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Abstract

The quantification of the dose rate and the composition of the dose in the
vicinity of supermirror coated guides is essential for designing shielding for
beamlines transporting neutrons with a high flux. We present results on a
calculation of radiative neutron absorption in Ni/Ti and NiMo/Ti supermir-
ror coatings which leads to the emission of high energy gamma rays. A simple
parameterization of the absorption probability in the coating materials per
incident neutron is given as a function of momentum transfer at reflection.

Keywords: Supermirror, neutron guide, radiative capture, shielding

1. Introduction

Supermirrors for the reflection of neutrons [1] are made of multiple al-
ternating layers of Ni and Ti with varying thicknesses and a strong neutron
optical contrast. Using such multilayer coatings in neutron guides allows
to significantly improve the transport of neutrons compared to guides with
pure Ni coating due to the large increase in the angle of total reflection θc
at the guide walls by m-times the critical angle of reflection θNic of Ni, i.e.
θc = mθNic . m-values up to m = 8 have been reported [2].
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During the transport in the guide, neutrons are lost due to the finite re-
flectivity of the reflecting coating. The major loss mechanisms are caused by
absorption, diffuse scattering, and finite transmission through the coating.
While the transmitted or scattered neutrons are absorbed in the guide sub-
strate or surrounding absorber releasing gamma radiation of comparatively
low energy, absorption of neutrons in the coating materials releases high-
energy photons with energies up to 9 ÷ 10 MeV, a typical nucleon binding
energy. At the European Spallation Source (ESS) which is currently under
construction in Lund, Sweden, the peak flux of transported cold and ther-
mal neutrons is expected to be 1÷ 2 orders of magnitude higher than at the
presently operating neutron facilities [3]. At the ILL, the brightness of the
thermal neutron source is comparable to the time averaged brightness of the
ESS. The absorption rate of neutrons in the guide coating will be proportional
to the flux. At the long instruments at ESS, gamma radiation will dominate
the dose rate beyond the line of sight to the moderator, which typically con-
stitutes more than 2/3 of the total instrument length. Therefore, during the
course of designing shielding for the guides transporting high neutron fluxes,
absorption of neutrons in the coating must be carefully addressed.

To the best of the authors’ knowledge out of the existing Monte-Carlo
transport codes used for the purpose of shielding calculations, there are cur-
rently only two, PHITS [4] and MCNP [5] which partly implement super-
mirror physics1. As the coherent scattering of thermal neutrons in the mul-
tilayers is not accessible in the transport Monte-Carlo approach, the afore-
mentioned codes only implement parameterizations of the specular reflection
probability of the supermirror coatings; the non-reflected neutrons are trans-
ported unaffected further beyond the reflecting surfaces. This straightfor-
ward approach, however, has serious drawbacks as will be discussed during
the course of the paper, which could severely underestimate the actual neu-
tron capture rate in the coatings.

While the reflectivity of supermirror coatings has been extensively studied
for a long time also with account of the fabrication process (see e.g. [2, 7, 8]),
absorption of neutrons by supermirror coatings received much less attention
so far. In this note we calculate absorption in the multilayer with layer se-

1 While the supermirror option is included in the standard PHITS distribution, in
MCNP there is an alternative either to use custom libraries which have limited availability
for users due to licensing or to interface the transport simulation with neutron ray-tracing
software [6].
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quences used in real fabrication. For the calculation, a matrix formalism
[9] is used which is briefly described in sect. 2, followed by a discussion of
approaches to account for the interface roughness in multilayers in sect. 3.
In section 4, parameters used in the numerical calculation are outlined. The
results on calculations of neutron absorption in supermirrors are presented
and discussed in sect. 5. We provide guidelines for shielding applications in
sect. 6, where a parameterization for a absorption probability in the super-
mirror coating materials is proposed and compared to a calculation. The
paper is concluded in sect. 7

2. Neutron waves in a multilayer

2.1. Matrix formalism

The wave function Ψ(~r) of a neutron propagating in a medium is a solu-
tion of the Schrödinger equation including an effective potential [10, 11]:{

∆ + k2 + 4πρF
}

Ψ(~r) = 0, (1)

where k is the wave number of the propagating neutron wave in vacuum, ρ is
the number density of atoms in the medium and F ≡ F ′+ iF ′′ is the neutron
elastic scattering amplitude per atom taken at zero scattering angle2. The
local field corrections are of the order of 10−4 and may be neglected in the real
part F ′ of the scattering amplitude which is given by the real part3 of bound
coherent scattering length b′c. They are, however, essential in the imaginary
part of the effective potential which in addition to the imaginary part of
the bound coherent scattering length b′′c receives contributions dependent on
real parts of bound coherent and incoherent scattering lengths, b′c and b′i
respectively [11]:

F ′ = −b′c (2)

F ′′ = b′′c + kb′i
2

+ kb′c
2 · α(k). (3)

The scattering lengths are tabular values and are related to the coherent σc
and incoherent σi parts of the elastic scattering cross section and absorption

2Commonly referred to as “forward scattering amplitude” in quantum scattering theory.
3We use prime and double prime to distinguish between real and imaginary parts of

complex-valued numbers. Correspondingly, b ≡ b′ + ib′′ ≡ b′c + b′i + ib′′
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cross section σa as [12]:

σc = 4π|b′c|2, σi = 4π|b′i|2, σa =
4π

k
b′′c . (4)

The interference factor α(k) entering the imaginary part of the scattering
amplitude F ′′, eq. (3), emerges due to interference of the neutron waves
scattered by different atoms [10] and also has a pronounced wavelength de-
pendence. It is expressed via the integral of the static structure factor S(q)
which for the case of a homogeneous isotropic system depends only on the
absolute value of its argument [10] and reduces to:

α(k) =
1

2k2

2k∫
0

S(q)qdq. (5)

Layers of the supermirror coatings are constituted by metals in amorphous
phase [13]. In this case the structure factor is typically close to zero for
q . 2 Å−1 and oscillates around unity for q & 5 Å−1 [13, 14]. This typical
behavior suggests that the dominant contribution to the integral (5) is given
when the integration variable q is of the order of the limit of integration
which is twice the wave number k of a neutron propagating in the medium.
Thus, α(k) ≈ 0 for k . 1 Å−1 (λ & 6.3 Å) and α(k) ≈ 1 for k & 5 Å−1 (λ .
1.25 Å)4. The transition between the two regimes of the diffuse scattering
occurs at neutron wavelengths λtr ≈ 2 ÷ 4 Å. Qualitatively this can be
understood in the following way. When the wavenumber of the neutrons is
substantially larger than typical inverse distance between the atoms so that
the neutrons scatter off the individual atoms, the interference between the
scattered waves is absent and the integral (5) reaches values close to unity. On
the contrary, with a small wave number the neutron wavelength substantially
exceeds the typical interatomic distance and it scatters off an ensemble of
atoms. The interference factor (5) is then small and the diffuse scattering
receives contributions only from the incoherent part of the scattering cross
section.

4For small wavelength the interference factor receives additional contribution from
Bragg scattering from the crystallites always present in the material in a realistic situ-
ation.
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The optical theorem relates the imaginary part of the forward scattering
amplitude to the neutron total interaction cross section in the medium,

σt =
4π

k
F ′′. (6)

The cross section σt describes attenuation of the incident beam in the medium5.
With the imaginary part of the amplitude F ′′ given by (3) it receives contri-
butions from both absorption and diffuse scattering, as it should.

σt(k) = σa(k) + σd(k) = σa(k0)k0/k + α(k)σc + σi. (7)

While the coherent and the incoherent scattering cross sections have a weak
energy dependence in the thermal and cold neutron energy range, the ab-
sorption cross section is inversely proportional to the neutron velocity v (or
wave number k = mnv/~) which must be taken into account explicitly. The
coherent part of the elastic scattering cross section enters the diffuse scatter-
ing contribution scaled by the wavelength dependent interference factor α(k)
as described above.

...
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Figure 1: Schematic drawing of the neutron wave incident on the multilayer. Notations
are explained in the text. The coefficients α0 = 1 and β0 designates the amplitude of the
incident and reflected neutron wave.

Now consider a neutron incident from vacuum under a small glancing
angle on a multilayer structure on a substrate aligned in the ZY plane.
In each layer of the multilayer and in the substrate, the wave function of
the neutrons satisfies the Schrödinger equation Eq. (1) with the boundary

5Transmissivity of a material slab of thickness d and atomic concentration ρ is given

by T = exp[−ρσtd/n′], where n′ ≈ 1−
2πρb′c
k2

is the real part of refraction index.
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conditions: i) the wave function itself and ii) its derivative are continuous
functions at all interfaces. Condition i) ensures conservation of the neutron
momentum projection in the ZY plane, which allows factorizing out the
lateral part of the wave function:

Ψ(x, z) = eikzzψ(x). (8)

The transverse part of the neutron wave function ψ(x) satisfies the 1-dimensional
equation:{

d2

dx2
+ k2⊥ − 4πρbc + i

2π

λ

(
Σd(λ) + Σa(λ0)

λ

λ0

)}
ψ(x) = 0, (9)

where wavenumber and velocity of the neutrons are expressed in terms of the
wavelength λ = 2π/k. In Eq. (9) the macroscopic cross sections for diffuse
elastic scattering and absorption were introduced, Σd/a(λ) = ρσd/a.

The solution of (9) for a given layer j, ψj(x), can be written as a sum of
two waves propagating in x-positive and x-negative direction:

ψj(x) = αje
ikj,⊥(x−x̂j) + βje

−ikj,⊥(x−x̂j), (10)

where x̂j is the coordinate of the interface boundary between layers j−1 and
j, and we assume that the layers are numbered in the x-positive direction
starting from j = 0 (vacuum) and up to j = N + 1 (substrate) as it is
depicted in Fig. 1. By convention, the complex momentum kj,⊥ is a solution
of the equation

k2j,⊥ = k2⊥ − 4πρbc + i
2π

λ

(
Σd(λ) + Σa(λ0)

λ

λ0

)
(11)

with a positive real part. Its imaginary part vanishes in vacuum where the
absorption and scattering cross sections are identically zero, so k0,⊥ = k⊥.

Writing explicitly the continuity relations for the wave function and its
derivative at the interfaces one arrives at the matrix formalism [9, 15]. Pairs
of coefficients (α, β) in the adjacent layers j and j − 1 are related via the
matrix Tj that is fully determined by the composition and the thickness of
the layers:
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(
αj
βj

)
= Tj

(
αj−1
βj−1

)
;

Tj =

(
kj,⊥+kj−1,⊥

2kj,⊥
eikj−1,⊥dj−1

kj,⊥−kj−1,⊥
2kj,⊥

e−ikj−1,⊥dj−1

kj,⊥−kj−1,⊥
2kj,⊥

eikj−1,⊥dj−1
kj,⊥+kj−1,⊥

2kj,⊥
e−ikj−1,⊥dj−1

)
.

(12)

Here dj−1 designates the thickness of the layer j − 1. For layer j = 0 (vac-
uum), d0 corresponds to the distance between the plane where phase of the
incident/reflected wave equals zero and the surface of the coating. When
this plane is chosen to coincide with the coating surface itself, the distance
is identically zero, d0 = 0. This is a typical choice for the calculations which
assume zero roughness of the surface.

Without loss of generality, the amplitude of the incident wave can be set
to be unity. Amplitudes of the waves reflected and transmitted through the
multilayer can be found from the equation(

αN+1

0

)
= TN+1 · . . . · T1

(
1
β0

)
≡ T

(
1
β0

)
. (13)

T = TN+1 · . . . · T1 is the product of T -matrices representing each individual
layer. Taking into account explicitly that there is no reflected wave prop-
agating in the substrate (βN+1 = 0) one easily finds the amplitude of the
reflected wave β0:

β0 = −T21

T22

. (14)

Once β0 has been evaluated, amplitudes of the reflected and transmitted
wave for every layer can be calculated by successive multiplication of (1; β0)
by matrices Tj.

2.2. Absorption

Absorption of neutrons in the multilayer can be determined from a change
in the quantum mechanical probability current. In 1-dimension it reads ac-
cording to the definition:

Jx =
~

2m

(
ψ∗

∂

∂x
ψ − ψ ∂

∂x
ψ∗
)

=
~
m

Im

(
ψ∗

∂

∂x
ψ

)
. (15)

Continuity of the wave function and its derivative ensure continuity of the
probability current at the interface of the adjacent layers. Substituting the
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neutron wave function into the definition Eq. (15) and dropping irrelevant
constant factors, the probability current at the outermost and innermost
interfaces of layer j becomes:

Jj(x̂j) ∝ Im
([
α∗j + β∗j

] [
ikj,⊥αj − ikj,⊥βj

])
, (16)

Jj(x̂j+1)∝ Im
([
αje

−ikj,⊥dj + βje
ikj,⊥dj

]∗ [
ikj,⊥αje

ikj,⊥dj − ikj,⊥βje−ikj,⊥dj
])
. (17)

Probability currents for the incoming neutron wave and the neutron waves
reflected and transmitted by the multilayer are

Jin ∝ k⊥|α0|2; Jref ∝ k⊥|β0|2; Jout ∝ Re(kN+1,⊥)|αN+1|2. (18)

Transmission and reflection per one incident neutron commonly referred to
as transmission and reflection coefficients are given by the ratios of the cor-
responding currents:

R =
Jref

Jin
=
|β0|2

|α0|2
; T =

Jout

Jin
=

Re(kN+1,⊥)

k⊥

|αN+1|2

|α0|2
. (19)

The loss in layer j per incident neutron is given by the ratio of the dif-
ference of currents at the interfaces of the layers and the probability current
of the incoming wave:

Lj =
Jj(x̂j)− Jj(x̂j+1)

Jin
. (20)

Attenuation of the probability current within the layer is either due to ab-
sorption or diffuse scattering. Note that we ignore the losses due to diffraction
from the grains in the layers of the supermirror that may occur for λ smaller
than the Bragg edge. For thermal and cold neutron energies, the diffuse
scattering is isotropic, so, once the neutron has been scattered, the proba-
bility that it will be absorbed in the coating afterwards is negligible. Thus
absorption per one incident neutron of a given wavelength and k⊥ in a given
layer j by a particular component C is obtained as losses multiplied by the
ratio nC

a (j) of macroscopic absorption cross sections of the component ΣC
a to

the total interaction cross section in the layer material:

fC
a (j) =

ΣC
a (λ0)λ/λ0

Σd(λ) + Σa(λ0)λ/λ0
· Lj ≡ nC

a (j) · Lj. (21)

In Eq. (21) the 1/v dependence of the absorption cross sections is accounted
for explicitly. λ0 = 1.798 Å designates the characteristic wavelength of ther-
mal neutrons which corresponds to the velocity v = 2200 m/s.
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3. Interfaces roughness

The reflectivity of supermirror coatings produced according to a specific
algorithm for the layer sequence is usually somewhat lower than what fol-
lows from the calculation accounting only for elimination of neutrons from
the parallel beam due to the diffuse scattering and absorption by individual
atoms in the coating material. A major source of this reduction is attributed
to the roughness of the interfaces layers which leads to destructive interfer-
ence of the reflected waves. Different approaches may be adopted to model
the effects of interface roughness.

3.1. Debye-Waller factors

Reduction in the specular reflectivity due to local variations in the po-
sition of the layer boundaries can be parameterized by introducing Debye-
Waller factors in Eq. (12). To account for imperfect reflection/transmission
due to destructive interference, the amplitudes of the reflected and transmit-
ted waves are adjusted and the following replacements are made [7]:

αj−1 7→ αj−1; αj 7→ αj∆
t; βj−1 7→ βj−1∆

r; βj 7→ βj, (22)

where 1/∆r = exp(−2σ2k2⊥) < 1 and 1/∆t = exp[−(σ2/2)(k1,⊥ − k2,⊥)2] < 1
are damping coefficients for the reflected and transmitted waves, respectively.
Here it is assumed that the rough interface is approximated by step func-
tions and the ”height” of each step is randomly distributed according to a
Gaussian with standard deviation σ. Eq. (12) is thus written for the ad-
justed amplitudes, so the wave function and the probability current are not
continuous functions of the coordinate x anymore. The approach allows to
obtain a description of the supermirror reflectivities up to m = 8 by setting
interface roughness σ equal to the roughness of the substrate measured by
atomic force microscopy [2].

3.2. Smoothed potential in the intermediate layer

In another approach adopted for fitting the reflectivity of supermirror
coatings it is assumed that the optical potential of the neutrons is smoothly
varying at the interfaces [8]. The ”valleys” at the surface of the precedent
layer are filled with atoms of the material of the next layer, so the opti-
cal potential and the coherent scattering length averaged in the plane have
a smooth transition from one layer to another. This gradual variation of
the potential decreases the reflection of neutron waves at the interface and

9



increases the transmission. At the same time, the continuity of the wave func-
tion and its derivative at the interfaces is preserved. On the other hand, the
diffuse scattering is essentially absent in this approach which thus overesti-
mates the intensity transmitted through a rough interface [16]. For reflection
from innermost layers of neutron supermirrors with high m-value the number
of interfaces traversed by the neutron is from several hundred (m = 3) to
several thousands (m = 6), so attenuation due to the diffuse scattering at
the upper lying interfaces may be substantial. To compensate for this and
describe the specular reflectivity of the whole multilayer one may need to
increase the roughness at the innermost interfaces beyond its actual value.

A fit of the reflectivity profile for a supermirror CoFeV/TiZr with m = 2.5
obtained in [8] yielded σ ' 25 Å for the mean roughness at the innermost
interfaces while a roughness of the underlayer did not exceed 14 Å. We per-
formed ourselves a calculation of reflectivity curves of NiMo/Ti supermirrors
in the smoothed potential approach for m = 3 and m = 6. The rough-
nesses at the innermost layers required to match reflectivities close to the
corresponding cutoffs were found to be 18 Å (m = 3) and 10 Å (m = 6).
This is much higher than the roughness of a substrate used for deposition
of such coatings, which is below 1 Å in both cases as measured by atomic
force microscopy [2]. The values are also significantly higher than what is
used for static DW factors (Sec. 3.1) or a stochastic approach (see Sec. 3.4
below). Note that 10 Å is practically one half of the thickness of innermost
layers for m = 6 supermirror (d ' 20 Å) which implies essentially no areas of
pure material within the layer. We thus conclude that a smoothed potential
approach can’t be applied for describing reflectivity profiles of coatings with
large m-values.

3.3. Distorted Wave Born Approximation

The Distorted Wave Born Approximation (DWBA) [17, 18, 19] calculates
corrections to the amplitude of a wave reflected from an undisturbed mul-
tilayer with perfectly even interfaces, arising from stochastic fluctuations of
the interface profile. The corrections are given by matrix elements of the
perturbation Hamiltonian and describe transitions between the eigenstates
of the undisturbed system, that is, solutions of Schrödinger equation for the
case of perfect interfaces.

In absence of height-height correlations between different interfaces, over-
all intensity of diffuse scattering and a corresponding decrease in the specular
reflectivity are only dependent on optical constants and mean roughnesses
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of the interfaces [17, 18]. (Height-height correlations of individual interfaces
determine angular distribution of the diffuse scattering intensity.) Presence
of height-height correlations between different interfaces reduces the amount
of diffuse scattering and improves the specular reflectivity [20].

The formalism is capable of reproducing measurements of both specular
reflectivity and diffuse scattering intensity of neutron supermirrors [20]. It is
however mathematically complicated and to our knowledge has not yet been
applied to calculating correction to the neutron wave function in particular
layers.

3.4. Monte-Carlo implementation of the reduction of the reflectivity of su-
permirrors due to roughness.

In the present work we adopted the following approach. Due to the inter-
face roughness, the thickness dj of a particular layer j traversed by an incident
neutron propagating along a straight trajectory is a fluctuating quantity. A
rough interface of the layer corresponds to a stochastic change of the inter-
face position along the coating normal with a lateral shift.The neighboring
trajectories thus cross different sequences of effective thicknesses of the layers
and acquire dissimilar phase shifts at a same depth. The amplitude of the
neutron wave propagating in the layer is a result of the interference of the
waves which corresponds to particular trajectories.

For a single interface this procedure exactly reproduces damping factors
given by (22). The difference however arises in case of multiple interfaces: an
effective damping factor for the amplitude of a reflected/transmitted wave
at a particular interface in the stochastic approach results from stochastic
phase shifts at other interfaces.

The implementation of this model in numerical calculations is straightfor-
ward. First, a sequence of interface positions is sampled from normal distri-
butions centered at their nominal values with standard deviations defined by
the roughness at the corresponding depths. For each given set i of sampled
boundaries {x̂(i)j } a sequence of the amplitudes of reflected and transmitted

waves {α(i)
j , β

(i)
j } is calculated from Eq. (12) with dj = x̂

(i)
j+1 − x̂

(i)
j . For a

given sampling of the interface positions the continuity of the wave function
ψ

(i)
j (x) and its derivative is thus respected.

The resulting wave function ψ̄j(x) of a neutron in the layer j which takes
into account interference resulting from dissimilar phase shifts of the sampled
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wave functions ψ
(i)
j (x) is obtained as their arithmetic mean:

ψ̄j(x) ≡ 1

N

N∑
i=1

ψ
(i)
j (x) = ᾱje

ikj,⊥(x−x̂j) + β̄je
−ikj,⊥(x−x̂j);

ᾱj ≡
1

N

N∑
i=1

α
(i)
j e

ikj,⊥(x̂j−x̂
(i)
j ); β̄j ≡

1

N

N∑
i=1

β
(i)
j e
−ikj,⊥(x̂j−x̂

(i)
j ).

(23)

As the sampled values x̂
(i)
j at the interface boundaries are used for calculating

the amplitudes according to Eq. (12), they also enter the phase multipliers of
the sampled wave functions instead of the nominal values x̂j (see Eq. (10)).
The exponential factors in the expressions for the average amplitudes ᾱj
and β̄j are what remains after having singled out the common phase in the
sampled wave functions for the incident and reflected waves, eikj,⊥(x−x̂j) and
e−ikj,⊥(x−x̂j) respectively.

Strictly speaking, the expression Eq. (23), gives the average wave function
ψ̄j(x) for the argument which for any of the sampled sets of interface positions

belongs to the layer j: x ∈ [max
i
x̂
(i)
j ,min

i
x̂
(i)
j+1] . Constructing an averaged

wave function which would explicitly preserve continuity also close to the
design values of the interfaces x̂j (or x̂j+1) of the layer j requires replacing the

corresponding sampled wave functions in (23) by the wave function ψ
(i)
j−1(x)

(ψ
(i)
j+1(x)), when x < x̂

(i)
j (x > x̂

(i)
j+1). While within the layer a change in

the current is fully characterized by exponential attenuation in the incident
and reflected waves, close to the nominal position of the interface, for the
argument x ∈ [min

i
x̂
(i)
j ,max

i
x̂
(i)
j ], the wave function and, correspondingly, the

current exhibit a more rapid change as a result of a destructive interference
of the sampled wave functions.

In our numerical calculations we extrapolate Eq. (23) to the nominal
positions of the interfaces, which makes the neutron wave function and the
current discontinuous functions of the coordinate x at the layer boundaries.
We interpret the emerging discontinuity of the current as a contribution of
diffuse scattering at the interface roughness similarly to the approach using
damping factors for the amplitude (sec. 3.1). Scattering on the interface
roughness results presumably in a small angle deviation to the direction
of the incoming neutron (which nevertheless results in decrease of specular
reflectivity) irrespective of whether the Bragg condition is satisfied in the
vicinity of the interface or not. At the same time, the amount of large angle
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scattering remains small [20]. This is in contrast with diffuse scattering in
the bulk which is isotropic.

For an interface between layers j − 1 and j the probability of diffuse
scattering per incident neutron reads:

Sj =
Jj−1(x̂j)− Jj(x̂j)

Jin
. (24)

Currents (16) and (17) entering the loss probabilities per one incident neu-
tron, Eqs. (20) and (24), the same as reflection probability R, Eq. (19), are
calculated using the averaged values ᾱj and β̄j.

For the plane where the phase of the incident and reflected plane in
the vacuum is zero we choose the nominal position of the outer surface of
the coating, x = x̂1. The amplitude of the reflected wave with account of
destructive interference at the interfaces and the outermost coating surface
is thus obtained as

β̄0 =
1

N

N∑
i=1

β
(i)
0 . (25)

4. Parameters used for the calculation

4.1. Layer composition

The non-polarizing coatings of the supermirrors available on the market
[21, 22, 23] represent alternating layers of either Ni or an alloy of Ni and
Mo, and Ti. A systematic study of the reflectivity of the NiMo alloys with
different composition was performed in [24]. No difference in the reflectivity
was observed between coatings of pure Ni and NiMo alloy with a 9.8% number
concentration of Mo used in fabrication at SwissNeutronics. This indicates
a similar value of the coherent scattering length density and corresponds to
the absolute values of the atomic concentrations of Ni and Mo in the alloy
as indicated in Tab. 1.

Throughout the calculation we use sequences of layer thicknesses obtained
by means of the formalism by Hayter and Mook [25] which coincide with those
used in the commercial production of supermirrors [2, 21]. Values of neutron
cross sections and coherent scattering lengths used throughout the work were
taken from [12]. The wavelength scaling of the absorption cross section was
implemented explicitly (see Eqs. (11) and (21)).

For a momentum transfer at the angle of total reflection of Ni, qNi
c =

0.0218 Å−1, neutrons typically do not penetrate beyond the uppermost layer
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Coating material ρ, atoms/cm3 bc, fm Σc, cm−1 Σi, cm−1 Σa, cm−1

Pure Ni 0.09121 · 1024 10.3 1.21 0.474 0.410
Ni+Mo (9.8%at.) 0.09443 · 1024 9.95 1.17 0.453 0.382(Ni)+0.023(Mo)
Pure Ti 0.05679 · 1024 −3.44 0.084 0.163 0.346

Table 1: Atomic concentrations ρ, coherent scattering lengths bc, macroscopic coherent,
incoherent and absorption cross sections Σc, Σi and Σa, respectively, for thermal neutrons
(λ0 = 1.798 Å) [12] of typical coating materials for supermirrors.

which has typically a thickness d1 = 700 Å. In this case the decrease of the
reflectivity is, first, due to absorption and diffuse scattering of the neutrons
in the top Ni layer and, second, due to the interference effects described
above. For a perfectly even surface, the wavelength dependent fraction of
non-reflected neutrons, which are absorbed by the coating can be thus calcu-
lated as ratio of the macroscopic absorption cross section to the total macro-
scopic interaction cross section in the uppermost layer (cf. Eq. (21)). This
gives

nNi
a (NiMo) =

ΣNi
a (λ0)

λ
λ0[

ΣNi
a (λ0) + ΣMo

a (λ0)
]
λ
λ0

+ ΣNiMo
i + α(λ)ΣNiMo

c

; (26)

nMo
a (NiMo) =

ΣMo
a (λ0)

λ
λ0[

ΣNi
a (λ0) + ΣMo

a (λ0)
]
λ
λ0

+ ΣNiMo
i + α(λ)ΣNiMo

c

, (27)

for a NiMo alloy and

nNi
a (Ni) =

ΣNi
a (λ0)

λ
λ0

ΣNi
a (λ0)

λ
λ0

+ ΣNi
i + α(λ)ΣNi

c

; (28)

for pure Ni. The values calculated according to Eqs. (26)–(28) using the
parameters of table 1 for evaluating the macroscopic cross sections (Σc/i/a =
ρ · σc/i/a) are given in table 2. While for the wavelength dependent interfer-
ence factor α(λ) at λ = 1 Å and λ = 5 Å one can assume values 1 and 0,
respectively, for the calculations at λ = 3 Å we anticipate a value α = 0.5.

4.2. Interface roughness, accuracy of deposition and resolution of momentum
transfer

The effect of the interface roughness is modeled as described in sect. 3.4.
For the standard deviation of the stochastic displacement of the layer inter-
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λ, Å nNi
a (NiMo) nMo

a (NiMo) nNi
a (Ni)

5 0.674 0.041 0.706
3 0.372 0.022 0.388
1 0.115 0.007 0.119

Table 2: Absorption probability per non reflected neutron for momentum transfers q < qNi
c

or q < qNiMo
c assuming zero roughness of the surface of the coating.

faces due to roughness the following parameterization is adopted:

σj(h)[Å] = 2.0[Å] + 0.1 · h[µm]. (29)

It is assumed that σj grows by 0.1 Å per µm of the deposited thickness h of
the multilayer as measured from the substrate. The initial roughness value
of 2 Å is required to provide a good description of the measured reflectivity
curves. It is a factor 2 larger than the typical roughness of the substrate as
reported by [2] which may indicate a fast growth of the roughness during
deposition of the first layers of the coating. The value is, however, still not
compatible with the value of 25 Å quoted in [8].

Deviations of the layer thicknesses from their nominal values due to the
limited precision of the sputtering plant are taken into account as well. The
probability currents calculated using amplitudes corrected for the interface
roughness are averaged over the thicknesses dj which are sampled from a
Gaussian distribution. The standard deviation corresponds to the preci-
sion of the sputtering plant and constitutes 0.5% of the layer thickness, i.e.
0.005 dj.

For comparing calculations with measured reflectivity profiles the diver-
gence of the incident neutron beam is incorporated by introducing a distri-
bution for the transverse momentum q⊥ of the neutrons. It is sampled from a
Gaussian distribution with a standard deviation equal to 1.5% of the critical
momentum of total reflection for Ni, i.e. σ(q⊥) = 0.015 ·qNi

c = 3.27 ·10−4 Å−1.
The divergence leads to a broadening of the Bragg peaks constituting the re-
flectivity and absorption profiles which are otherwise visible (see the black
curve for m = 6 in the bottom panel of Fig. 2). Smoother curves ease percep-
tion and parametrization of the data. We have verified that a few hundred
simulations provide sufficient accuracy. Results presented in the paper were
obtained by a two-stage Monte-Carlo average with 50 random samplings for
a combination (q⊥, {dj}) and 1000 samplings of interfaces to account for the
roughness leading to a total of 50000 simulations.
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5. Absorption per incident and per non reflected neutron

To benchmark the model, reflectivity profiles for supermirrors 2 ≤ m ≤ 6
were computed for λ = 5 Å. The results are plotted in the top panel of Fig. 2.
Calculated curves of the supermirror reproduce the measured profiles fairly
well [2]. The calculated reflectivity at smaller wavelengths is found to be
lower which is illustrated in the middle panel of Fig. 2, where reflectivity
profiles for λ = 1 Å neutrons are presented6.

We anticipate the following explanation for the reduction of the reflec-
tivity. Note that the depth at which the reflection of the neutrons takes
place depends solely on the momentum transfer q⊥ at reflection and that for
a fixed momentum transfer a shorter wavelength implies a smaller glancing
angle. The path length of a neutron in the coating before it has reached the
reflection depth thus increases with decreasing wavelength as ∼ 1/λ. The
absorption cross section is proportional to the neutron wavelength λ, so the
probability for neutron absorption before it has reached the reflection depth,
given in first approximation by a product of absorption cross section times
the path length in the coating, is approximately wavelength independent. On
the contrary, the diffuse scattering cross section is larger for smaller wave-
lengths due to the increase of the interference factor. Together with the
increase of the neutron’s path length in the coating for lower glancing angle,
this makes probability for removal of neutrons from the incident beam due to
the diffuse scattering larger for smaller wavelengths. The same attenuation
occurs also in the reflected wave. In quantum-mechanical considerations this
effect manifests itself as a contribution to the imaginary part of the normal
component of the neutron momentum (see Eq. (11)) scaling as 1/λ and being
proportional to Σd.

Note that for a given q and fixed λ, the reflectivity of the supermirror
increases with decreasing m-value as expected provided q is below the cutoff
mqNi

c . We attribute this effect to the lower interface roughness of the layers,
where the reflection takes place for coatings with low m-value. The effect
of roughness is illustrated in the lower panel of Fig. 2. Rough interfaces
reduce the reflectivity by up to around 20% as follows from comparison of
the reflectivity profiles for m = 6 coatings calculated with (blue line) and
without fluctuations (black line) in the thicknesses of the coating layers and

6Dependence of the reflectivity on the wavelength used in the measurement was men-
tioned in a study [26]
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Figure 2: Top panel: Calculated reflectivity profiles for λ = 5 Å for the model assuming a
fluctuating thickness of the layers to mimic the roughness of the interfaces. Middle panel:
Reflectivity for λ = 1 Å. Bottom panel: Calculated probabilities for reflection R (blue
line), transmission and scattering at rough interfaces T + S (green line), and loss (due to
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for m = 6 at λ = 5 Å. The results are compared with a model where the sequence of the
layers is fixed to the nominal values assuming zero roughness and zero divergence of the
incident beam (black line).
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the positions of the interfaces. This number is in good agreement with the
results of experimental study of the diffuse scattering by the rough interfaces
in the supermirror [20].

Diffuse scattering at rough interfaces results in small angle deviation of
the incoming neutrons (so that no specular reflection occurs) which thus
penetrate the guide substrate at low angle. We thus add probabilities for
transmission and scattering by the interfaces roughness together when plot-
ted in the lower panel of Fig. 2. Loss due to diffuse scattering or absorption
within the layers (magenta line for NiMo and orange line for Ti) are also
plotted in that figure. For zero roughness at the interfaces, the conservation
of the probability implies that the probabilities for reflection, transmission,
and loss within the layers add up to unity. Fulfillment of this condition was
explicitly checked in the calculations.

Next we turn to the absorption of neutrons within the supermirror coat-
ing. In Fig. 3, the absorption probability per incident neutron and per non-
reflected neutron calculated according to Eq. (21) for Ni, Mo, and Ti in
supermirror m = 3 and m = 6 is plotted. Below the cutoff q ≤ mqNi

c the
absorption per incident neutron exhibits an approximately linear growth,
similar for both m = 3 and m = 6 coatings indicating that the depth where
the neutrons are reflected increases with increasing momentum transfer. This
effect is similar for supermirror with different m. For q < mqNi

c neutron ab-
sorption occurs for both, the incoming and the reflected wave. In contrast,
for q > mqNi

c , the reflected wave is essentially absent. Therefore, at q = mqNi
c

the absorption probability per incident neutron drops roughly by a factor of
2 as can be clearly seen in the figure. With even further increase of momen-
tum, the absorption probability per incident neutron follows approximately
the simple scaling law:

fCa ∝
1

q
. (30)

This is a trivial consequence of the fact that the absorption probability is
proportional to the path length in the supermirror, which in turn is inversely
proportional to the glancing angle and hence to the normal momentum com-
ponent:

fCa ≈ Σa(λ)
d

θ
= Σa(λ0)

λ

λ0

2πd

λ
·

1

q
. (31)

It is remarkable that fCa is essentially independent of λ, which is also true
beyond the cutoff mqNi

c as clearly observed in the left panels of Fig. 3.
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Ti, λ = 5 Å
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Ni, λ = 1 Å
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Figure 3: Absorption probability per incident neutron (left panels) and per non reflected
neutron (right panels) as a function of momentum transfer q for supermirror m = 3 and
m = 6 for wavelengths λ = 1 Å and λ = 5 Å.

The absorption per non reflected neutron7, fCa , is obtained from fCa by
dividing fCa by 1− R, where R is the reflectivity. In contrast to the absorp-
tion per incident neutron, fCa is a decreasing function of momentum transfer
because of the increasing role of the transmission and destructive interference
due to the interface roughness. For this reason, fCa decreases with increasing
m for fixed q for q ≤ mqNi

c . Because of the reflectivity dependence on λ,
the absorption per non reflected neutron is also a λ-dependent quantity as
clearly seen in the panels on the right hand side of Fig. 3.

The linear dependence of fCa on q as observed between qNi
c and mqNi

c is

7This quantity is used in certain scenarios for guide shielding calculation at different
neutron scattering facilities [27, 28].
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Figure 4: The absorption probability per incident neutron and per non reflected neutron
for supermirror m = 6 assuming zero roughness and perfect momentum transfer resolution
are shown on the left and right hand side, respectively.

reproduced as a trend when the interface roughness is set to zero and the
thickness of the layers is fixed to the nominal values. As apparent from com-
parison of Figs. 3 and 4, absorption per incident neutron for zero roughness
has a fine structure in the form of rapid oscillations around the linear trend
obtained in calculations with account of roughness. Since in a realistic sit-
uation a neutron beam incident on a supermirror has a non-zero divergence
and certain wavelength spread the neutron capture per incident neutron can
be described by linear dependence irrespective of roughness. In contrast, the
absorption per a non reflected neutron is larger when the roughness is set to
zero due to a higher reflectivity.

For momentum transfers below the critical value qNi
c there is a peak in

fCa (Ti) at q ≈ 0.75 · qNi
c which is related to the dips in fCa (Ni) and fCa (Mo)

clearly observed in the calculation assuming zero roughness, Fig. 4. At this
q, the incident neutron wave spreads beyond the top layer of the supermir-
ror that has a thickness of 700 Å. Limiting values for absorption per non
reflected neutron (see tab. 2) are reached for q . 0.6 · qNi

c . In the calcula-
tions which take roughness of the coating surface into account presented in
Fig. 3 a significant fraction of neutrons is not reflected specularly due to the
destructive interference arising from the surface roughness. This effect de-
creases the fraction of not reflected neutrons which are absorbed, fCa , so the
limiting values listed in tab. 2 are not reached. The reduction in fCa (Ni) is
more pronounced for m = 6 than for m = 3 due to the larger roughness of the
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surface assumed in the model (see Eq. (29)). With the account of roughness
the peak in titanium capture at q ≈ 0.75 · qNi

c is also less pronounced.

6. Guidelines for gamma shielding of supermirror coated optics

6.1. Existing solutions for the transport codes.

Specular reflection of cold and thermal neutrons from a multilayer is a
coherent process, its description requires explicit account of the wave proper-
ties of the incident neutrons. In the Monte-Carlo transport codes which were
primarily designed for applications involving neutrons in the fast or thermal
energy range, the neutrons are by default treated as corpuscles which un-
dergoes successive scatterings with the atoms in the medium. Because of
this fundamental limitation modeling of the coherent scattering effects is not
accessible.

To improve the situation, a supermirror option was introduced in PHITS
and MCNP transport codes. It implements a specular reflection probabil-
ity dependent on the momentum transfer at reflection and thus allows for
modeling cold and thermal neutron transport along the guides. The non-
reflected neutrons, which below the supermirror cutoff typically constitute a
small fraction of the incident beam, penetrate the reflecting surface and are
transported further in the surrounding materials.

The implementation, however, is missing an important detail. As it has
been mentioned in sect. 5, above the critical angle for nickel and below the
cutoff, the reflection takes place at a depth where the layer spacing d satisfies
the Bragg’s reflection law: d = π/k⊥. Hence it is the full incident beam which
propagates in the bulk coating up to the reflection depth, not just its non-
reflected fraction. Assuming the reflection to take place at the coating surface
will thus underestimate significantly the absorption probability.

For a given momentum transfer at reflection (that is fixed wavelength
and glancing angle) the probability for the absorption by the coating could
in principle still be obtained in PHITS and MCNP. This can be done by
setting the reflecting surface at a depth which corresponds to the momentum
transfer under consideration. For example, close to the supermirror cutoff the
reflecting surface should be positioned between the coating and the substrate.
However for a momentum transfer value different from the one for which this
fine tuning was performed, the capture rate obtained in the setup will be
obviously incorrect.
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The calculation presented in the present work is thus beyond the capa-
bilities of the transport Monte-Carlo codes in their present form. A direct
comparison between our approach and the Monte-Carlo codes is only possi-
ble in a situation where the momentum transfer for a specular reflection is
above the cutoff of the supermirror, that is when the reflection is essentially
absent and all the neutrons are transmitted through the multilayer.

6.2. Parametrized absorption probabilities
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Figure 5: The radiative absorption by Ni and Ti per incident neutron are shown for
supermirror composed of NiMo/Ti (left) and Ni/Ti (right). The calculations at wavelength
λ = 5 Å (solid lines) are compared with the parameterization (dash-dotted lines), linear
part of parameterization similar for all m-values (eqs. (32) and (34)) is plotted in black.
PHITS v.3.02 transport code simulations are plotted with open symbols for supermirror
set in front of the coating and with filled symbols for the supermirror set behind.

In this section simple guidelines for optimizing the gamma shielding of
neutron guides equipped with supermirror are provided. We distinguish three

22



distinct regimes A, B, and C for momentum transfers, where the radiative
absorption probability per incident neutron can be expressed via simple uni-
versal functions of µ ≡ q/qNi

c .

A: q ≤ qNi
c :

The absorption probability per incident neutron is wavelength dependent.
If R0 is the low-angle reflectivity of the coating, the absorption per incident
neutron is given by (1 − R0) times the wavelength dependent probabilities
from table 2. To be on the safe side, we suggest using values calculated for
zero roughness.

B: qNi
c < q ≤ (m+ 0.1) · qNi

c :

Below the cutoff of the coating m, the absorption probability per incident
neutron is linear in q and approximately independent of wavelength. Per-
forming a fit to the linear parts of the curves fC

a (µ) for m = 2 . . . 6 coatings
taken altogether gives fNi

a (µ) = 0.00407 · µ for nickel, fMo
a (µ) = 0.00022 · µ

for molybdenum and fTi
a (µ) = 0.004 ·µ−0.0045 for titanium with R2 = 0.99.

To be on the safe side for shielding applications we suggest using a param-
eterization with an increased slope that slightly overshoots the calculated
absorption probabilities:

fNi
a (µ) = 0.005 + 0.005 · (µ− 1) (32)

fMo
a (µ) = 0.00027 + 0.00027 · (µ− 1) (33)

fTi
a (µ) = 0.0045 · (µ− 1) (34)

C: (m+ 0.1) · qNi
c < q:

Beyond the cutoff of the coating, the approximately linear growth changes
to a fa ∝ 1/µ behavior

fNi
a (µ) =

0.0025 · (m+ 0.1)2

µ
(35)

fMo
a (µ) =

0.000135 · (m+ 0.1)2

µ
(36)

fTi
a (µ) =

0.00225 · (m− 0.9)(m+ 0.1)

µ
(37)

in accordance with Eq. (31). We anticipate that the absorption drops by a
factor of 2 from the value given by the linear parameterization anticipated
in the regime B at µ = m+ 0.1.
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The absorption probabilities per incident neutron of Ni and Ti calculated
for a wavelength λ = 5 Å and coatings with 2 ≤ m ≤ 6 are plotted in Fig. 5
together with parameterized curves. The absorption probability for Mo in the
NiMo/Ti coatings is 0.054 times the value for Ni and is not shown. As one can
see from the figure, the suggested parameterization works with an accuracy
of approximately 10% for both Ni/Ti and NiMo/Ti supermirrors, which is
sufficient for the use in shielding calculations. The difference between the
theoretical and Monte-Carlo calculations at high m-values may be attributed
to the effect of roughness which in the theoretical calculation effectively leads
to a certain attenuation in the neutron wave before it reaches the reflection
depth and hence lowers the overall probability for absorption.

We have also performed PHITS version 3.02 [4] calculation of absorption
per incident neutron exploring two possibilities. A surface with parameter-
ized reflection probability was set either in front or behind the supermirror.
The supermirror itself was approximated in the simulation as two parallel
layers of Ni and Ti with thicknesses according to the total amount of the
corresponding materials in the coating. Results of the simulation for for
m = 2, 4 and 6 NiTi coatings are presented together with results of the
theoretical calculation and parameterization in Fig. 5. The results indicate
that using supermirror option of PHITS it is possible to either significantly
underestimate or overestimate neutron capture rate in supermirror materials
for momentum transfer below the supermirror cutoff, depending on where
the reflecting surface is modeled. In the transmission regime, instead, a good
agreement is observed between the theoretical calculation and the Monte-
Carlo thus supporting the validity of our approach.

7. Conclusions.

Our study shows that the absorption probability of supermirror per in-
cident neutron as calculated in a rigorous quantum-mechanical approach is
essentially independent of the wavelength and follows a simple universal be-
havior as a function of the normal component of the incident neutron mo-
mentum q⊥. For the absorption probability per non reflected neutron on the
contrary such a universal behavior was not observed. It was also found that
the absorption probability per non reflected neutron has a pronounced wave-
length dependence due to a reduced reflectivity of supermirrors for shorter
wavelengths.
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We have derived a parameterization of absorption probabilities per inci-
dent neutron in the materials from which supermirror coatings are made of
which is the key result of our paper. For a normal momentum component
of the incident neutron exceeding the critical value for nickel, the absorption
probability is expressed in a universal way via the normal momentum compo-
nent and m-value of the coating independent of the wavelength. This allows
for a straightforward evaluation of prompt gamma radiation along the super-
mirror coated neutron guides once the divergence profile and the spectrum
of the transported beam are known.

We believe that implementing the parameterizations of the absorption
rate suggested in section 6 in neutron-optical ray-tracing packages will pro-
vide an effective and simple to use tool for calculating dose rates and shielding
requirements for the supermirror coated guides transporting high fluxes of
neutrons.
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