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ABSTRACT

The heat flow content in vitrinite reflectance (VR) observations is studied with
basis in a simple model of burial at a constant rate. The model is made
dimensionless, and it has just one parameter except for the paleo heat flow. The
question of existence and uniqueness of a solution is studied, and there exist in
general no paleo heat flow that will reproduce a given (”nice”) VR-depth curve.
But a solution is unique if it exists. A computed VR-depth function is shown to
be smooth, even for piecewise constant heat flow histories. The paleo heat flow
can be obtained from a VR-depth function after two times with derivations. It is
also shown how the present day thermal gradient can be obtained by derivation of
a VR-depth representation. The (one-parameter) model allows for approximate
expressions for the optimal paleo heat flow as a step function. The results
obtained from the one-parameter model are also compared with similar results
from a real case study from the North Sea using a state-of-the-art basin simulator.

KEY WORDS: vitrinite reflectance, paleo heat flow, existence of solution,
uniqueness of solution
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INTRODUCTION

Vitrinite reflectance (VR) is the most widely used thermal maturity indicator in
sedimentary basins, and it is also often the only thermal indicator available. The
VR values can be grouped into four intervals with respect to hydrocarbon
generation: immature, oil generative, gas generative and exhausted, and then
provide directly a measure of the maturity of sediment samples. VR is therefore
routinely measured in a large number of exploration wells by the oil companies.

The value of VR measurements goes beyond a direct application of the observed
values. There are various models that allow VR to be calculated from a given
temperature history, (Waples 1980; Larter 1989; Lerche 1990; Sweeney and
Burnham 1990; Throndsen 1990; Throndsen, Andersen and Unander 1993). The
temperature history can be obtained from thermal modeling of the burial history
using the paleo heat flow as input. VR is therefore used to obtain heat flow
histories, assuming that the thermal modeling of the burial history is
”sufficiently” accurate. The term ”Thermal Indicator Tomography” was
introduced by Lerche, (Lerche 1988; Zhao and Lerche 1993), to describe
modeling procedures that invert thermal indicators to reconstruct the thermal
history of a well.

Several studies have demonstrated that the paleo temperature contents of the VR
measurements along a well is dominated by the maximum sediment temperature,
(Gallagher and Sambridge 1992; Vik and Hermanrud 1993; Nielsen 1995; Noeth,
Thomsen and Littke 2002; Huvaz, Thomsen and Noeth 2005). This is also an
experience basin modelers have made when trying to match VR data by
manually tuning a heat flow history.

The sensitivity of VR on the paleo heat flow has been addressed by stochastic
(Monte Carlo type of) methods (Nielsen 1996, Gallagher 1998, Ferrero and
Gallagher 2002). A large number of heat flow histories are generated, where all
histories that reproduce the VR data within certain bounds can be compared. It is
then seen that it is impossible to constrain the heat flow history for large parts of
the geohistory. Although there exist inversion procedures for obtaining the heat
flow history from VR data, (Lerche, Yarzab and Kendall 1984; Lerche 1990;
Nielsen 1996; Gallagher 1998), it turns out to be difficult to reconstruct the paleo
heat flow without additional geological knowledge, like for instance the timing
and the duration of rift episodes.

Very little is known about the heat flow contents in VR observations in terms of
analytical results. A simple model, which allows for analytical treatment, is
therefore studied. Although the model is simple compared to the complexity
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often seen in real burial histories, it turns out that it shows similar VR predictions
as with a state-of-the-art basin simulator on a real burial history.

This paper is organized as follows: First is an introduction to VR given. Then
follows the simple and dimensionless formulation of the problem of obtaining
the paleo heat flow from VR observations. It is shown that an eventual paleo heat
flow solution is unique, although a solution cannot be expected to exist. It is then
shown that computed VR is a smooth function of depth, and how derivation of a
VR-depth-function gives the paleo heat flow. The present day thermal gradient is
then obtained from a VR-depth function. The optimal paleo heat flow, as a step
function, is found for the simple (dimensionless) model, before a real case is
presented, where the results from the simple (dimensionless) model is applied
and compared with results from the real model.

TIME-TEMPERATURE-INTEGRAL (TTI) AND VR

There are several approaches to the computation of VR. The simplest models
utilize the TTI-concept of Loptin (1971), as for instance done by Waples (1980)
and Issler (1984). Models based on Arrhenius kinetics have later been introduced
by Burnham and Sweeney (1989), Larter (1989), Sweeney and Burnham (1990).
Both types of models are at least semi-empirical where coefficients and
Arrhenius data are calibrated with respect to laboratory data and well data. There
have also been attempts of a physical based model for VR, see Lerche 1990.

TheTTI (time-temperature-integral) for a given burial history is the following
integral

TTI =
∫ t2

t1
2(aT (t) + b)dt =

∫ t2

t1
exp

(
aIT (t) + bI

)
dt (1)

whereT (t) is the temperature inoC as a function of the timet in units Ma. The
timest1 andt2 are time of the beginning and the end of the burial history,
respectively. TTI as an integral is a generalization of the observation made by
Lopatin (Lopatin, 1971) that reaction rates double by every step in temperature
of 10 oC. The parametera is thereforea = 0.1, while the parameterb = −10.5 is
used to make the scaling factor2b. (The parameters in the base of the natural
logarithm becomeaI = ln(2)a andbI = ln(2)b.)

VR (%Ro) is correlated to TTI in order to simplify the analytical treatment.
There exist different correlations of TTI with (%Ro) and the commonly used
functional relationship is

%Ro= exp
(
p ln(TTI) + r

)
(2)
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where the parametersp andr have to be fitted to a given data set. Several pairs of
p andr parameters have been reported in the literature, see for instance Waples
(1980), Issler (1984), and Horváth and others (1988). A comparison of these
three parameter sets has been done by Morrow and Issler (1993). Morrow and
Issler (1993) have also calibrated expression (2) with the predictions of the
popular Easy-%Ro model of Sweeney and Burnham (1990). (All parameters
values are listed in table 1.)

A DIMENSIONLESS THERMAL HISTORY

The paleo heat flow content of VR measurements is first studied in a simple
model, where burial is at a constant rate, without any compaction of the
deposited sediments, and with a single and constant thermal conductivity. These
assumptions brings down the number of parameters in the model to just one,
when the paleo heat flow is excluded. Such a simple model allows for an
analytical formulation of the problem of obtaining the paleo heat flow from
VR-measurements. An analytical formulation is interesting in its own right, and
it provides more basic insight into the nature of the problem than a purely
numerical approach. The results from a simple analytical approach will also to
some extent be valid even for real cases with a rather complex geohistory.

A position in the basin is now measured by its height from the basement, which
is denoted by theζ. Theζ-position of a sediment that is deposited becomes a
constant, when there is no sediment compaction. The deposition rate, measured
as real sediment thickness per time, isω. The temperature at aζ-position is then

T (ζ, t) =
Q(t)

λ

(
ωt− ζ

)
(3)

whereQ(t) is the heat flow at timet, andλ is the thermal conductivity. The
temperature solution (3) is stationary, and the heat flow is the same at every
position along the sedimentary column. Notice that deposition starts at time
t = 0. A scaled version of the temperature (3) is

T (ζ, t)

T0

= q(τ) (τ − x) (4)

using the reference temperatureT0 = Q0ωt0/λ, whereQ0 is todays heat flow and
t0 is the time span of the burial history. The stationary temperatureT0 at the
depthz0 = ωt0 is the reference temperature. The other dimensionless parameters
are dimensionless heat flowq = Q/Q0, dimensionless timeτ = t/t0 and
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dimensionlessζ-heightx = ζ/(ωt0). The TTI-integral at positionx can now be
written asTTI(x) = TTI0 I(x) whereI(x) is the integral

I(x) =
∫ 1

x
ek(τ − x) q(τ)dτ (5)

and where the parameters are the reference TTI-valueTTI0 = t0e
bI and the

dimensionless number

k = aIT0 =
aIQ0z0

λ
(6)

The scaling of time and space makes depth at present time (x) and time of
deposition (τ ) related by

x = τ (7)

VR is given directly by TTI (2), and any VR-observation can therefore be
converted to anI-value,

%Ro= c · (t0 I)p where c = epbI+r (8)

Notice that the time span appears only once, as the coefficienttp0, in the
TTI-based model for VR. There is just one parameter (k) in theI-integral, apart
from the paleo heat flow. Typical values for thek-parameter are in the interval10
to 20, which corresponds to the temperature intervalT0 = 100 oC toT0 = 200 oC.

VR-observations do not provide a continuous curve of depth, but an optimal
(continuous) curveI(x) can be fitted to the observations. The challenge is then to
obtain the paleo heat flow contentsq(τ) that reproduce the VR data represented
by the curveI(x).

EXISTENCE AND UNIQUENESS

The integral (5) is a simple analytical formulation of the problem of obtaining the
paleo heat flow from VR-measurements, which allows the questions of
uniqueness and existence of a solution to be addressed.

The first fundamental question is whether there exists a functionq(τ) for a ”nice”
functionI(x). The answer is no. Numerical examples show that a functionI(x)
does not in general have a counterpartq(τ), not even when lnI(x) is a simple
function like a line or a parabola. The exceptions are theI(x)-functions that are
made by a given paleo heat flow historyq(τ). In the special case of piecewise
constant paleo historiesq(τ) it is always possible to first computeI(x) and then
recover the piecewise constantq(τ) from I(x) by a simple back-substitution
scheme as shown in Appendix B. We therefore conclude that it is not possible to
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go from anI(x) (or a VR-signal) to an exact paleo heat flow history, even for this
basic one-parameter model. The problem of obtaining the paleo heat flow
therefore becomes the problem of optimizing the heat flowq(τ) to obtain a
”best” possible match againstI-observations.

Related to the existence of a solution is the problem of the uniqueness of a
solution. Uniqueness requires that any two heat flow historiesqa(τ) andqb(τ)
that yields the sameI(x)-function have to be equal. The uniqueness of the heat
flow solution is shown in Appendix C.

SMOOTHNESS

The integral (5) has the important property of being a ”smooth” function, because

dI

dx
= −1−

∫ 1

x
kq(τ) ek(τ − x) q(τ)dτ (9)

is continuous even for discontinuous heat flow histories. The derivation can also
be carried out twice,

d2I

dx2
= kq(x) +

∫ 1

x

(
kq(τ)

)2
ek(τ − x) q(τ)dτ (10)

which then yields the heat flow at a given time of burial. Both the left-hand-side
and the integral are very large numbers compared tokq(x), except whenx is
close to0. It is interesting to notice that the present day heat flow appears for
x = 1 as

q(τ = 1) =
1

k

d2I

dx2

∣∣∣∣∣
x=1

(11)

where it is used thatx = 1 corresponds toτ = 1. Differentiation a third time
yields

d3I

dx3
= −

∫ 1

x

(
kq(τ)

)3
ek(τ − x) q(τ)dτ −

(
kq(x)

)2
+ k

dq

dx
(12)

which (at least in principle) can be used as an indicator for the sign ofdq/dτ at
present time. Then we have that

dq

dx
(τ = 1) = kq2(x = 1) +

1

k

d3I

dx3

∣∣∣∣∣
x=1

(13)

which means that third order behaviour of integralI at the surface tells whether it
was a higher or lower heat flow in the past. It is reasonable that these estimates
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are for the shallow part of a basin, because the shallow sediments have
experienced only the most resent part of the geohistory. These differentiations
could have been most useful if the VR-observations at shallow depths were of
high quality. However, it is a problem that VR observations and models for VR
are of poor quality for short and cold thermal histories. It is therefore difficult to
apply these results.

PRESENT DAY HEAT FLOW

It has been recognized for a long time that the present day thermal gradient is
contained in the vitrinite signal. The present day thermal gradient is obtained by
approximatingdln(%Ro)/dz by a straight line. In the simplest cases, where the
VR-data plotted as ln(%Ro) follow a straight line, we have that

dln(%Ro)
dz

= −paI
T0

z0

(14)

wherez0 is the (present day) maximum sediment depth, (see equation (17) in
Appendix A for details). This relationship is based on the assumption of a
constant paleo heat flow historyq(τ) = 1. This simple relationship can be used
to see how well burial at a constant rate, with sediments of a constant porosity,
fits a given data set.

HEAT FLOW HISTORIES BY A STEP FUNCTION

Using the present day heat flow as a constant heat flow for the entire geohistory
is a simple mean to find out if the heat flow has been higher in the past. If the
modeled VR is less than what is observed today, then it is clear that the heat flow
has been higher in the past. (Assuming that there are no important hiati in the
basin). One of the simplest paleo heat flow histories that can be calibrated
against observations is a step function, where the heat flow isq1 for τ < τ1, (as
shown in figure 1). Calibration of such heat flow histories are first studied using
the one-parameter model for VR. We then have to calibrate both the step sizeq1

and the timeτ1 of the step. A family of step functions that gives a reasonable
match against the observation is found by requiring that the VR-results from the
step function fit the data at the base of the well. Even if the base of the well is a
limited part of the VR-observations, it turns out heat flow histories that match the
lower part of the VR data will also match the upper part of the VR data fairly
well. Let the VR-data at the base of the well be a factorfR higher than modeled
VR using the present day heat flow for the entire basin history. The calibration of
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the paleo heat flow as a step function in the simple one-parameter model (5)
gives that any step function with

q1 ≈ k + (lnfR)/p

kτ1

(15)

gives an approximate match against the observations at the base of the well, (see
equation (20) in Appendix A for details). The approximation is quite accurate for
τ1 > 1/2.

Different step functions and the related VR is shown in figures 2 and 3. Figure 2
shows the computed VR for 4 step functions, when the calculated VR is a factor
1.1 higher at the base than the reference VR. (The reference VR is obtained using
the present day heat flow for the entire geohistory.) Figure 2a and figure 2b show
that the VR for the different step functions does not differ very much. The step
functions are shown in figure 2c, which shows both the step size and the
approximated step size (15). It is not much room for calibration in this case,
because the family of step functions gives close VR-curves.

Figure 3 shows the situation when the calculated VR is a factor1.5 higher at the
base than the reference VR. The family of step functions generate VR-functions
that are separated roughly as much as0.5 (%). The step functions with the
approximate step size is shown in figure 2c. It is noticed that ln(%Ro) is still
quite linear.

It is seen from figure 2 and 3 that it is difficult to modify the modeled VR-curve
unless the heat flow has been substantial higher in the past. Furthermore, the
step-function approach is useful because it bounds the space of possible modeled
VR, by the respective heat flow histories.

The opposite situation is when present day heat flow leads to modeled VR that is
too high compared to the VR-measurements. This situation, where the heat flow
has been less in the past, can also be calibrated with step functions. Figure 4
shows that only a short pulse with the present days heat flow is necessary to
achieve the observed VR at the base of the basin. The VR at the base of the basin
in figure 4 is a factor0.9 of what is observed. Figure 4 shows that a constant heat
flow q = 0.96 or a ”short” pulse with length∆τ = 0.08 of the present day heat
flow q = 1 both give nearly the same modeled VR. It is therefore difficult to find
any paleo heat flow content in the VR observations for cases where the present
day heat flow gives higher VR-values than the observations. (These two
situations corresponds to a weightw = 0 andw = wmax, respectively, in
expression (22) forq and expression (24) forτ1 as shown in the Appendix A.)

A CASE EXAMPLE
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VR measurements along a well in the North Sea is used as an example to study
how heat flow histories represented by simple step-functions can be calibrated. It
is a deep well which has undergone more or less continuous burial, as shown in
figure 5. There are good quality VR data throughout the well section, including
some excellent data from coaly material at about 4000 m. Log-values of the
VR-data are plotted in figure 6a as a function of depth. They are seen to be well
represented by a straight line. The line shown is the optimal line from least
square fitting of the points. Equation (14) shows that the simple model of burial
at a constant rate with a constant paleo heat flow, with sediments of a constant
thermal conductivity, gives a straight line when VR is plotted as log-values of
depth. The optimal (least square root) line through the data in figure 6a has the
steepness0.00052, and then the parameter valuesp = 0.211 andaI = 0.06931
1/oC give thatT0/z0 ≈ 34 oC/km. This is in good agreement with the present day
temperatureT0 = 184 oC at depthz0 = 5.3 km below the seafloor as shown in
figure 6b. The parameter valuep that gives a good fit (p = 0.211) is between the
p-parameter values suggested Waples (p = 0.2413) (Waples, 1980) and Issler
(p = 0.1617) (Issler, 1984).

VR was also modeled using the basin simulator BAS (developed at Institute for
Energy Technology, Norway), which solves for transient paleo temperature and
VR during burial. The sediment compaction is modeled with a porosity as an
exponential function of depth,φ = φ0 exp(−z/zc), whereφ0 is the surface
porosity,z is the depth from the seafloor, andzc is a depth that characterizes the
compaction. The thermal conductivity of the sediments is the geometric mean
λ = λφ

fλ
(1−φ)
s of the fluid thermal conductivityλf and the sediment matrix

thermal conductivityλs. The parameter values for the porosity and the thermal
properties of the sediments are typical for silty shale, (see table 1).

It is assumed that the burial history and the thermal properties of the sediments
are correct. The heat flow history is then the only unknown. The starting point
for calibrating the paleo heat flow is an estimate for the present day heat flow.
The present day heat flow is taken to be0.05 Wm−2, which is a typical value for
heat flow in the area. It is seen that the present day heat flow is not sufficient to
achieve the maturity of the data. Heat flow histories represented by a step
function were calibrated against the data to see if the heat flow could have been
increasing backwards in time. The time of the step is in intervals of30 Ma from
present time and backwards in time until−60 Ma.

The optimal VR-values and the VR-observations are shown in figure 7a. Two of
the optimal curves cover the VR-data quite well, which is also seen from the plot
of the object function at each time of the steps in figure 7b. The object function is
the root-mean-square of the difference between the observations and the
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calculated values. (The match is against the entire data set, not just VR at the
base of the well.) A slight increase in the deviation from the data at the optimal
heat flow is seen with increasing time of the step function. The object function is
also becoming wider around the optimal point as the time of step becomes further
away. The results therefore support a constant heat flow of0.066 Wm−2 until
present, (which is represented by the step function with the step at present time).
The object function can be used as a direct measure of the sensitivity of VR for
the paleo heat flow. The different optimal heat flow histories are plotted in figure
7c. The size of the step in the optimal heat flow histories are seen to increase in a
similar fashion to the (dimensionless) step-height given by equation (15). A
comparison with equation (15) is shown in figure 7d, where constant burial is
assumed for the last150 Ma. There is a correspondence between the results,
although the simple model is based on a constant deposition rate and a match
against one VR value at the base of the well. Thek-parameter is11.0 and the
fR-factor1.6 in the simple model. (Thek is based on the temperature at depth of
the deepest VR measurement, which isT0 = 160 oC at the depthz0 = 4500 m.
ThefR factor is the deepest VR measurement divided by the modeled VR at the
same depth using the constant0.05 Wm−2 for the heat flow history.) The simple
model can also be used for cases where VR is simulated with the Easy-Ro model,
by simply calibrating the TTI-based method against the Easy-Ro results.

CONCLUSION

The paleo heat flow content in VR measurements has been studied with basis of a
simple model of burial at a constant rate, using Lopatin’s TTI-model for VR. The
model is simple and therefore allows for a dimensionless formulation with just
one parameter except for the heat flow history. It is shown how a simple
back-substitution procedure could produce a piecewise constant the paleo heat
flow with an arbitrary resolution. Tests using the procedure show that a solution
does not in general exist. Furthermore, it is shown that if a solution exists then it
is unique. The computed VR of depth is a smooth function, and the second
derivative can (in principle) be used to obtain the paleo heat flow. The derivative
of the VR-depth-function at the surface gives the surface heat flow. It is then
shown how the present day thermal gradient can be obtained from VR-data. The
simple (one-parameter) model of VR allows for simple approximate expressions
for the optimal paleo heat flow represented by step functions. Finally, the results
from the simple (one-parameter) model are compared with similar results
obtained for a real case from the North Sea of high quality VR measurements,
and a corresponds is seen between the results.
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Horváth, F., D̈ovényi, A., Szalay, and Royden, L.H., 1988, Subsidence, thermal
and maturation history of the Great Hugarian Plain, Pannonian basin - a study in
basin evolution, in, Royden, L.H. and Horváth, F., ed., AAPG Memoir, v. 54, p.
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APPENDIX A (OPTIMAL STEP HEAT FLOW HISTORY)

Integral (5) becomes

I0(x) =
1

k

(
ek(1− x) − 1

)
≈ 1

k
ek(1− x) (16)

for a constant heat paleo heat flowq(τ) = 1. VR in this case is then

ln(%Ro) = plnI + plnt0 + pbI + r

= pk(1− x) + pln(t0/k) + pbI + r (17)

which shows that ln(%Ro) becomes a line except forx close to1. The integral
(5), in case of a step-function, is

Is(x) =
∫ τ1

x
ekq1(τ − x)dτ +

∫ 1

τ1
ek(τ − x)dτ (18)

for x < τ1. When the integralIs is a factorfI larger thanI0 at the base of the
basin (atx = 0) we have that

1

kq1

ekq1τ1 +
1

k

(
ek − ekτ1

)
≈ fI

1

k
ek (19)

which can be approximated as

1

q1

ekq1τ1 ≈ fIe
k (20)

because the factorfI may typically be of order10. The factorfI follows from the
corresponding VR-factorfR at the base of the basin, wherefR is the ratio of VR
from Is(0) over VR fromI0(0). The factorfI is therefore related tofR as
fI = (fR)1/p. Equation (15) follows by using ln on both sides of equation (20).

The situation when the integralIs(0) is a factorfI less thanI0(0) can be treated
by letting the two parts of the geohistory be counting for(1− w) andw of the
right-hand-sidefI I0(0), wherew is a unit weight. When

1

k

(
ek − ekτ1

)
= wfI

1

k
ek (21)

we get that

τ1 = 1 +
1

k
ln(1− wfI) (22)
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The first part of the geohistory is then(1− w)fI I0(x), which gives that

q1τ1 ≈ 1 +
1

k
ln((1− w)fI) (23)

or

q1 ≈ k + ln((1− w)fI)

k + ln(1− wfI)
(24)

Both τ1 andq1 is then parameterized by the unit weightw. The weight cannot be
any number in the range0 to 1. The minimum valuew = 0 givesτ1 = 1 and
q1 = 1 + (1/k)ln(fI), and the upper limit forw is wmax = 1− (1/fI)e

−k. For
w = wmax we get thatq1 = 0 and thatτ1 = 1 + (1/k)ln(1 + e−k − fI). Using
w = wmax it is only necessary to include the last part of the geohistory (τ > τ1)
to obtain the wanted VR-value at the positionx = 0.

APPENDIX B (BACK-SUBSTITUTION)

It is now assumed that there exists a piecewise constant heat flow history that
gives the functionI(x). The burial history is discretized as shown in figure 8,
where time (τ ) and (x) are discretized with the same step size. The time of
depositionτi is the same as the positionxi, and the heat flow isqi in the interval
τi−1 to τi. There aren steps of size∆x = ∆τ = 1/n, (see figure 8). The given
VR at eachxi position is transformed to an observedI-valueIobs,i.

The most recent piece in the heat flow history (qn) is found fromI-observation
Iobs,(n−1), by solving for the heat flow from the equation

∫ 1

xn−1

ek(τ − x(n−1))qn dτ = Iobs,(n−1) (25)

or
1

kqn

(
ek∆τqn − 1

)
= Iobs,(n−1) (26)

This is the same as solving(eu − 1)/u = Iobs,(n−1)/∆τ for u, which has a
solution if Iobs,(n−1)/∆τ > 1.

The scheme above can be carried out iteratively untilq1 is found by using the
known heat flow stepsqn, qn−1, . . ., qi+1 to find heat flow stepqi. The
I-observation at the depthxi−1 is

Iobs,(i−1) =
∫ 1

xi−1

ek(τ − x(i−1))q(τ) dτ (27)

=
1

kqi

(
ek∆τqi − 1

)
(28)

+
n∑

j=i+1

∫ xj

xj−1

ek(τ − x(i−1))qj dτ (29)
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Notice that heat flow stepsqj with j = i + 1 to n are known in the sum (29). The
difference between the sum (29) and theI-valueIobs,(i−1) is denoted∆I, which
leads to the equation

1

kqi

(
ek∆τqi − 1

)
= ∆I (30)

for the next heat flow stepqi.

APPENDIX C (UNIQUENESS)

Uniqueness of the heat flow history is proved by assuming that there exist two
different heat flow functionsqa(τ) andqb(τ), which give the same integralI(x),
and where both functions are assumed to be smooth. The two functionsqa(τ)
andqb(τ) are compared on the interval[0, 1], and because they are unequal and
smooth, there must exist open subintervalsUi =< αi, βi >, whereqa > qb (or
qa < qb) on the entire interval. Theq-functions are equal on the closed interval
Vi = [βi, αi+1] betweenUi andUi+1, where the closed intervalsVi may be just
one point,βi = αi+1. (Such single points may be where the difference
qa(τ)− qb(τ) changes sign.) It is assumed that there is a finite numbern of
pointsαi andβi, whereβ0 = 0 andαn+1 = 1.

The proof begins with the last closed intervalVn+1 = [βn, αn+1], (which may be
just the pointβn = αn+1 = 1). For this interval we have (by definition) that
qa = qb. Let x be any point in the next intervalUn (towards the left), and we have
that ∫ 1

x
f(x, τ) dτ = 0 (31)

for x ∈ [0, 1], where

f(x, τ) = ek(τ − x)qa(τ) − ek(τ − x)qb(τ) (32)

The integral (31) becomes
∫ βn

x
f(x, τ) dτ = 0 (33)

becauseqa = qb for τ ∈ [βn, 1]. We have thatqa > qb (or qa < qb) for all τ ∈ Un,
and therefore

∫ βn
x f(x, τ) dτ 6= 0, which is a contradiction. The functionsqa and

qb are therefore equal on the entire open intervalUn.

The argument is repeated in the same way for the next closed and open intervals
to the left (Vi andUi) until last intervalV0, andqa(τ) = qb(τ) for all τ ∈ [0, 1].
Two heat flow historiesqa(τ) andqb(τ), which give the same VR, must therefore
be equal.
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TABLES, FIGURES AND CAPTIONS

Symbol Value Units Comment
a 0.1 1/oC see equation (1)
b −10.5 - see equation (1)
aI 0.06931 1/oC see equation (1)
bI −7.27805 - see equation (1)
p 0.2105 - see equation (2)
r −1.26 - see equation (2)
%s 2650 kg/m3 sediment matrix density
cs 1000 J/kgK sediment matrix heat capacity
λs 2.5 W/Km sediment matrix thermal conductivity
λf 0.63 W/Km fluid thermal conductivity matrix
φ0 0.45 - surface porosity
zc 2500 m compaction depth

Table 1.
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CAPTIONS

Table 1: The parameters are explained in the text, see the given equation.

Figure 1: The paleo heat flow as a step function.

Figure 2a: The modeled VR for four different heat flow histories that all match a
VR observation at the base of the well (x = 0). The heat flow histories are step
functions with a step atτ1 = 0.4, 0.6, 0.8 and1. The observed VR at the base of
the well is a factor1.1 higher than the VR obtained from using the reference heat
flow for the entire geohistory.

Figure 2b: The same as plot 2a where the VR values are plotted as ln(%Ro).

Figure 2c: The optimal paleo heat flow histories that give the modeled VR shown
in figure 2a and 2b. The dashed lines show the heat flow histories given by the
approximation (15). The approximation is poor forτ1 < 1/2.

Figure 3a: The modeled VR for four different heat flow histories that all match a
VR observation at the base of the well (x = 0). The heat flow histories are step
functions with a step atτ1 = 0.4, 0.6, 0.8 and1. The observed VR at the base of
the well is a factor1.5 higher than the VR obtained from using the reference heat
flow for the entire geohistory.

Figure 3b: The same as plot 3a where the VR values are plotted as ln(%Ro).

Figure 3c: The optimal paleo heat flow histories that gives the modeled VR
shown in figure 3a and 3b. The dashed lines show the heat flow histories given by
the approximation (15). The approximation is poor forτ1 < 1/2.

Figure 4a: The modeled VR for two different histories that both match a VR
observation at the base of the well (x = 0). The heat flow histories are step
functions with a step atτ1 = 0.92 and1. The observed VR at the base of the well
is a factor0.9 less than the VR obtained from using the reference heat flow for
the entire geohistory.

Figure 4b: The same as plot 4a where the VR values are plotted as ln(%Ro).

Figure 4c: The optimal paleo heat flow histories that give the modeled VR shown
in figure 4a and 4b. Notice that it is sufficient to apply the reference day heat
flow for just the last part of the burial history to achieve the observed VR at the
base of the well. The approximate heat flow histories match almost exactly the
optimal heat flow histories.

Figure 5: The burial history of a well in the North sea.
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Figure 6a: The VR-observations (open squares) plotted as ln(%Ro) of depth are
following a linear trend.

Figure 6b: The present day geotherm is slightly curved because the average
thermal conductivity increases with decreasing porosity.

Figure 7a: The VR observations (open squares) plotted against the modeled VR
for three different heat flow histories. The heat flow histories have a step at0 Ma,
30 Ma and60 Ma before present.

Figure 7b: The root-mean-square deviation between the VR observations and the
modeled VR as a function of the step size in the heat flow history.

Figure 7c: Three heat flow histories that have a step at0 Ma, 30 Ma and60 Ma
before present.

Figure 7d: Curve (a) is the optimal step sizeq1 as a function of the time of the
step. Curve (b) is an approximate step size obtained by using equation (15).

Figure 8: The burial history is divided inton parts, where the heat flow is
constant in each part.
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