), the triangular meshes are refined at two levels. If we patch a constant velocity field (e.g. 𝑢 =

1; 𝑣 = 0 ) onto the Eulerian mesh, the velocity on the front mesh grid (𝒖𝒇 ) can be interpolated. Table 1 

shows the comparison of the average interpolated velocity on the front grids from the Eulerian meshes 

with different types and sizes. Ideally, the interpolated velocity on the front grids should be exactly the 

constant velocity patched onto the Eulerian mesh. This means the interpolation scheme according to Eq. 

(20) should satisfy the consistency condition, i.e. the sum of the weights is equal to unity, 

∑ [𝐷(𝒙𝒇 − 𝒙 
𝑒) 𝑉𝑒(𝒙 

𝑒)]𝑒 = 1. When uniform squares are used for the Eulerian mesh, the velocity on the 

Eulerian mesh can be interpolated to the front grids exactly, which satisfies the interpolation consistency 

condition (Tryggvason et al. 2001). This shows the numerical algorithm advantage of the previous front 

tracking method where the uniform structured mesh is used. However, when triangular meshes are used 

for the Eulerian mesh or dynamic refinement is applied near the front, discretization errors are introduced 

in the velocity interpolation process. The interpolation consistency condition is not satisfied, and the 

interpolation errors are shown in Table 1. The interpolation error can be significantly reduced when the 

mesh size near the front is refined further. Alternatively, if the normalized distribution function as shown 

in Eq. (23) is applied in the velocity interpolation, the exact velocity can be obtained on the front grids no 

matter which type of the background mesh is used.   

 

       
Figure 2. Eulerian meshes of (a) squares with one-level refinement, (b) triangles with two-level 

refinement near the front. 

 

The second test is to verify the accuracy of physical variable distribution from the front grids to the 

Eulerian mesh. In this test, a static drop with a diameter of unit length (𝐷 = 1) is suspended in a quiescent 

liquid. The two fluids have the same density and viscosity with a unit value (𝜌 = 1, 𝜇 = 1). The surface 

tension coefficient also has a unit value (𝜎 = 1). In absence of gravitational force or external forces, the 

(a) (b) 
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liquid drop with interface tension should remain at rest with a pressure jump across the surface that 

exactly balances the interface tension force by the Laplace’s law,  

∆𝑝𝒕𝒉𝒆𝒐𝒓𝒚 = 𝜎𝜅.           (26) 

Here the exact curvature of the circular static drop is given as 𝜅 = 2/𝐷. The theoretical solution to the 

test case is a zero-velocity field and a pressure field that rises from the ambient pressure outside of the 

drop (𝑝𝑜𝑢𝑡 = 𝑝0) to a value of 𝑝𝑖𝑛 = 𝑝0 + 2𝜎/𝐷 inside drop. For the current test case, the ambient 

pressure is assumed to be zero 𝑝𝑜𝑢𝑡 = 0, then the pressure inside the drop is 𝑝𝑖𝑛 = 2 by the theory. 

However, due to the discretization error in the numerical method, the accurate calculations of the 

curvature and the balance between the surface tension and the pressure jump are not trivial problems. As a 

result, spurious currents arise near the drop interface as shown in Figure 3. When the refined square 

meshes are used, the spurious currents near the interface are shown in Figure 3(a). The similar “parasitic 

currents” pattern was also reported by Tryggvason et al. (2001) based on a uniform Cartesian mesh. 

Figure 3(b) shows the spurious currents generated in the simulation when the refined triangular meshes 

are used. The pressure distributions are also predicted in the simulations as shown in Figure 3. Even 

though different types of mesh are used, and the resulted parasitic current patterns are different, the 

predicted pressure fields are quite similar. Figure 4 shows a comparison of the pressure profiles from the 

drop center to the ambient liquid predicted by the simulations of different Eulerian meshes and given by 

the theory.  

 

Table 1. Comparison of velocity interpolation accuracy to the front mesh grids from the Eulerian meshes 

of different types and sizes (refinement levels) using the non-normalized distribution function. 

 

Eulerian mesh type Mesh refinement level  

Velocity interpolation error 
𝟏

𝑵
∑ (|𝒖𝒇

𝒊 − 𝒖|/|𝒖|)
𝑵

𝒊
 

Square mesh 

No refinement 

ℎ ∆𝑠⁄ = 2 
0 

Dynamic one-level refinement  

ℎ ∆𝑠⁄ = 4 
5.3 × 10−4 

Triangular mesh 

One-level refinement  

ℎ ∆𝑠⁄ = 4/3 
3.18 × 10−3 

Dynamic two-level refinement 

ℎ ∆𝑠⁄ = 8/3 
4.62 × 10−4 

 

 

For the sake of quantitative comparison, the error of the pressure jump predicted by simulation is 

evaluated as follows, 

𝐸(∆𝑝)  =
|∆𝑝𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 −  ∆𝑝𝒕𝒉𝒆𝒐𝒓𝒚|

∆𝑝𝒕𝒉𝒆𝒐𝒓𝒚
.         (27) 

As pointed out in Tryggvason et al. (2001), the parasitic current (𝒖𝑠𝑝) magnitude can be scaled with 𝜎/𝜇. 

To quantitatively estimate the spurious current magnitude level, the following error norm 𝐿(𝒖𝑠𝑝) is used  

𝐿(𝒖𝑠𝑝)  =
𝟏

𝑵
∑ (|𝒖𝒇,𝒔𝒑

𝒊 |𝜇/𝜎)𝑵
𝒊 ,         (28) 

where 𝒖𝒇,𝒔𝒑
𝒊  is the spurious current velocity interpolated to the front grid point 𝒊.  
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Figure 3. Predicted spurious current vectors near the drop interface and distribution pressure field outside 

and inside of the static drop using different Eulerian meshes (a) the refined squares and (b) the refined 

triangles.  

 

 
Figure 4. Comparison of the pressure profile inside and outside of the static drop predicted using different 

Eulerian meshes and given by the theory. 

 

Table 2. Comparison of the accuracy of the parasitic current velocity magnitude and the pressure jump 

predicted by the simulations using different mesh types and sizes (refinement levels).  

 

Eulerian mesh type Mesh refinement level  
Pressure jump  

𝐸(∆𝑝) 

Parasitic current 

𝐿(𝒖𝑠𝑝) 

Square mesh 

No refinement 

ℎ ∆𝑠⁄ = 2 
5.79 × 10−3 1.77 × 10−4 

Dynamic one-level refinement  

ℎ ∆𝑠⁄ = 4 
3.89 × 10−3 3.58 × 10−5 

Triangular mesh 

One-level refinement  

ℎ ∆𝑠⁄ = 8/3 
4.26 × 10−4 1.19 × 10−4 

Dynamic two-level refinement 

ℎ ∆𝑠⁄ = 16/3 
4.14 × 10−4 3.07 × 10−5 

 

(a) (b) 
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Table 2 shows the comparison of the normalized errors in the numerical calculations of the pressure jump 

across drop interface and the parasitic current velocity magnitude under the effects of mesh type and mesh 

size. We cannot evaluate the effects of mesh type on the simulation accuracy, but the mesh size near the 

interface has significant effects. Finer mesh near the front produces better results. The order of the 

normalized errors explored in this study is at similar levels like those reported in the literature 

(Tryggvason et al. 2001; Balcazar et al. 2016).   

 

4.2. A single bubble rising in quiescent viscous liquid  

 

The problem of a single gas bubble rising in a quiescent viscous liquid has been studied extensively both 

experimentally (Bhaga & Weber 1981) and numerically (Hua & Lou 2007). It has been accepted as the 

typical test cases used to validate a new numerical method for modeling two-phase flows. A schematic 

diagram of the computational model for a single bubble rising in a quiescent viscous liquid is shown in 

Figure 5. It is assumed that the gas bubble has a diameter of 𝐷. The gas phase has a density of 𝜌1 and a 

viscosity of 𝜇1. The quiescent viscous liquid has a density of 𝜌0 and a viscosity of 𝜇0. The gravitational 

acceleration rate is represented by 𝒈 pointing downward. An axisymmetric computational model with a 

radius of 5𝐷 and an axial length of 12𝐷 is created to simulate the buoyancy-driven rising of an 

axisymmetric bubble in the flow region with relatively low Reynolds number. The computational domain 

is divided into two zones: the inner cylindrical zone A with a radius of 2𝐷 and the outer annulus zone B. 

The gas bubble rises vertically along the central axis within zone A only, where a fine computational 

mesh can be applied. Since the gas bubble is away from zone B, the relatively coarse computational mesh 

can be applied as shown in Figure 6(b).   

 
Figure 5. Schematic illustration of the computational setup for a single gas bubble rising in a quiescent 

viscous liquid. 
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Figure 6. Different meshes: (a) uniform squares; (b) unstructured triangles; (c) adaptive quadrilaterals; (d) 

adaptive unstructured triangles are used for simulating the rising of a single gas bubble in a quiescent 

viscous liquid. 

 

Various meshing approaches as shown in Figure 6 are adopted in this study to illustrate the effects of 

computational meshes on the simulation results. The length scale of the computational domain is 

normalized by the gas bubble diameter. A uniform square mesh is applied in Case A as shown in Figure 

6(a). The whole computational domain is meshed with about 54000 squares. For Case B as shown in 

Figure 6(b), zone A is meshed with fine unstructured triangles, while zone B with coarse unstructured 

triangles. The computational domain is meshed with about 48654 triangles. For Case C as shown in 

Figure 6(c), a relatively coarse square mesh is used as the initial mesh. At the vicinity of the bubble, the 

refined mesh with two levels is applied dynamically with the bubble movement. The computational 

model consists of about 6500 squares. For Case D as shown in Figure 6(d), a relatively coarse triangular 

mesh is used as the initial mesh. The dynamically adaptive mesh is applied near the bubble front with its 

movement. The computational model consists of 8433 triangles.  

 

The physical problem for the numerical simulations is configured according to available experimental 

conditions in Bhaga and Webber (1981) so that the simulation results can be validated. In the 

experiments, the liquid viscosity was sensitive to concentration for the aqueous sugar solutions and was 

(a) (b) 

(c) (d) 
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varied from 0.82 to 28.0 poise. Over this range, the liquid density varied from only 1314 to 1390 kg/m3, 

and the surface tension from only 0.0769 to 0.08 N/m. Air bubbles were injected to the viscous liquid in a 

tank. In this paper, the experimental condition for Figure 3(c) in Bhaga and Webber (1981) is applied to 

set up the simulation case. The volume of the air bubble was about 9.3 cm3. The volume-equivalent 

diameter (𝐷) is about 0.0261 m, and it is used as the characteristic length scale. Hence, the Eotvos number 

is 116 and the Morten number 41.1. The terminal bubble rising speed is about 𝑈∞ = 0.259 𝑚/𝑠  in the 

experiment and the resulted Reynolds number is about 𝑅𝑒∞ = 7.16 as reported in the literature. For the 

simulation case, the characteristic speed is set as 𝑈 = (𝑔𝐷)1/2. The Bond number has the same value as 

the Eotvos number, 𝐵𝑜 = 𝐸𝑜 = 116, and the Reynolds number is set as 𝑅𝑒 = 13.95. The density ratio of 

the liquid to the gas is set to 𝜌𝑜 𝜌1⁄ = 1000, and the viscosity ratio to 𝜇0 𝜇1 = 100⁄  in the simulation. 

The initial bubble shape is assumed to be spherical. The initial position of the bubble center is located on 

the central axis and 2D above the bottom of the cylindrical computational domain. The gas bubble rise 

due to buoyancy and its deformation with time are simulated using the front tracking method. The 

predicted terminal bubble rising speed is about  𝑈∞ = 0.255 𝑚/𝑠.  

 

 

Experiment 

𝐸𝑜 = 116;  𝑀𝑜 = 41.1  

𝑅𝑒∞ = 7.16 ;  𝑈∞ = 0.259 𝑚/𝑠 

Simulation Case  

𝐵𝑜 = 116;  𝑅𝑒 = 13.95;  𝜌𝑜 𝜌1⁄ = 1000;   𝜇0 𝜇1 = 100⁄   

𝑈∞/𝑈 ≈ 0.505 ;  𝑈∞ ≈ 0.255 𝑚/𝑠 

 
 

  

  

 

Figure 7. Comparison of the terminal bubble shape predicted using different meshes: (a) uniform square 

mesh; (b) unstructured triangular mesh; (c) adaptive quadrilateral mesh; (d) adaptive unstructured 

triangular mesh and observed in the experiments (Bhaga & Webber 1981). 

 

(a) (b) 

(c) (d) 
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Figure 8. Comparison of (a) the terminal bubble shape and (b) the bubble rising velocity predicted using 

different meshes: uniform square mesh; unstructured triangular mesh; adaptive quadrilateral mesh and 

adaptive unstructured triangular mesh.  

 

Figure 8(a) shows the comparison of the terminal shape of the rising bubble in the quiescent viscous 

liquid observed in the experiment (Bhaga and Webber 1981) and predicted by the simulations using 

different meshing strategies: uniform square mesh; unstructured triangular mesh; adaptive quadrilateral 

mesh and adaptive unstructured triangular mesh. Here, the predicted terminal bubble shapes are illustrated 

by the Lagrangian marker grids explicitly. The terminal bubble shapes predicted by the simulations agree 

well with the experimental observation. The terminal bubble has the shape of an oblate ellipsoidal cap 

with a significant indentation at its bottom. The different meshing strategies have very minor effects on 

the terminal bubble shape. The bubble shape based on the triangular mesh without adaptive referment 

deviates from the predictions on other meshes. Figure 8(b) compares the temporal variation of bubble 

rising speed with time under the effects of different meshing strategies. The shape of the mesh grid 

(quadrilateral or triangle) has a very minor effect on the terminal bubble rising speed. The adaptive mesh 

seems to slightly under-predict the terminal bubble rising speed, compared with the fixed mesh. The 

simulation case was also studied in the work of Hua and Lou (2007), where an in-house code for flow 

solver was used. The modeling framework for this study is implemented on the platform of ANSYS 

Fluent. The terminal bubble shape and the bubble rising speed with time predicted by both models are in 

good agreement. As to the drop volume conservation, the current model has the same basic numerical 

algorithm and method to track the front as those developed in the previous work by Hua and Lou (2007). 

Therefore, the current model has a similar performance in conserving the bubble volume while rising.  

 

When the dynamic adaptive meshing is adopted, the total number of mesh grids required for discretizing 

the whole computational domain becomes much fewer. The mesh size near the front remains at a similar 

small level while the mesh size away from the front can be relatively large, as shown in Figures 6 and 7. 

A comparison of the total mesh cell numbers of different meshing strategies for the same computation 

domain and flow physical problem is shown in Table 3. The computing time (running on a single core of 

Xeon® CPU E5-2643 v4 @3.4GHz) is significantly reduced as shown in Table 3 when the required mesh 

cell number becomes fewer. Therefore, simulation efficiency is increased by adopting an adaptive mesh.  

 

 

 

(a) (b) 
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Table 3. Comparison of the mesh cell number and the CPU time used for simulating the bubble rising 

problem using different mesh types. 

 

Eulerian mesh type Number of mesh cells 
CPU time used for the 

simulation period 𝑡∗ = 0~8 

Uniform squares  54,000 5 hr 56 min 

Adaptive quadrilaterals     6,500 3 hr 14 min 

Unstructured triangles   48,654 11 hr 29 min 

Adaptive unstructured triangles     8,433 4 hr 13 min 

 

 

4.3. A buoyancy-driven liquid drop rising in a periodically constricted capillary tube  

 

 

                                           
 

Figure 9. (a) Schematic illustration of the physical problem for a buoyancy-driven rising drop in a 

periodically corrugated capillary tube. (b) A portion of the numerical model with unstructured 

quadrilateral grids; (c) A portion of the numerical model with the unstructured triangular grids. For both 

models, dynamic refining adaption is implemented near the drop surface.  

 

The motion of drops and bubbles through capillaries of constant and variable cross-section remains 

considerable fundamental importance as a pore-scale model for studying the dynamics of two-phase flow 

through porous media. The buoyancy-driven motion of viscous drops and air bubbles through a vertical 

capillary with periodic constrictions as illustrated in Figure 9(a) was studied experimentally by Hemmat 

and Borhan (1996). The flow was investigated by Olgac et al. (2006) numerically to validate the modeling 

framework of a front tracking method for complex boundary geometries, which was published in the 

work of Muradolgu and Kayaalp (2006). Since a periodically corrugated capillary tube was used in the 

experiments, it was impossible to simulate drop motion in such a corrugated capillary tube using the 

traditional front tracking method based on the uniform Cartesian mesh. Muradolgu and Kayaalp (2006) 

combined a front tracking method with a finite volume (FV) scheme and utilized an auxiliary grid 

(uniform Cartesian mesh) for computationally efficient tracking of interfaces in body-fitted curvilinear 

grids. The tracking algorithm reduced the particle tracking in a curvilinear grid to the tracking on a 

(a) (b) (c) 
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uniform Cartesian grid with a look-up table. In the current study, non-uniform adaptive unstructured 

meshes of quadrilaterals and triangles, as shown in Figure 9 (b) and (c) respectively, are applied to 

simulate the buoyancy-driven drop motion in the periodically corrugated capillary tube using the 

improved front tracking method.  

 

The physical problem and numerical model setup for a buoyancy-driven drop motion in a periodically 

corrugated capillary tube is illustrated in Figure 9(a). The left boundary in dot-dash line reflects the 

central axis of the capillary tube and drop. The capillary tube consists of a 28 cm long, periodically 

constricted cylindrical tube with seven sinusoidal corrugations. The average internal radius of the tube is 

R = 0.5 cm, and the wavelength and amplitude of the corrugations are H = 4 cm and A = 0.07 cm, 

respectively. The suspending fluids used in the experiments (Hemmat & Borhan, 1996) were various 

aqueous glycerol solutions (denoted by GW and WG) and diethylene glycol-glycerol mixtures (denoted 

by DEG and DEGG). A variety of Ucon oils and Dow Corning fluids, silicon oil, and air were used as the 

drop/bubble phase. For the current simulation case, the GW3 fluid system used in experiments is selected 

to specify the material properties. The suspending liquid is a mixture of Glycerol–water (96.2 wt%), 

which has a density of 𝜌𝑜 = 1250 kg/m3 and a viscosity of 𝜇𝑜 = 0.45 Pa ∙ s. The drop fluid is UCON-

1145, which has a density of 𝜌1 = 995 kg/m3 and a viscosity of 𝜇𝑜 = 0.53 Pa ∙ s. The surface tension 

coefficient is 𝜎 = 0.0105 N/m. The initial drop shape is assumed to be spherical with a diameter of 𝐷, 

and the initial bubble center is located at the first expansion section (about 1 cm above the bottom of the 

computational domain) of the corrugated capillary tube. The non-dimensional drop diameter is defined as 

the ratio of the equivalent spherical drop diameter to the average capillary diameter 𝜅 = 𝐷/(2𝑅). 

 

 
Figure 10. Variation of the predicted drop rising speed with different initial sizes: 𝜅 = 0.54; 𝜅 = 0.78; 

and 𝜅 = 0.92 with their leading nose positions.  

 

The simulation predicted rising speeds for the liquid drops of different sizes: 𝜅 = 0.54, 𝜅 = 0.78 and 𝜅 =

0.92 with their head front positions are shown in Figure 10. In general, for the liquid drop of small size 

rising in a capillary tube, it has fewer effects from the stationary wall and has a relatively high rising 

speed. On the other hand, when the liquid drop size is relatively large, the stationary constricted wall 
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affects strongly on the drop rising speed. As a result, the large liquid drop has a small rising speed in the 

capillary tube. When a liquid drop rises in the periodically corrugated capillary tube, the rising speed 

slows down at the throat region and goes up at the expansion region.  

 

Table 4. Comparison of the average drop rise speeds of different sizes predicted by the current model, 

reported in the simulation of Olgac et al. (2006) and observed in the experiment of Hemmat & Borhan 

(1996). 

 

Drop size 

Average drop rising speed (𝑚/𝑠)  

Current model  
Experiment of  

Hemmat & Borhan (1996) 

Simulation of  

Olgac et al. (2006) 

𝜅 = 0.54 2.15 × 10−3  2.20 × 10−3  1.94 × 10−3   

𝜅 = 0.78 1.25 × 10−3  1.15 × 10−3  1.06 × 10−3   

𝜅 = 0.92 1.28 × 10−3  1.17 × 10−3  1.07 × 10−3  

 

 

                                                    
 

Figure 11. Snapshots of the predicted rising drops of different initial sizes: (a, d) 𝜅 = 0.54; (b, e) 𝜅 =

0.78; (c, f) 𝜅 = 0.92, in the corrugated capillary tube using different mesh strategies: (a-c) unstructured 

adaptive quadrilaterals; (d-f) unstructured adaptive triangles. The gap between two successive rising drop 

positions in each column represents the distance the drop travels at fixed time intervals: (a, d) Δ𝑡 =

6.33 s; (b, e) Δ𝑡 = 10.64 s; (c, f) Δ𝑡 = 10.64 s.  

 

Table 4 compares the average rise speeds of the drops with different sizes in the corrugated capillary tube. 

The average drop rising speeds predicted by simulations agree with those measured in the experiment 

(a) (b) (c) (d) (e) (f) 
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reasonably. The discrepancies are within ±10%. The discrepancy may be caused by the different 

definitions of the average rise speed. In the experiment (Hemmat & Borhan 1996), the average rise speed 

of a drop through one period of corrugation was determined by measuring the time required to travel a 

specific distance marked on the capillary wall. The variation of a single measurement from the reported 

mean value was less than 5%. In the simulation of Olgac et al. (2006), the average rise speed was defined 

by averaging the velocity of the drop centroid in the periodic motion. In our simulation, the average rise 

speed is determined by averaging the drop leading node velocity during the periodic motion. Due to the 

significant drop deformation, the moving speeds at the leading nose and the drop centroid are different.  

 

Drop size 𝜅 = 0.54 𝜅 = 0.78 𝜅 = 0.92 

Capillary tube 

region 
Expansion Throat Expansion Throat Expansion Throat 

Experimental 

observation  

      

Drop shape 

predicted by the 

simulations 

based on 

unstructured 

adaptive 

quadrilaterals  

      

Drop shape 

predicted by 

simulations 

based on 

unstructured 

adaptive 

triangles 

      

 

Figure 12. Comparison of the predicted drop shapes at the throat and expansion regions of the corrugated 

capillary tube using different mesh grids (unstructured adaptive quadrilaterals and triangles.) and different 

initial drop sizes (𝜅 = 0.54; 𝜅 = 0.78; and 𝜅 = 0.92) with the experimental observation by Hemmat & 

Borhan (1996). 
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The snapshots of the predicted rising drops for different sizes in the corrugated capillary tube using 

different mesh strategies are shown in Figure 11. The precited evolution sequence of the shapes of 

viscous drops through the constricted channel is plotted in fixed time intervals Δ𝑡 = 6.33 s in Figure 8(a 

and d) and Δ𝑡 = 10.64 s in Figure 11(b, c, e, and f). The simulation results based on the meshing 

strategies: adaptive unstructured quadrilateral and triangle are shown in Figure 8(a, b and c) and Figure 

11(d, e and f), respectively. It seems that the different meshes used in the model have no significant 

effects on the simulation results. The simulation results of different drop sizes for 𝜅 = 0.54, 𝜅 = 0.78 and 

𝜅 = 0.92 are shown in Figure 11(a, d), Figure 11(b, e) and Figure 11(c, f), respectively. When the initial 

drop size is small (𝜅 = 0.54), the liquid drop exhibits small deformation while rising in the constricted 

capillary. When the initial drop size is relatively large (κ=0.78), the liquid drop is slightly elongated with 

a small round front and a large round bottom at the constriction throat region and returned nearly 

spherical at the expansion region of the capillary tube. For the case with large drop size (𝜅 = 0.92), when 

the drop front approaches the capillary throat, the drop head front is constricted by the converging 

capillary wall to form a small head and a nearly flat bottom. When the drop front passing the capillary 

throat, the drop is elongated significantly. When the drop enters the expansion region of the capillary 

tube, the drop heading front slows down forming a larger drop head. When the majority part of the drop 

enters the expansion section, the rise speed of the drop leading front increases. As the trailing end remains 

still within the throat long enough to cause the thinning of the lower part of the drop. When the trailing 

end passes through the throat, the trailing end is quickly retracted back to the drop body due to the surface 

tension. The drop shape evolution behavior predicted by the current model agrees qualitatively with the 

predictions by Olgac et al. (2006).   

 

The predicted bubble shapes at the throat and expansion regions of the corrugated capillary tube using 

different mesh grids (unstructured adaptive quadrilaterals and triangles.) with different initial sizes (𝜅 =

0.54; 𝜅 = 0.78; and 𝜅 = 0.92) are compared with the experimental observation by Hemmat & Borhan 

(1996) in Figure 12. Since a dynamic adaptive meshing strategy is adopted, the mesh is refined at the 

region near the liquid drop interface front only, which improves the modeling efficiency when compared 

to the other methods using fine meshes for the whole computational domain. The comparison of the 

predicted bubble shapes using different mesh grids: unstructured adaptive quadrilaterals or triangles 

shows that the mesh grids have no significant effects on the simulation results. The predicted drop shapes 

are qualitatively compared with the experimental observations in Figure 12. It shows that they are in 

reasonable agreement, especially for small drops (𝜅 = 0.54 and 𝜅 = 0.78). For the large drop (𝜅 = 0.92), 

the discrepancy of the drop shapes in the expansion region is relatively obvious. This is due to the large 

deformation of the large drop passing through the constriction throat and the fast retracting the elongated 

trailing end to the main drop body, which leads to additional challenges for the numerical model.  

 

4.4. A pressure-driven liquid droplet passing through a small throat hole in a capillary tube  

 

Understanding of the dynamics of a drop or bubble passing through a small throat hole in a capillary pipe 

has the fundamental importance to simulate the foam flow in porous media for enhancing oil recovery 

(Tsai & Miksis 1994), manipulate the droplets in microfluidic devices (Zolfaghari et al. 2017) and 

produce small emulsion/particles using microfluidics (Wang & Luo 2017; Kahouadji et al. 2018). 

Combining with the immersed boundary method, a front tracking method is developed for direct 

numerical simulations of two-phase flow in complex geometries by Zolfaghari et al. (2017). In this paper, 
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the complex geometries are handled using unstructured mesh, and the improved front tracking is applied 

to simulate a pressure-driven droplet flowing through a small throat hole in a constricted capillary tube as 

shown in Figure 13. The constricted capillary tube has a diameter of 𝑅 and a length of 12𝑅. Following the 

work of Tsai and Miksis (1994), the constricted geometry is defined as  

𝑦 = 𝑅 (1 − 0.3 [1 + cos (
𝜋𝑥

𝑅
)]),   − 𝑅 ≤ 𝑥 ≤  𝑅 ,      (29) 

where 𝑦 is the radial coordinate on the constricted boundary and 𝑥 the axial coordinate. The radius of the 

constriction throat of the capillary tube is about 0.4𝑅, and the length of the constriction is 2𝑅.  

 

 
Figure 13. Schematic illustration of the computational setup for a pressure-driven liquid droplet passing 

through a small throat hole in a capillary tube. 

 

The liquid inside the capillary tube flows in from the left boundary and flows out at the right boundary. 

The flow is assumed to be axisymmetric and the symmetry boundary conditions are applied at the 

centreline. The no-slip boundary conditions are used on the wall. The inflow at the left boundary is 

initiated instantly and maintained by imposing a fully developed velocity profile. Constant pressure is 

kept for the outflow at the right boundary. The driving fluid has a density of 𝜌𝑜 and a viscosity of 𝜇𝑜. The 

average velocity at the inlet boundary is assumed to be 𝑈. The liquid spherical droplet has an initial radius 

of 0.9𝑅 and is initially located 2𝑅 distance in the upstream from the constriction throat. The drop liquid 

has a density of 𝜌1 and a viscosity of 𝜇1.  

 

If the average velocity (𝑈) at the inlet and the capillary tube radius (𝑅) are taken as the velocity and 

length scales, respectively, the four non-dimensional parameters for the two-phase flow problems can be 

defined as  

𝑅𝑒 =
𝜌0𝑈𝑅

𝜇0
 ; 𝐵𝑜 =

𝜌0𝑈2𝑅

𝜎
 ; 𝜃 =

𝜇1

𝜇0
 ; 𝛼 =

𝜌1

𝜌0
 ,      (30) 

where 𝜃 and 𝛼 denote the viscosity and the density ratios, respectively.  

Following Tsai and Miksis (1994), the relevant non-dimensional parameters are then defined to specify 

the flow problem  

𝑅𝑒𝑐 =
2.5𝜌0𝑈𝑅

𝜇0
 ; 𝐶𝑎 =

𝜇0𝑈

𝜎
 .         (31) 

where 𝑅𝑒𝑐 corresponds to the Reynolds number at the throat of the constricted capillary tube and 𝐶𝑎 is 

the capillary number.  

 

In this study, a simulation case designed in Tsai and Miksis (1994) and Zolfaghari et al. (2017) is 

performed to verify the results of the improved front tracking method. The simulation case is defined by 

the non-dimensional numbers: 𝑅𝑒𝑐 = 0.05; 𝐶𝑎 = 0.1; 𝜃 = 0.01; 𝛼 = 1 . Hence, the four dimensionless 

parameters used for specifying the two-phase flow problem for the simulation are given as 𝑅𝑒 = 0.02; 

𝐵𝑜 = 0.002; 𝜃 = 0.01 and 𝛼 = 1. The temporal evolution of the initial spherical drop in the constricted 

capillary tube is predicted by the simulation as shown in Figure 14. Unstructured quadrilateral grids are 



23 
 

used to mesh the computational domain for the constricted capillary tube, and dynamic adaptive mesh 

refinement is implemented at the region near the drop interface front only. Figure 14(a) shows the initial 

position of the drop inside the capillary tube. As driven by the fluid flow, the heading front of the drop 

moves toward the converging side of the constriction throat, forming a sharp drop head front as shown in 

Figure 14(b). When the drop head part passes the throat and enters the diverging side of the constriction 

throat, the drop head front relaxes to round shape due to the strong surface tension force as shown in 

Figure 14(c). A small neck is formed when the drop is passing the constriction throat as shown in Figure 

14(c, d). As driven further by the liquid flows, more and more liquid inside the drop is moved to the 

downstream side of the constriction throat as shown in Figure 14(d). Finally, the whole drop passes the 

constriction throat, and it exhibits in a shape of “bullet” with slightly sharp front and relatively flat back 

as shown in Fig 14(e). The drop moves along with the flowing liquid further in the capillary tube as 

shown in Figure 14(f).  

 

  

  

  
Figure 14. Simulation predicted evolution of an initially spherical droplet in a sinusoidally constricted 

tube. The snapshots are taken at non-dimensional times of (a) 𝑡∗ =  0 ; (b) 𝑡∗ =  0.25; (c) 𝑡∗ =  0.75 ; (d) 

𝑡∗ =  1.25 ; (e) 𝑡∗ =  1.75 ; (f) 𝑡∗ =  2.   

 

  

  

Figure 15. Comparison of the predicted droplet evolutions in the sinusoidally constricted tube at the non-

dimensional times of (a) 𝑡∗ = 0.25; (b) 𝑡∗ = 0.75; (c) 𝑡∗ = 1.25 ; (d) 𝑡∗ = 1.75 by the current simulation 

(represented by the solid lines) and by the simulation of Zolfaghari et al. (2017) (represented by the circles).  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(a) (b) 

(c) (d) 
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The predicted droplet evolutions in the constricted capillary tube by the current simulation and the simulation of 

Zolfaghari et al. (2017) are compared at the non-dimensional times of (a) 𝑡∗ = 0.25; (b) 𝑡∗ = 0.75; (c) 

𝑡∗ = 1.25 ; (d) 𝑡∗ = 1.75 as shown in Figure 15. The simulation results by both methods are in good 

agreement. This verifies that newly developed modeling algorithm for front tracking method based on the 

adaptive unstructured mesh can produce reasonably good results as other methods.  

 

5. Conclusions  

 

A novel numerical algorithm and modeling framework of the front tracking method based on adaptive 

anisotropic unstructured meshes is presented for simulating two-phase interfacial flows. The new 

numerical algorithm extends the application of the front tracking method for the two-phase interfacial 

flow problems with complex boundary geometries, which can be handled conveniently using unstructured 

mesh, but it is difficult for the traditional front tracking method to use uniform Cartesian mesh. The new 

modeling framework is implemented on the platform of commercial CFD package ANSYS Fluent 

through the User Defined Functions, which makes the modeling by the front tracking method access the 

advanced flow solving features in the commercial package. For example, the super feature of dynamic 

adaptive mesh refinement in ANSYS Fluent is utilized to refine the mesh near the region of the interface 

front only, which reduces the total number of mesh grids used in the simulation and increases the 

simulation efficiency. The advanced features of the new algorithm and framework are demonstrated 

through three two-dimensional simulation test examples: a gas bubble rising in a quiescent viscous liquid, 

a buoyancy-driven liquid droplet rising in a periodically constricted capillary tube, and a pressure-driven 

droplet passing through a small throat hole in a pipe. The simulation tests indicate that the unstructured 

mesh types (quadrilateral or triangle) have no significant effect on the simulation results. The dynamic 

adaptive mesh refinement requires fewer grids for meshing the computational domain and needs less 

computing time. The simulation tests focus on predicting the evolution of droplet/bubble shape under 

different two-phase flow scenarios. The accuracy of the simulation results is demonstrated by comparing 

with those observed in experiments and is verified by the results of other simulations. The results are in 

reasonable agreements.  
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