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Abstract 

A model has been developed for the prediction of flow regime transitions, liquid holdup and 

pressure gradient for horizontal and low-inclination upward two-phase gas-liquid flow in annuli. 

The model is based on the hydrodynamic behaviour of slug flow and closure relationships 

developed for full pipe flow, which are adapted to account for the annulus diameter ratio and 

eccentricity. This includes the improvement of the model for the prediction of the single-phase 

friction factor in annuli. Model predictions are compared with the experimental data presented in  

Ibarra et al. (2018) and the model shows good agreement for gas-water and gas-oil flow in both 

concentric and fully eccentric annuli.  
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1 Introduction 

The prediction of flow regime transitions, liquid holdup and pressure gradient in multiphase flows 

in annuli is critically important for several processes such as well drilling and intervention in long 

horizontal wells. The development of reliable predictive tools would ensure safer, and more 

efficient and profitable system design and operations. The experimental data documented in Ibarra 

et al. (2018) constitute a benchmark for developing and validating models, in particular with regard 

to the up-scaling performance of the models when up-scaled from laboratory to real field 

conditions. 

 A detailed literature survey reveals that there exist no flow models which were developed 

for horizontal or low-inclination two-phase flow in annuli. In this paper, we present our mechanistic 

approach to predict the transition to dispersed-bubble and slug flow in annuli. The model estimates 

the total liquid holdup and pressure gradient for both concentric and eccentric annuli. The model 

predictions are also compared with the experimental data presented in Ibarra et al. (2018). 

 The motivation behind this study is the fact that existing models for flows in annuli have 

been developed for flow in vertical configurations. These models are also based on conventional 

pipe data (Taitel et al., 1980; Mishima and Ishii, 1984). This means that they can work and are 

applicable for two-phase full pipe flows even though they are categorised as flow model for annuli. 

Kelessidis and Dukler (1989) acquired experimental data on vertical air-water flow for concentric 

and eccentric annuli and developed a model based on the Taitel et al. (1980) approach. They 

developed the model for concentric annulus and then introduced slight modifications to the model 

to account for the effect of annulus eccentricity. Using the comparison between the data and the 

model, they reported that the degree of eccentricity has only minor effect on the flow regime 

transitions. Caetano et al. (1992a, b) developed a mechanistic model for bubble, slug and annular 

flows in annuli. The model is essentially a two-phase flow model and accounts for the effect of the 

inner pipe and degree of eccentricity. This hydrodynamic model is found to be predicting the flow 

regime transitions, liquid holdup and pressure gradient within quantifiable uncertainty bounds. 
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Additional models for two-phase gas-liquid flows in vertical and inclined annuli can be listed as 

follows: Hasan and Kabir (1992), Das et al. (1999), Sun et al. (2004), Yu et al. (2010), and Julia 

and Hibiki (2011). 

 Rest of the current paper is organised in six sections: Flow regime transition algorithm and 

the pressure gradient model are presented in Section 2 and Section 3, respectively. Section 4 

discusses the sensitivity analysis of the model in terms of liquid holdup and pressure gradient. 

Section 5 contains the relations required for the closure of the model. Finally, Section 6 presents 

the main conclusions of this study. 

2 Flow Regime Transition Algorithm 

Schematic in Figure 1 displays the parameters used for characterising flow regime transitions and 

slug flow dynamics. The transition from a slug flow to a dispersed-bubble flow can be determined 

by assuming that the liquid slug accommodates the same fraction of gas as the dispersed-bubble 

flow at the transition boundary with the same mixture velocity (Barnea and Brauner, 1985; Zhang 

et al., 2003a). Thus, transition to dispersed-bubble flow occurs when 

(1 − 𝐻LS)𝑈M > 𝑈SG, (1) 

where UM is the mixture velocity, USG is the superficial gas velocity and HLS is the slug liquid 

holdup which can be estimated using the Gregory et al. (1978) correlation, 

𝐻LS =
1

1 + (
𝑈M

8.66
)

1.39. 
(2) 

 The implementation of the Gregory et al. (1978) correlation for the estimation of the slug 

liquid holdup introduces an empirical approach to the transition criterion to dispersed-bubble flow. 

The performance of the Zhang et al. (2003a) mechanistic model for the estimation of HLS was 

explored in order to keep the mechanistic approach in the transition criterion. However, it was 

found that superficial liquid velocities at the transition boundary from the Zhang et al. (2003a) 

model were similar to those obtained using the Gregory et al. (1978) correlation, especially at low 
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USG. Moreover, there are no HLS models developed for flow in annuli in the literature neither studies 

to verify the applicability of models developed for full pipe systems. 

 

Figure 1: Slug flow model. 

 Analysis of the slug flow dynamics starts with the continuity equations for fully-developed 

slugs in a slug unit, lU. These equations are based on conservation of mass and independent of the 

annulus configuration. In this formulation we assume no entrainment of liquid droplets in the gas 

pocket (Taylor bubble), no entrainment of gas bubbles in the liquid film, and no slippage between 

the liquid and the gas bubbles in the liquid slug (i.e. UG,slg = UL,slg = UM). This approach is adapted 

from the unified model via slug dynamics developed by Zhang et al. (2003b) for conventional pipe 

flow. 

 The continuity equations for the liquid film and the relation for the slug unit are 

𝐻LS(𝑈T − 𝑈M) = 𝐻LF(𝑈T − 𝑈F), (3) 

𝑙U𝑈SL = 𝑙S𝐻LS𝑈M + 𝑙F𝐻LF𝑈F, (4) 

where UT is the translational or Taylor bubble velocity, HLF is the liquid holdup in the film region, 

UF is the velocity of the liquid film, lS is the slug length, and lF is the film length. 

 Similarly, the continuity equations for the gas phase can be written as: 

(1 − 𝐻LS)(𝑈T − 𝑈M) = (1 − 𝐻LF)(𝑈T − 𝑈G), (5) 

𝑙U𝑈SG = 𝑙S(1 − 𝐻LS)𝑈M + 𝑙F(1 − 𝐻LF)𝑈G. (6) 

 Equating lU from Eq. (4) and (6) yields 



Two-phase gas-liquid flow in annuli. Part II Ibarra et al., 2018 

Page 6 of 25 

𝑙S

𝑙F
=

𝑈SG
𝑈SL

𝐻LF𝑈F − (1 − 𝐻LF)𝑈G

(1 − 𝐻LS)𝑈M −
𝑈SG

𝑈SL
𝐻LS𝑈M

. (7) 

 The combined (gas-liquid) momentum equation for the film region (i.e. the equation 

obtained by equating the pressure drop terms in the gas and liquid momentum equation) can be 

expressed as follows: 

𝜌L(𝑈T − 𝑈F)(𝑈M − 𝑈F) − 𝜌G(𝑈T − 𝑈G)(𝑈M − 𝑈G)

𝑙F
− 𝜏F

𝑆F

𝐴F
+ 𝜏G

𝑆G

𝐴G

+ 𝜏i𝑆i (
1

𝐴F
+

1

𝐴G
) − (𝜌L − 𝜌G)𝑔 sin 𝜃 = 0, 

(8) 

where g is the gravitational acceleration, τ is the shear stress, A is the cross-sectional area, S is the 

perimeter for: (G) gas phase, (F) film or liquid phase, and (i) gas-liquid interface. The cross-

sectional area of the liquid (film) and gas phase are defined as AF = HLF AP and AG = (1−HLF) AP, 

respectively, where AP represents the cross-sectional area of the annulus pipe. The first term on the 

L.H.S. of Eq. (8) corresponds to the momentum exchange between the slug region and the film 

region, which is key in the determination of the film velocity and holdup for the slug flow 

modelling. 

 At the transition from slug flow to separated flows (e.g. stratified), the film length becomes 

infinitely long (lF→∞). Firstly, Eq. (7) along with Eqs. (3) and (5) are used to obtain the liquid film 

holdup from the continuity relations through the slug unit, HLF, resulting in 

𝐻LF =
𝐻LS(𝑈T − 𝑈M) + 𝑈SL

𝑈T
.  (9) 

 Secondly, the combined momentum equation (Eq. (8)), in which the momentum exchange 

term disappears, is solved to obtain the liquid holdup when lF→∞, denoted by HLF(lF→∞). Finally, 

the transition to slug flow is defined using the minimum slip criterion, which states that at the 

transition boundary HLF = HLF(lF→∞). Figure 2 shows the flow chart used for calculation of the flow 

regime transitions for a given flow condition. 
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Figure 2: Flow regime transitions flow chart. 

 Figure 3 and Figure 4 show the performance of the proposed flow regime transition model 

for pipe inclinations of 0° and 4°, respectively. The transition from rolling waves to slug flow is 

reasonable well predicted by the model, with a slight under-prediction, for all flow combinations, 

annulus configurations, and pipe inclinations. This underprediction can be related to the interfacial 

shear stress approach used in our model, i.e. the model by Andritsos and Hanratty (1987) (as 

presented in Section 5.4) which does not consider high amplitude rolling waves and is based on 

low pressure data. 
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Figure 3: Flow regime transitions at a horizontal pipe for concentric (a and b) and fully eccentric 

annuli (c and d) for gas-water and gas-oil flow shown in the left and right column of panels, 

respectively (SG: slug flow; T-S/R: transition slug-rolling waves; RW: rolling waves; CH: churn 

flow; T-DB: transition to dispersed-bubble; DB: dispersed bubble flow). 

 Note that the transition slug to churn flow has not been included in this model. This would 

be of special interest for gas-water flows in a concentric annulus, based on the range of velocities 

studied in this work, and/or for gas-oil flows at high gas and liquid velocities. However, the early 

transition to churn flow in concentric gas-water flows (for a given USL) observed in the experiments 

might be attributed to the wetting properties of the pipe material for which further analysis must 

be performed to reach a reasonable conclusion. 

 The transition to dispersed-bubble flow is based on the slug liquid holdup which in turn is 

adopted from the Gregory et al. (1978) correlation. This results in a slight over-prediction for those 

cases where dispersed-bubble flow was observed, i.e. concentric gas-water (0°) and eccentric gas-

oil (0° and 4°). The current test matrix (based on the maximum USL values studied) does not allow 
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us to reach a conclusive statement on the performance of this correlation as a criterion for the 

transition to dispersed-bubble flow. 

 

Figure 4: Flow regime transitions at a pipe inclination of 4° for concentric (a and b) and fully 

eccentric annuli (c and d) for gas-water and gas-oil flow shown in the left and right column of 

panels, respectively. 

 This model does not include the effect of liquid entrainment in the gas pocket for slug flow 

neither gas entrainment in the liquid film. No data is available on the entrainment fraction in 

annulus flows. Moreover, the closure relationships, such as the interfacial friction factor and the 

wetted perimeter are based on full pipe development adapted for the annulus geometry. These 

correlations need to be further validated or new expressions ought to be developed based on 

detailed experimental data. For example, X-ray tomography can be useful since it provides 

information on the distribution of the phases across the cross-section of the annulus pipe. This can 
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further be used to determine the shape of the film interface in the azimuthal direction and the wetted 

fraction. 

 Figure 5 shows comparisons of the predicted total liquid holdup, 

HL = HLS(lS/lU)+HLF(1−lS/lU), and the experimental data. Table 1 tabulates the absolute average 

relative error in percent, e(%),  

𝑒(%) =
1

𝑁
∑

|𝑋model,i − 𝑋data,i|

𝑋data,i

𝑁

𝑖=1

 × 100, (10) 

where variable of interest is denoted by X and N represent the number of samples of the statistical 

variable.  

 The absolute error of the model taking all flow regimes tested in this study is lower than 9% 

for any flow combinations, annulus configurations, and pipe inclinations. The best agreement 

between the model and measurement data is observed for slug flow. This can be attributed to the 

fact that origin of the model is based on the slug flow dynamics, thus, most of the phenomena that 

are encountered in this type of flows have been addressed. On the other hand, predictions for 

separated flows, i.e. rolling waves (RW) and transition slug to rolling waves (T-S/R), show the 

highest deviation from the measured liquid holdup data. This corresponds to the scattered 

prediction points at low HL in Figure 5. This is not unexpected as the model does not account for 

the types of waves observed in the rolling wave regime. For churn flow, the no slippage criterion 

(i.e. UG,slg = UL,slg = UM) might not be applicable due to the chaotic behaviour of the flow, for which 

the bubble velocity is lower than that for slug flow. This leads to the observed low accuracy of the 

total liquid holdup predictions for churn flow. 
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Figure 5: Total liquid holdup model performance with experiments for all data at θ = 0° (top row) 

and θ = 4° (bottom row). 

Table 1: Total liquid holdup absolute average relative error for gas-water (G-W) and gas-oil (G-

O) concentric and fully eccentric annuli (all corresponds to the entire data inclusive slug, churn and 

separated flows). 

  e (%) 

θ Regimes 
Concentric Eccentric 

G-W G-O G-W G-O 

0° 

All 6.4 4.3 7.0 8.6 

Slug 4.5 3.1 4.8 6.1 

Churn 7.7 14.4 − 12.4 

RW / T-S/R 12.7 8.5 20.9 23.5 

4° 

All 7.4 4.4 6.8 7.0 

Slug 3.8 3.6 6.3 6.7 

Churn 10.2 11.2 − − 

RW / T-S/R 9.0 8.9 25.6 19.9 

3 Modelling Pressure Gradient 

The determination of the pressure gradient in the slug unit first involves the estimation of the slug 

and film characteristics. The liquid film (or Taylor bubble region) characteristics are obtained 

solving simultaneously the continuity equations (Eq. (3) to (6)) and the momentum equation (Eq. 
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(8)) for UF, UG, and HLF. The slug liquid holdup, HLS, and the Taylor bubble velocity, UT, are 

estimated using closure relationships as described below. Note that the momentum exchange term 

in Eq. (8) requires calculation of the film length, lF. This can be obtained from Eq. (7) with the slug 

length, lS, estimated from a closure relation of Zhang et al. (2003a) (see Section 5 for further 

details). Finally, the slug unit pressure gradient is calculated as follows: 

[
∆𝑃

∆𝐿
]

𝑙U

= − [
𝜏slg𝑆P

𝐴P
+ 𝜌slg𝑔 sin 𝜃]

𝑙S

𝑙U

− [
𝜏G𝑆G + 𝜏F𝑆F

𝐴P
+ (𝜌L𝐻LF + 𝜌G(1 − 𝐻LF))𝑔 sin 𝜃] (1 −

𝑙S

𝑙U
), 

(11) 

where τslg is the slug shear stress (see Section 5.2), ρslg is the slug mixture density (see Section 5.3), 

SP is the annulus pipe perimeter, SP = π(D1+D2), and the slug fraction, lS/lU, is calculated from Eq. 

(4) and (6). 

 Figure 6 and Table 2 show the performance of the model predictions for slug flow as 

compared with the measured total pressure gradient data. The good agreement between the model 

and the data is present across the cases covered in this study with an exception where we have 

observed our model under-predicting for when the gas-water flow through the concentric annulus. 

Based on our experimental observations in Ibarra et al. (2018) from the analysis of high-speed 

imaging and probability density function of the cross-sectional holdup data recorded by a broad-

beam gamma densitometer, gas-water concentric annulus flows showed a non-consistent behaviour 

with irregular slug characteristics. As discussed in Ibarra et al. (2018), this can be attributed, in 

part, to the wettability of the pipe that has a larger effect in the concentric annulus configuration. 
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Figure 6: Total pressure gradient model performance with experiments for slug flow data at θ = 0° 

(top row) and θ = 4° (bottom row). 

Table 2: Total pressure gradient absolute average relative error for gas-water (G-W) and gas-oil 

(G-O) slug flow in concentric and fully eccentric annuli. 

 e (%) 

θ 
Concentric Eccentric 

G-W G-O G-W G-O 

0° 22.9 4.7 9.7 12.7 

4° 12.1 5.4 4.7 4.1 

4 Model Sensitivity Analysis 

 A sensitivity analysis has been performed to determine which parameters have more weights 

on the model output (i.e. the total liquid holdup and/or the pressure gradient). The deviation of the 

model from a corresponding base case as a function of a specific parameter is calculated by varying 

an individual parameter while any others remain constant. The base case is defined as the case 

where all parameters remain constant (i.e. no variation) which are already presented in Figure 5 

and Figure 6. The most dominant five parameters have been selected for the sensitivity analysis: 

USG, USL, D1, D2, and E, covering both inlet (superficial liquid and gas flow velocities) and 

boundary (pipe diameter ratio and eccentricity) conditions. Closures such as the slug bubble 
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velocity and shear stresses (e.g. τF, τG, τi) are recalculated accordingly based on the new value of 

the dominant parameters. These parameters are varied between ±5% of the original value used to 

compute the base case. The deviation of the model is calculated, for all flow conditions at each 

flow configuration, as the percentage average relative error of the results, R, to the base case, 

Deviation(%) =
1

𝑁
∑

𝑅 i − 𝑅base,i

𝑅base,i

𝑁

𝑖=1

 × 100, (12) 

where N is the number of flow conditions. Figure 7 and Figure 8 shows the average deviation for 

the total liquid holdup and pressure gradient, respectively, for gas-oil flows in concentric horizontal 

annulus. 

 

Figure 7: Model total liquid holdup sensitivity analysis for gas-oil flows in concentric horizontal 

annulus (error bars represent the standard deviation). 

 The sensitivity analysis indicates that variations of the annulus eccentricity have minor 

influence on the model output such as total liquid holdup and pressure gradient. This is also the 

case for the liquid holdup when we tested variations in the pipe diameter (D1 or D2). As expected, 

the total pressure gradient is found to be very much dependent on changes in D1 or D2 with 

deviations between −11% to 14% from the base case. This can further be analysed in terms of the 

pipe diameter ratio, K, where the pressure gradient decreases with decreasing K (negative deviation 

values for variations of D1(%) > 0 and D2(%) < 0 in Figure 8). The opposite behaviour is observed 
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for an increase in K, i.e. pressure gradient increases from the base case (positive deviation values 

for variations of D1(%) < 0 and D2(%) > 0 in Figure 8). Referring to the flow rates, variations in 

the superficial velocities result in deviations from the base total liquid holdup within ±3%. 

Deviations in the pressure gradient are slightly higher, especially for variations in USL as the liquid 

phase contributes more to the frictional losses than the gas phase. 

 

Figure 8: Model total pressure gradient sensitivity analysis for gas-oil flows in concentric 

horizontal annulus (error bars represent the standard deviation). 

 A sensitivity analysis was also performed on the coefficients for the wetted fraction and 

interfacial friction factor (see Section 5.1 and 5.4, respectively). These coefficients, a for the wetted 

fraction and b1 and b2 for the interfacial friction factor, were introduced to account for the annulus 

configuration. Results indicate that variations of each of these coefficients between ±10% of the 

base case have little effect on the total pressure gradient (see Figure 9) and insignificant influence 

on the total liquid holdup. 

 

 



Two-phase gas-liquid flow in annuli. Part II Ibarra et al., 2018 

Page 16 of 25 

 

Figure 9: Sensitivity analysis of the predicted total pressure gradient with respect to wetted fraction 

and interfacial friction factor coefficient for gas-oil flows in concentric horizontal annulus (error 

bars represent the standard deviation). 

5 Closure relationships 

5.1 Geometrical considerations and wetted fraction 

The wetted and interfacial perimeters in the film region are required in the calculation of the 

combined momentum equation and closure relationships. For a flat interface in the azimuthal 

direction, these perimeters are formulated as functions of the annulus diameter ratio, eccentricity, 

and the height of the liquid film, hF, as shown Figure 10. In general, three cases result from the 

relative position of the film height with respect to the bottom of the inner pipe, h* = (D1−D2)/2+δ, 

where δ is the distance between pipe centres. Note that the degree of eccentricity, E, varies from 

−1 (fully eccentric at the bottom of the outer pipe) to 1 (fully eccentric at the top of the outer pipe). 

 

Figure 10: Film region geometrical parameters for a flat interface in the azimuthal direction. 

 The film and interfacial perimeters for a full pipe and a flat interface in the azimuthal 

direction can be calculated from 
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𝑆F_flat_FP = 𝐷 [𝜋 − 𝑐𝑜𝑠−1 (2
ℎ

𝐷
− 1)], (13) 

𝑆i_flat_FP = 𝐷√1 − (2
ℎ

𝐷
− 1)

2

, 

(14) 

where h is the height of the liquid film and D is the diameter for a generic full pipe system. The 

selection of these variables (h and D) for an annulus pipe configuration is based on the three cases 

shown in Figure 10 and presented in Table 3. 

Table 3: Film and interfacial perimeter in annulus for a flat interface (SF_flat and Si_flat, respectively). 

 hF ≤ h* h* < hF < h*+D2  hF ≥ h*+D2 

Film SF_flat = SF_flat_FP(hF/D1) 
SF_flat = SF_flat_FP(hF/D1) 

+SF_flat_FP((hF − h*)/D2) 

SF_flat = SF_flat_FP(hF/D1)+πD2 

Interfacial Si_flat = Si_flat_FP(hF/D1) 
Si_flat = Si_flat_FP(hF/D1) 

−Si_flat_FP((hF − h*)/D2) 

Si_flat = Si_flat_FP(hF/D1) 

 

The liquid film tends to wet the pipe as the gas velocity increases. The gas-liquid interface 

becomes concave until the liquid wets the entire pipe perimeter. We implement the wetted fraction, 

φ, correlation developed by Grolman and Fortuin (1997) for pipe flow in this work and modified 

it for annulus configurations as follows: 

𝜑 = 𝜑flat (
𝜎wat−gas

𝜎
)

0.15

+
𝜌G

(𝜌L − 𝜌G) cos 𝜃
(

𝜌L𝑈SL
2 𝐷h

𝜎
)

0.25

(
𝑈SG

2

(1 − 𝐻LF)2𝑔𝐷h
)

0.8

𝑎2.1, 

(15) 

where φflat is the wetted fraction for a flat interface defined as φflat = SF_flat/[π(D1+D2)] and a is a 

coefficient to account for the annulus configuration defined as a = (1−K)(1−|E|/4). This coefficient, 

introduced in the velocity terms in the original Grolman and Fortuin (1997) expression, was 

developed from regression analysis of the pressure gradient and liquid holdup data as well as the 

performance of the transition between rolling waves and slug flow.  

 The final film and gas perimeter (i.e. SF and SG) is then calculated using the wetted fraction 

from Eq. (15), SF = φSP and SG = (1−φ)SP. This wetted fraction modifies the interfacial perimeter 
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which varies between a minimum value, Si_flat, given for a flat interface in the azimuthal direction 

and a maximum value given for φ = 1 which corresponds to fully-wetted. However, there are cases 

where the minimum value of Si is not given by a flat interface configuration and the evolution of 

the interfacial perimeter is not fully understood. In this work, we consider the interfacial perimeter 

as Si = Si_flat for all wetted fraction values in concentric and eccentric annulus flows. 

5.2 Shear stress 

Shear stresses for the slug, film region, gas region, and interface are defined as 

𝜏slg =
1

2
𝑓slg𝜌slg𝑈M

2 ,  
(16) 

𝜏F =
1

2
𝑓F𝜌F𝑈F

2,  (17) 

𝜏G =
1

2
𝑓G𝜌G𝑈G

2,  
(18) 

𝜏i =
1

2
𝑓i𝜌G|𝑈G − 𝑈F|(𝑈G − 𝑈F),  

(19) 

 where f is the friction factor. 

5.3 Wall friction factor 

For the stratified region, the film and gas Fanning friction factor at the wall for laminar flows is 

estimated as f = 16/Re and for turbulent flows using the Zigrang and Sylvester (1982) correlation  

(see Eq. (A.2) for further details). The Reynolds numbers and hydraulic diameters for the friction 

factor calculation for the film and gas region are given as 

𝑅𝑒F =
𝜌L𝑈F𝐷hF

𝜇𝐿
, 𝐷hF =

4𝐴F

𝑆F
; (20) 

𝑅𝑒G =
𝜌G𝑈G𝐷hG

𝜇G
, 𝐷hG =

4𝐴G

𝑆G + 𝑆i
. (21) 

  In the liquid slug, the wall friction factor (Fanning), fslg, is estimated using the approach 

presented in Appendix A for single-phase flows in concentric and eccentric annuli based on the 

mixture Reynolds number 
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𝑅𝑒slg =
𝜌slg𝑈M𝐷h

𝜇L
,  (22) 

where the slug mixture density is defined as 

𝜌slg = 𝜌L𝐻LS + 𝜌G(1 − 𝐻LS).  (23) 

 For the transitional region (1700 < Re < 3000), the wall/slug friction factor is interpolated 

between the laminar and turbulent values. 

5.4 Interfacial friction factor 

Interfacial friction factor, fi, is needed for computing interfacial shear stress. Taitel and Dukler 

(1976) suggested that fi = fG for stratified-smooth flows. Cohen and Hanratty (1968) proposed a 

value of fi = 0.0142 for stratified-wavy flows with small amplitude waves. In this work, we use a 

modified Andritsos and Hanratty (1987) correlation where the term hF/D has been replaced by the 

holdup in the liquid film region, HLF, and coefficients adapted for the annulus configuration as 

follows: 

𝑓i = 𝑓G, USG < USG,t; 

(24) 

𝑓i = 𝑓G [1 + 𝑏1√𝐻LF (
𝑈SG

𝑈SG,t
− 1)], USG ≥ USG,t; 

where the critical gas velocity, USG,t, is defined as 

𝑈SG,t = 𝑏2√
𝜌G,ATM

𝜌G
.  (25) 

 Here, we modified coefficients b1 and b2 (given in SI units, m/s) to account for the annulus 

configuration. In our formulation, b1 = 15/[(1−K/4)(1−|E|/4)] and b2 = 5(1−K).  

 Tzotzi and Andritsos (2013) modified the model by Andritsos and Hanratty (1987) by 

categorising stratified flow into three sub-regimes: (i) smooth region, (ii) two-dimensional (2-D) 

wave region with small amplitude, short wavelength, and (iii) a wavy region with large amplitude, 

irregular waves, called Kelvin-Helmholtz (K-H) waves. However, it was found that this model 
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results in a larger under-prediction of the slug/rolling waves transition than our proposed approach 

(adapted for flow in annuli). 

5.5 Slug bubble velocity 

The translational or Taylor bubble velocity in slug flow is predicted using the approach presented 

by Ibarra and Nossen (2018) for flow in annuli. The bubble velocity can be modelled using the 

Nicklin et al. (1962) expression based on drift flux, 

𝑈T = 𝐶O𝑈M + 𝑈d, (26) 

where CO is the distribution parameter and Ud is the drift velocity of the bubble. 

 For mixture Froude numbers, FrM, lower than a critical value, FrM < FrM,C ≈ 3.3, where  

𝐹𝑟M =
𝑈M

√𝑔𝐷h(1 − 𝜌G 𝜌L⁄ )
,  (27) 

CO and Ud are estimated using the Smith et al. (2015) development as follows:  

𝐶O = max(1.05, 𝐶O,f) + 0.15 sin2𝜃, (28) 

where CO,f is based on the Reynolds number as developed by Nuland (1998)  

𝐶O,f = 𝐶O,lam = 2, Re ≤ 1700;  

𝐶O,f = 𝐶O,turb =
(𝑛 + 1)(2𝑛 + 1)

2𝑛2
, Re ≥ 3000; (29) 

𝐶O,f = 𝑤𝐶O,turb + (1 − 𝑤)𝐶O,lam , 1700 < Re < 3000;  

with 

𝑤 =
𝑅𝑒slg − 1700

3000 − 1700
. (30) 

 The factor n represents the inverse exponent in the power law velocity profile for turbulent 

flow based on the von Karman constant (κ = 0.41) 

𝑛 = 𝜅√2 𝑓slg⁄ .  (31) 

 The drift velocity is estimated as 
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𝑈d = (𝐹𝑟v sin 𝜃 + 𝐹𝑟h cos 𝜃)√𝑔𝐷h(1 − 𝜌G 𝜌L⁄ ), (32) 

where Frv = 0.351 and Frh = 0.542. 

 For FrM ≥ FrM,C, the distribution parameter and the drift velocity are a function of the 

annulus eccentricity, 

𝐶O = 1.38 (1 −
|𝐸|

18
), (33) 

𝑈d = 0.25(|𝐸|)√𝑔𝐷h(1 − 𝜌G 𝜌L⁄ ). (34) 

5.6 Slug length 

The slug length can be estimated using the expression proposed by Zhang et al. (2003a) using the 

hydraulic diameter of the annulus pipe 

𝑙S = (32 cos2 𝜃 + 16 sin2 𝜃)𝐷h.  (35) 

6 Conclusions 

A model to predict the flow regime transitions, liquid holdup and pressure gradient for horizontal 

and low-inclination two-phase flow in annuli has been developed. The model is based on slug flow 

dynamics where the transition to dispersed-bubble is given by the hypothesis that the gas in the 

liquid slug is dispersed as bubbles and the transition to slug flow is defined using the minimum slip 

criterion. The experimental data (average holdup and pressure gradient) of Ibarra et al. (2018) are 

used to test the model showing good agreements for both concentric and fully eccentric annuli with 

the exception of pressure gradient predictions in horizontal concentric gas-water flow where an 

under-prediction of about 23% of the absolute average relative error is observed. This might be 

attributed to the irregular slug characteristics which dominate the flow regime map for the flow 

conditions studied. 

 The performance of the closure relationships directly affects the model predictions. For 

example, the calculation of the total liquid holdup in the slug unit is based on the slug liquid holdup 

(see Taitel and Barnea, 1990; for slug flow and Soedarmo et al., 2018; for churn flow). In our work, 
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the Gregory et al. (1978) correlation, which was originally developed for full pipe flow, has been 

used to calculate the holdup in the liquid slug. The validity and applicability range of this 

correlation must therefore be validated with detailed data for flow in annuli. This is also the case 

of closures, such as, the interfacial friction factor, the wetted fraction, and the slug length, which 

have been modified to account for the annulus geometry, i.e. pipe diameter ratio and eccentricity. 

Finally, it is recommended to perform studies on the bubble or structure velocity in churn flows in 

annuli as this directly affects the calculation of the total liquid holdup in the slug unit. 
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Appendix A. Single-phase friction factor 

The friction factor in concentric and eccentric single-phase annulus flows can be estimated using 

the Caetano et al. (1992a) model, which was modified and validated by Ibarra and Nossen (2018). 

In this model, a geometry parameter, G, modifies the full pipe friction factor, fFP, as follows 

𝑓CON/ECC = 𝑓FP(𝐺CON/ECC)
𝑐
, (A.1) 

where the full pipe Fanning friction factor for laminar flows is estimated as fFP = 16/Re. For 

turbulent flows the Zigrang and Sylvester (1982) correlation can be used 

1

√𝑓FP

= −4 log {
𝜖

3.7𝐷h
−

5.02

𝑅𝑒
log [

𝜖

3.7𝐷h
−

5.02

𝑅𝑒
log (

𝜖

3.7𝐷h
+

13

𝑅𝑒
)]}, (A.2) 

where ϵ is the roughness of the pipe and the Reynolds number is defined as Re = ρUDh/μ.  

 For concentric annulus, the geometry parameter is 

𝐺CON = 𝐾0

(1 − 𝐾)2

1 − 𝐾4

1 − 𝐾2 −
1 − 𝐾2

ln(1 𝐾⁄ )

, 
(A.3) 
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where the empirical correction factor K0 has been introduced to obtain a better performance for a 

wider range of the diameter ratio and is given by  

𝐾0 = max(0.68, 𝐾1), (A.4) 

𝐾1 = 1 − |0.56 − 𝐾|. (A.5) 

 For eccentric annulus, the geometry parameter is 

𝐺ECC =
(1 − 𝐾)2(1 − 𝐾2)

4𝛷 sinh4 𝜂0
, 

(A.6) 

where 

cosh 𝜂0 =
𝐾(1 − 𝐸2) + (1 + 𝐸2)

2𝐸
, (A.7) 

cosh 𝜂1 =
𝐾(1 + 𝐸2) + (1 − 𝐸2)

2𝐾𝐸
, 

(A.8) 

𝛷 = (coth 𝜂1 − coth 𝜂0)2 [
1

𝜂0 − 𝜂1
− 2 ∑

2𝑗

𝑒2𝑗𝜂1 − 𝑒2𝑗𝜂0

∞

𝑗=1

]

+
1

4
(

1

sinh4 𝜂0
−

1

sinh4 𝜂1
). 

(A.9) 

 Finally, the exponent c for laminar flows is equal to unity and for turbulent flows  

𝑐 = 0.45𝑒−(𝑅𝑒−3000) 106⁄ . (A.10) 
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