
0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

Extending the UML Statecharts Notation to

Model Security Aspects

MOHAMED EL-ATTAR, HAMZA LUQMAN

Information and Computer Science Department

King Fahd University of Petroleum and Minerals

P.O. Box 5066, Dhahran 31261, Kingdom of Saudi Arabia
melattar@kfupm.edu.sa, hluqman@kfupm.edu.sa

PÉTER KÁRPÁTI

Institute for Energy Technology

P.O. Box 173, NO-1751

Halden, Norway
Peter.Karpati@hrp.no

GUTTORM SINDRE

Department of Computer and Information Science

Norwegian University of Science and Technology

Trondheim, Norway
guttors@idi.ntnu.no

ANDREAS L. OPDAHL

Department of Information Science and Media

University of Bergen

Bergen, Norway
Andreas.Opdahl@uib.no

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 2

Abstract

Model Driven Security has become an active area of research during the past decade.

While many research works have contributed significantly to this objective by extending

popular modeling notations to model security aspects, there has been little modeling

support for state-based views of security issues. This paper undertakes a scientific

approach to propose a new notational set that extends the UML (Unified Modeling

Language) statecharts notation. An online industrial survey was conducted to measure

the perceptions of the new notation with respect to its semantic transparency as well as

its coverage of modeling state based security aspects. The survey results indicate that the

new notation encompasses the set of semantics required in a state based security

modeling language and was largely intuitive to use and understand provided very little

training. A subject-based empirical evaluation using software engineering professionals

was also conducted to evaluate the cognitive effectiveness of the proposed notation. The

main finding was that the new notation is cognitively more effective than the original

notational set of UML statecharts as it allowed the subjects to read models created using

the new notation much quicker.

Keywords Statecharts • Security Modeling • Extended Notation • Industrial Survey • Subject-Based

Experiment

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 3

1 Introduction

Security is nowadays an indispensable quality of IT-systems. Traditional software development

focuses on developing business-related functionality while leaving security as an afterthought.

Security is addressed at the final stages of development by patching a system with generic defensive

mechanisms, such as Intrusion Detection Systems, cryptographic components and firewalls.

However, software systems are increasingly becoming more complex, connected and extensible.

These properties are like a double-edge sword. On one hand they provide greater potential for what

software systems can actually achieve and the services they provide. On the other hand it increases

the risk of the system being compromised by attackers and it renders conventional methods of

addressing security concerns insufficient [Jürjens, 2005]. A secure software engineering process

needs to be deployed in order to address security needs of complex systems. Secure software

engineering prescribes that security concerns should be addressed as early as possible in the

development life cycle [Dubois and Wu, 1996]. Proper secure software engineering should begin at

the requirements engineering phase, resulting in security mechanisms being designed into the system.

Having security designed into a system, with a strategy of defense in depth [Stytz, 2004], will make

the system less vulnerable to attack. Systems developed using secure software engineering

approaches are no longer solely reliant on external generic defensive mechanisms.

The UML [OMG, 2011] is the de-facto modeling language for developing object-oriented software

systems. UML provides a catalogue of different requirements and design artifacts than can be used to

model the requirements and design of a system using different views and perspectives. According to

the latest version of the UML (version 2.4.1) [OMG, 2011], the diagrams provided by the UML still

do not address important security related semantics. Consequently, UML diagrams lack notational

constructs that can be used to accurately communicate and model security related semantics. This

lack of preciseness can lead to confusion and misinterpretation during the requirements and design

phases, ultimately leading to the developing of an insecure system. Nowadays, an insecure system is

most likely deemed useless even if a system performs its business related functionality flawlessly.

To counter this limitation of the UML, many research works were directed towards extending UML

diagrams with notational constructs that model security aspects [Jürjens, 2005; Jürjens, 2002; Katta

et al., 2010; Lodderstedt et al., 2002; Mouratidis and Giorgini, 2007; Sindre, 2005; Sindre, 2007;

Sindre et al., 2002; Røstad, 2006]. Other research works were directed towards devising security

modeling techniques and notations that were not based on the UML [Amoroso, 1994; Hassan et al.,

2009; Kárpáti et al., 2010; Lin et al., 2003; Schneier, 1999; van Lamsweerde, 2004].

The abovementioned extensions offer various useful perspectives for security analysts. As part of

effective security analysis, it is important to support state-based security analysis techniques. It can

be useful for security analysts to have a state-based perspective of security issues. This would likely

be the case when analyzing systems with state-dependent behavior. However, except UMLsec

[Jürjens, 2005], which partially offers some security extensions related to statecharts, the modelling

techniques in the literature so far have integrated security aspects into notations that do not model

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 4

state based behavior. The notational extensions that UMLsec offers for statecharts are also limited.

There are stereotypes that can be attached to UML diagrams (for instance state diagrams), giving

security-related restrictions such as "data security" or "no down-flow", indicating that confidential

information should not leak. However, UMLsec does not offer any stereotypes to distinguish

between different types of states. From a security perspective, a major distinction here would be

between "normal" states (when the system is not attacked or compromised in any way), and abnormal

states, where the system could be, e.g., vulnerable, threatened, compromised or recovering from an

attack. The ability to easily distinguish different types of states would be useful both for security

experts, to help them target their efforts, and to other stakeholders to heighten their awareness of

security challenges. As long as states are not explicitly distinguished, every state in a statechart

would visually look the same, except that the name labels might indicate some states to be more

critical than others. Such distinctions would be much more difficult to spot, especially in large

statecharts.

The ability to include security concerns in statecharts or to use the modelling of states to analyze

security vulnerabilities has been seen as interesting [Jürjens, 2005; El Ariss et al., 2011; Balzarotti et

al., 2007], and security-related distinctions between states - such as normal, vulnerable, and

compromised states, have been proposed by, e.g., [Krsul, 1998; Arbaugh et al., 2000], though in

these works not in the context of diagram visualization. Many security vulnerabilities are state

dependent [Arbaugh et al., 2000; Balzarotti et al., 2007], i.e., the vulnerability exists only in a certain

state or can only be exploited when the system is in a certain state. For instance, a time-of-check,

time-of-use (TOCTOU) race condition vulnerability can only be exploited in the time interval

between check and use, and a vulnerability for which a patch has been distributed may only be

exploited until the patch is installed. Due to this temporal nature of many vulnerabilities, it is

interesting to analyze them from a state-transition perspective. Sometimes the vulnerabilities do not

result from a single insecure state in one part of the system, but from a combination of several

weakened states in different parts, so that the vulnerability can only be fully understood from a

thorough analysis of possible concurrent system behaviours [Balzarotti et al., 2007]. For example,

real-life hacker intrusions such as the ones described in [Mitnick and Simon, 2009] are usually

complex and opportunistic, seeking out and exploiting such insecure states - often the results of

multiple simultaneous weaknesses - in certain parts of a system to create new and possibly more

severe vulnerabilities elsewhere, which can then be exploited further in subsequence intrusion steps.

Whereas existing work [Katta et al., 2010] have extended UML Sequence Diagrams to be able to

describe such complex attack chains in more detail, Security statecharts offer an even more detailed

way of describing the complex dynamics of security threats, providing a bridge between informal,

user- and function-oriented misuse cases [Sindre et al., 2002] and formal systems analysis. In

addition to offering to understand security vulnerabilities and intrusions better, security extensions to

statecharts also offer to support risk and impact analysis, by providing a way of analyzing the

consequences of security violations and how a security breach cascades, likely causing further

damage to a system and its environment.

In this paper we thus attempt to tackle this issue by undertaking a theoretical approach to extend the

popular UML statecharts notation with a new set of notational constructs. Such a proposal must of

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 5

course be carefully justified. There is a number of modeling languages around, so one can fairly

question the need for yet another one. In an investigation by Fettke [Fettke, 2009] it was shown that

users (or potential users) of modeling languages felt that the plethora of modeling methods was a

barrier to success. In that light, it is fair to ask if yet another language proposal, as in the current

paper, is a justified effort. However, Fettke also found the two most important success factors of

conceptual modeling to be the expressiveness of the modeling language, and its ability for multi-

perspective modeling. Hence, providing extensions to an existing modeling language, and thus

increasing its expressiveness − which is the proposal here − would be more in line with these

findings than proposing an entirely new modeling language. Our notation extends one particular

diagrams of the UML, which offers a multi-dimensional suite of diagrams. The essential challenge is

whether the proposed extensions are important enough, insufficiently covered by available modeling

languages, and whether they can be used effectively by system developers while performing relevant

tasks. An argument in favor of distinguishing abnormal states (e.g., vulnerable or compromised) from

normal states, is that this can help developing systems with a better defense in depth [Stytz, 2004]. In

an ideal world, if a system manages to fulfill all its security requirements (as specified for instance

through UMLsec stereotypes [Jürjens, 2005]) it should never end up in e.g. a "compromised" state.

However, it is well-known that more or less successful security attacks happen all the time. Having

the ability to keep on defending even if one line of defense is broken, or if part of the system is

compromised and under control of an attacker, a system may be better able to limit the harm of

partially successful attacks. Notational extensions thus to highlight abnormal yet sometimes

unavoidable states may help developers find new threats. While the above text argues for the

intuitive importance of distinguishing different types of security-related states in a statechart, the

more detailed argument that this proposal is sufficiently different from existing ones must be dealt

with in the discussion of related work, and the claim that developers would be able to use the

extended notation will be backed by empirical data presented later in the paper.

Model comprehension and construction are two distinct activities. Therefore, they would require two

separate experiments to properly investigate; they cannot be combined together into one experiment.

This paper focuses on the model comprehension aspect of the new notation. We believe that this

conjuncture should be investigated prior to the model construct aspect simply because if the new

notation cannot be effectively read, then there is no point in advocating its use to perform model

construction.

The remainder of this paper is organized as follows: Section 2 discusses related work on model

driven security, with a general overview of other security-related graphical modeling techniques, and

a more detailed comparison with UMLsec, which is the most closely related one since it also

addresses statecharts. Section 3 presents the theoretical approach undertaken to develop the new

notational constructs. In Section 4, a real-world case study pertaining to the AndroidOS.FakePlayer

malware affecting mobile phones is used to demonstrate the application and expressiveness of the

new notation. In Section 5 we present the results of an industrial survey that was conducted using

professional security analysts to determine the perception and coverage of the proposed notation. In

Section 6 we present an empirical study that evaluates the cognitive effectiveness of the new notation

using software engineering professionals as subjects. Finally, Section 7 concludes and discusses

future work.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 6

2 Related Work on Model Driven Security

Graphical models have been used in secure software engineering for a long time. In the related area

of safety analysis, fault trees were introduced already the early 1960's [Ericson, 1999]. In the 1990's

similar approaches were proposed in the security area, namely Threat Trees [Amoroso, 1994] and

Attack Trees [Schneier, 1999]. More recently such tree notations have been extended further, for

instance to attack-defense trees [Kordy et al., 2011] showing both the envisioned attacks and their

possible countermeasures. Common for all these tree-based techniques is a top-down analysis

focusing on events, where an unwanted or maybe even disastrous top level event is decomposed to

smaller events that may cause it through AND / OR gates. A finished tree will thus depict how an

unfortunate combination of small leaf node events could make the top-level event come true. The

naming of an event may implicitly indicate states and state transitions, e.g., in the attack tree example

of a burglar opening a safe, the event "Learn Combo" would implicitly hint about a state change from

"Combo secure" to "Combo compromised". However, states and state transitions are not shown

explicitly in these trees, so the view they give of a system is very different from that of a statechart,

and the usage of these models in the system analysis and design process will thus also be very

different. Hence, trees and statecharts supplement each other rather than being competitors.

In the new millennium a number of graphical modeling languages have been proposed to incorporate

security considerations in the mainstream requirements and design effort of software systems. Mostly

these have been adaptations of already existing modeling languages, providing them with security-

related concepts and notation extensions. Many of these proposals looked at various languages in the

UML family of modeling languages. An early proposal was misuse cases [Sindre, 2005] extending

UML use cases, with further extensions by [Røstad, 2006] to capture vulnerabilities and insider

threats. A notable proposal specifically targeting model-driven development was UMLsec [Jürjens,

2005], which is a set of UML profiles providing security extensions for several different types of

UML diagrams, e.g., deployment, class, sequence, activity, and state diagrams. UMLsec has recently

been updated to conform to UML2.3 in a profile called UMLsec4UML2 [Schmidt and Jürjens,

2011]. Other proposals including UML profiles are SecureUML [Lodderstedt et al., 2002] and the

work by Burt et al. [Burt et al., 2003]. Whereas UMLsec provides profiles for several different UML

diagrams, these two other works focus on profiles related to class diagrams, and specifically targeting

access control. In a follow-up work the originators of SecureUML presented an approach for

modeling security of process-oriented systems [Basin et al., 2003]. In that paper, a meta-model

including states is shown as Figure 4, but the purpose of that meta-model is to support the capturing

of the system process as a hierarchy of states for the integration with SecureUML, thus not

representing a security extension of state diagrams as such.

Other more recent UML-related language extensions include mal-activity diagrams [Sindre, 2005]

extending UML activity diagrams, and misuse sequence diagrams [Katta et al., 2010] to extend UML

sequence diagrams. Outside the UML family, primary examples of language extensions for security

are abuse frames [Lin et al., 2003], Secure i* [Liu et al., 2003], KAOS SE (Knowledge Acquisition

in automated Specification – Security Extension) [van Lamsweerde, 2004], Secure Tropos

[Mouratidis and Giorgini, 2007], and misuse case maps [Kárpáti et al., 2010]. For the latter, it should

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 7

be noted that although the name might sound related to UML, they are an extension of use case maps

[Buhr et al., 1998], which is a notation very different from use cases.

Of all the proposals mentioned above, the only one to offer security extensions for statecharts is

UMLsec [Jürjens, 2005]. However, the extensions offered by UMLsec are quite different from those

targeted in this paper. UMLsec defines a number of security related stereotypes, such as "secrecy",

"secure dependency", "critical", "no down-flow", "data security", and "fair exchange", and these may

be added to various UML diagrams. Such stereotypes imply security requirements, and used with a

statechart they will constrain the allowed behavior of the system. The purpose is then to analyze the

statechart to see if its current definition violates the stereotype. An example given in [Jürjens, 2002]

(p.420) (see Figure 1) is a small example of a banking application, the diagram with two states has

been stereotyped with «no down-flow». This (and other UMLsec) stereotypes are not associated with

single states, but with the state diagram as a whole. The «no down-flow» stereotype accompanied by

the tagged value {secret={wb,rb}} just underneath it, means that confidential information should not

leak by being communicated through less secure operations. An analysis of the given diagram, as

explained in Jürjens' example, shows that there is a potential leak, as parts of the information of a

secure method called rb() is also made available through a less secure method called rx(), both these

methods being attached to state transitions in the diagram. From this it can be seen that UMLsec

stereotypes enhance statecharts by formally stating requirements that will constrain the allowed

behaviour of the statecharts, and help the analyst discover defects in the model that might violate

these specified requirements. This is clearly a useful technique for the systems analyst, but it covers a

purpose quite different from the stereotypes proposed in this paper. Our stereotypes are connected

directly to state nodes in a diagram, not to a larger collection of state nodes, and their purpose is not

to imply requirements to constrain the state behavior, but to distinguish between different types of

states. Of course, if a state is stereotyped as "compromised", this will be a clear hint for the analyst to

specify requirements that can help the system avoid getting into that state − but the stereotype itself

does not say what these requirements might be. In that sense, our proposal is on a higher level of

abstraction than UMLsec. Also, just as important as to avoid getting into a compromised state, such a

statechart can also indicate where the system should go next, if getting into a compromised state

anyway. Hence, rather than being competitors, UMLsec and the proposal in this paper could be seen

as complementary. It would be possible to use the stereotypes to be proposed in this paper to

distinguish between different types of states, and at the same time use UMLsec stereotypes to

formulate more detailed requirements for the possible transitions between the states.

In addition to this conceptual difference in what the stereotypes are used for, there is also an obvious

notational difference between UMLsec and the proposal in this paper. UMLsec uses standard UML

statechart notation, only amending it by textual labels for stereotypes such as «no down-flow» and

corresponding tagged values like {secret={wb,rb}} from the discussed example. Of course there is

nothing wrong with using the standard notation as much as possible, and this probably was a good

choice for the intended usage of UMLsec. The extensions to statecharts proposed in this paper,

however, have a quite different purpose. Along with the wish to distinguish abnormal states from the

normal ones follows an intuitive wish to make the abnormal states stand out in the diagram, by

means of graphical highlighting. As with the conceptual basis, the notational elements of UMLsec

and the current proposal are also complementary and could be used together. Empirical

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 8

investigations about using them together would be interesting, but are beyond the scope of this paper,

as it seems natural to first evaluate the proposed extension alone.

Fig. 1. Example UMLsec diagram from [Jürjens, 2002]

Another main advantage of using the new notation is that it can be specified in the underlying

metamodel of statecharts, hence enabling more in-depth formal analysis of the models. Formal

semantics incorporated in a metamodel can will allow the development of syntax rules that stem of

the security theories. Facilitating in-depth modeling analysis can allow modelers to automatically

identify various issues in their models, for example, vulnerable or threatened states that are not

eventually mitigated. A more specific metamodel can be used to detect syntax errors, mistakes and

anti-patterns. A formalized model can also be used to define and collect various security metrics. The

formal semantics of the proposed notation inherits (and extends) the formal semantics of the standard

UML notation.

3 Extended Statecharts Notation

This paper proposes an extended statechart notation to enable visualization of security aspects such

as threats and vulnerabilities. The original statechart notation only defines one type of state and

event. The type of state and event is therefore generic in nature and it is most commonly used to

model system-related behavior. Security analysts who need to use statecharts are limited to using the

current notation. If modelers elected to model security aspects using the current notation will contain

many instances of symbol overload. Symbol overload is defined as the use of one notational

construct to visualize multiple semantic constructs [Moody, 2009]. Symbol overload is a very serious

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 9

drawback in any notation as it leads to ambiguity and the potential for misinterpretation [Goodman,

1968]. As such it is useful to be able to model security aspects in statecharts using new notation. The

design of a new software engineering notation (or the extension of an existing notation as is the case

in this paper) should not be ad-hoc or based solely on aesthetics. The design of a notation is a

predominant factor of its success (widespread adoption) or failure. Therefore, notation should be

designed based on scientific principles. The approach undertaken in this paper is two-phased (see

Figure 2). In the first phase, the required semantic constructs are introduced by identifying

phenomena or aspects from the problem domain (Section 3.1). In the second phase, new visual

constructs are introduced (Section 3.2) based on the semantic constructs developed in the former

phase.

Fig. 2. Overall process required to develop the new notation [Moody, 2009]

3.1 Phase 1: Defining the Necessary Semantic Constructs

This paper aims to extend the statechart notation to model security aspects and hence the domain

considered in this paper is the security domain. During this phase an ontological analysis of the

security domain is performed in order to identify the new required semantic constructs. When

introducing new semantic constructs, the goal is to achieve a one-to-one mapping between

ontological and semantic constructs otherwise any of the following four anomalies can occur [Wand

and Weber, 1990]:

 Construct deficit occurs when a particular ontological concept does not have a

corresponding construct in the notation.

 Construct overload exists when multiple ontological concepts can be represented by a single

notation construct.

 Construct redundancy exists when a single ontological concept can be represented by

multiple notation constructs.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 10

 Construct excess exists when a construct in the notation does not correspond to any

ontological concept.

A recent literature survey (in 2012) reveals that there exist many security ontologies, which can be

classified into eight different categories [Souag et al., 2012]. The ontologies considered in this

research work were limited to those listed as ―General Security Ontologies‖ since the aim is to

develop a generic notation to model generic security aspects for any domain. The main advantage of

considering ontologies in this category is that they capture most security aspects due to being

generic. Security ontologies in other categories contain a great deal of specificity pertaining to

particular security domains and hence were excluded from this study. Within the ―General Security

Ontologies‖ category, two security ontologies were identified. The first ontology is proposed by

Herzog et al. [Herzog et al., 2007], while the other ontology is proposed by Fenz and Ekelhart [Fenz

and Ekelhart, 2009]. A security extension of Statecharts has to couple the most central concepts from

security ontologies such as Herzog's [Herzog et al., 2007] with the most fundamental Statechart

constructs: state, transition/even and initial and final node. Of Herzog's top-level security concepts

(Threat, Countermeasure, Vulnerability, DefenseStrategy, Product, Asset, Model, NaryRelation,

Goal, TimeOfEmployment), we identified the two first as possible subtypes of transitions (or events),

leading to two new semantic constructs: Threat event and Countermeasure event. We identified the

next two concepts from Herzog's ontology, as well as Threat, as possible subtypes of states, leading

to three more semantic constructs: Threat state, Vulnerability state and Defensive state. We also

devised specific subtypes of initial and final nodes for describing threats. The new semantic

constructs that were thus identified are summarized and defined in Table 1, along with three

additional types of state that are useful for describing security breaches: Compromised state,

Quarantine state and Recovery state. Based on the ontology by [Herzog et al., 2007], nine new

semantic constructs were identified that are related to state-based behavior. Other ontological

constructs that do not relate to state-based behavior were excluded. The new semantic constructs

have a one-to-one mapping with the ontological constructs. The new semantic constructs are outlined

and defined in Table 1.

Table 1 New security related semantic constructs for statecharts

Semantic

Construct

Definition

Threatened state A system reaches this state when exploitation is attempted while lacking the

necessary defensive mechanisms.

Vulnerable state A system reaches this state if it is vulnerable to an attack meaning that it lacks

the necessary defensive mechanisms to defend itself in case an attack occurs.

This state however does not imply that an attack is occurring or imminent.

Defensive state A system reaches this state when it is expecting or experiencing an attack. The

system executes the necessary defensive mechanisms to fend off attacks.

Compromised state This state indicates that the system has been compromised. It indicates that

damage has occurred and is still occurring.

Quarantine state A system reaches this state when damage from an attack cannot be recovered.

A system reaches this state as a measure of damage control.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 11

Recovery state If a system is compromised it can reach the ―Recovery‖ state to regain its

integrity. Once the system‘s integrity is restored, the system leaves this state

and goes back to a normal state.

Threat event An event that occurs with the intent to exploit or harm. These events try to

transition a system into a ―Vulnerable‖, ―Threatened‖ or ―Compromised‖ state.

Countermeasure

event

An event that occurs to prevent a potential attack or remedy the effect of an

attack. These events try to transition a system into a ―Defensive‖, ―Recovery‖

or ―Quarantine‖ state.

Initial threat node This initial node is used when the state machine is initiated due to a malicious

intent.

Final threat node This final node is used when behavior of the state machine ends while in a

―Compromised‖ state.

3.2 Phase 2: Developing the Necessary Graphical Constructs

In this phase, we introduce new graphical constructs to correspond to the nine semantic constructs

that were developed in the previous phase. Graphical notation design is ostensibly an issue of taste

and aesthetics. However, empirical studies have shown that the visual form of notations significantly

affects understanding especially by novices [Hitchman, 2002; Irani and Ware, 2003; Irani et al.,

2001; Masri et al., 2008; Nordbotten and Crosby, 1999; Purchase et al., 2002; Purchase et al., 2004].

Research has repeatedly shown that the form of representations has an equal, if not greater, influence

on cognitive effectiveness as their content [Larkin and Simon, 1987; Siau, 2004; Zhang and Norman,

1994]. In [Moody, 2009], a set of nine principles for designing cognitively effective visual notations

were presented (see Figure 3). These principles were synthesized from theory and empirical

evidence. Prior to presenting the notation evaluation of misuse case modeling, it is important to

present the justification of using the PoN instead of the Cognitive Dimensions (CDs) framework,

perhaps the closest to a theory of visual notation design that currently exists in the IT field

[Blackwell, 2009; Green and Petre, 1996]. The CDs framework is considered the predominant

theoretical paradigm in visual languages research. However, the CDs framework has theoretical and

practical limitations for evaluating and designing visual notations [Moody, 2009]. The limitations of

CDs framework with respect to being a scientific basis for evaluating and designing visual notations

are as follows:

 One of the main issues with CDs is that they do not have clear evaluation procedures or

metrics. Hence, users of the CDs can only apply it in a subjective manner [Dagit et at., 2006].

 The CDs are based solely on structural properties and hence they exclude visual

representation issues [Blackwell and Green, 2003].

 There is no notation evaluation support provided by the CDs as they simply define properties

of notations without indicating if they are either ―good‖ or ―bad‖ [Blackwell and Green,

2003; Green et al., 2006].

 The CDs framework only applies visual notations to as particular class of cognitive artifacts

and is not specifically focused on visual notations [Green et al., 2006].

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 12

 The dimensions are vaguely identified leading to confusion or misinterpretation or when

applying them [Dagit et at., 2006; Green et al., 2006].

 The CDs framework suffer from poorly defined theoretical and empirical foundations Green

and Petre, 1996].

 The CDs do not provide design guidelines and hence they do not support notation design.

Consequently, issues of effectiveness are excluded from its scope [Blackwell and Green,

2003; Green et al., 2006].

The CDs framework played a vital role in the development of the Physics of Notations. The Physics

of Notations can be considered as an advancement of the CDs framework, whereby the Physics of

Notations provide a more powerful domain-specific theory that has originated from the CDs

framework theory.

This phase requires an analysis of the relations between the new semantic constructs. An analysis of

the relations between the new semantic constructs and the preexisting ones is also required. These

analyses are a prelude to developing a visual language that conforms to the principles presented in

[Moody, 2009]. Table 2 presents the proposed new graphical symbols. Table 2 also presents the

proposed secondary notation for the new graphical symbols. A secondary notation is a notation form

that is optional rather than mandatory. Secondary notations are commonly devised to further clarify

the meanings of primary notation. Sections 3.2.1-- 3.2.9 present an evaluation of the proposed new

graphical symbols with respect to each of the nine principles stated in [Moody, 2009].

Fig. 3. The principles of designing cognitively effective visual notations [Moody, 2009]

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 13

Table 2 New and existing graphic symbols for statecharts

Semantic Construct Graphical Symbol Secondary Notation

Existing Notation

State

No specific secondary notation

stated by the UML.

Event
No specific secondary notation

stated by the UML.

New Notation

Threatened state

Vulnerable state

Defensive state

Compromised state

Quarantine state

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 14

Recovery state

Threat event

Countermeasure event

Initial threat node

Same as primary notation.

Final compromised node

Same as primary notation.

3.2.1 Principle of Semiotic Clarity

Analogous to ontological analysis, the principle of Semiotic Clarity states that there should be a one-

to-one mapping between semantic constructs and graphical constructs. Semiotic Clarity is therefore

considered to be the primary principle of Moody‘s nine principles [Moody, 2009]. Failure to satisfy

this principle results in one of the following four anomalies [Moody, 2009]:

 Symbol redundancy occurs when a construct can be represented by multiple graphical

symbols.

 Symbol overload occurs when two different constructs can be represented by the same

graphical symbol.

 Symbol excess occurs when a graphical symbol does not correspond to any semantic

construct.

 Symbol deficit occurs when a semantic construct does not have a corresponding graphical

symbol.

There are nine new symbols used to model the nine new semantic constructs while maintaining a

one-to-one mapping and hence satisfying the principle of semiotic clarity.

3.2.2 Principle of Perceptual Discriminability

The principle of Perceptual Discriminability is concerned with the ease and accuracy with which

different symbols from the same notational set can be differentiated from each other. A diagram can

be accurately interpreted only if its symbols can be accurately discriminated. A notation design

should aim to increase the visual distance between its symbols to maximize discriminability.

Discriminability is measured by the number and ranges of visual variables used. The greater the

differences of the number and ranges of visual variables used by different symbols, the greater the

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 15

visual distance. Figure 4 presents the eight elementary visual variables which can be used to decode

information [Bertin, 1983].

The shape variable is the most influential of all visual variables. Shape is the predominant factor

humans use to classify objects in the real world [Moody, 2009]. This means that different shapes are

perceived to present categorically different semantic constructs, while differences in other visual

variables are perceived to present different but somewhat similar semantic constructs. Therefore,

similar shapes should be used to represent the same or similar constructs. The ontological analysis

performed revealed a set of nine semantic constructs that can be classified into three categories:

states, events and pseudostates. All three of these semantic categories preexist in statecharts.

Therefore, it was clear to us that the new notation design should use the same three shapes for the

semantic categories; namely rounded rectangles for states, arrows for events and circles for

pseudostates (see Table 2). Not to be deterred by this limitation, the new notation design makes

effective use of other, also influential visual variables, namely color, brightness and size. A detailed

discussion about the utilization of these other visual variables is provided in Section 3.2.3.

Fig. 4. Visual variables

3.2.3 Principle of Visual Expressiveness

The principle of Visual Expressiveness is concerned with the absolute utilization of the graphic

design space. A notation is considered visually expressive if it utilizes a large number of visual

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 16

variables and uses a wide range of values (capacity) of each variable. This principle differs from the

principle of Perceptual Discriminability, which is concerned with the visual distance between

symbols within the same notation (pairwise comparisons). Although we did not use new shapes for

the new notation design, we were able to leverage three other visual variables. The new notation

makes use of the color, size and brightness variables. A discussion of the use of each variable is

provided below:

Color

Color is considered to be one of the most cognitively effective visual variables. Studies have shown

that the human visual system is highly sensitive to variations in color [Mackinlay, 1986; Winn,

1993]. Humans can accurately and quickly distinguish between different colors. However, if color is

misused it can have a misleading effect. The field of Color Psychology offers some clues about the

specific meaning of colors as perceived by humans. However, the field of Color Psychology has long

suffered with the inherent difficulties in properly controlling trials of color's effect on human beings

meaning that findings from the field cannot be generalized with certainty. As such, the use of color in

our design uses findings from Color Psychology that are reinforced by anecdotal evidence. Table 3

outlines the colors used in the new design:

Table 3 Colors used in the new notation

Color Rationale and Use in the New Notation

Red

From a sensory perspective, red is associated with love [Gorn et al., 1997], lust [Gorn et

al., 1997] and excitement [O'Connor, 2011]. However, from a functional perspective, red

is associated with negative issues. Red prompts a state of alarm. Red has already been

used in many security modeling languages, including misuse sequence diagrams [Katta et

al., 2010] and misuse case maps [Kárpáti et al., 2010], to model exploitation attempts

[Kárpáti et al., 2010; Katta et al., 2010]. Red is also used by the well-known Homeland

Security Advisory System (HSAS) color chart to indicate a ―severe‖ risk of an attack. Red

also indicates evil intent and therefore it is unanimously used as the color of the devil.

Therefore, the new notation design uses the color red to represent states of type

―Threatened‖, and to represent ―threat‖ events. The color red is also commonly used in

Risk Analysis matrixes. Cells that represent risk of high likelihood and high impact are

colored red.

Yellow

The color yellow is synonymous with caution. The HSAS color chart uses yellow as an

elevated threat level in comparison with the ―guarded‖ level, meaning that there is a

vulnerability but without there being an imminent or current threat as implied by the color

red. Therefore, the new notation design uses the color yellow to represent ―Vulnerable‖

states.

Blue

According to Color Psychology, blue means competence [O'Connor, 2011] and

masculinity [Gorn et al., 1997] from a sensory perspective, and it means high quality from

a functional perspective [Gorn et al., 1997]. The HSAS color chart uses blue to indicate a

―Guarded‖ state. Therefore, the new notation design uses the color blue to represent

―Defensive‖ states. The color blue is also used in the new notation to represent

―countermeasure‖ events.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 17

Black

According to Color Psychology, black indicates grief and fear [Gorn et al., 1997], and it

means costliness from a functional perspective [Gorn et al., 1997]. These meanings are in-

line with aspect of damage or harm that is currently taking place or has taken place. Black

is the negation of white, which indicates a pure healthy state [Gorn et al., 1997]. The color

black is used in many security modeling languages to indicate misuse, including misuse

cases [Sindre, 2005] and mal-activity diagrams [Sindre, 2007]. Therefore, the color black

is used in the new notation to model ―Compromised‖ states. The color black is also used

to model ―Quarantined‖ states as quarantine is a damage control countermeasure meaning

that damage has already happened.

Grey

In the new notation design the color grey is used to model ―Recovery‖ states. The color

grey is chosen for this purpose simply because grey is the midway color between white

and black. This indicates that the system is currently progressing towards a healthy normal

state (white) from a negative state (black).

White Normal state.

A benefit of using the colors red, yellow and blue is that they are three primary colors thus exhibiting

high discriminability. The color blue is often considered to be the opposite of red (such as

representing hot and cold in water taps), which more accurately reflects the different meanings of the

states. The color green is also often considered to be the opposite of red. However, the green also

often implies that conditions are satisfactory, which is not the case in ―Defensive‖ states and

―countermeasure‖ events. Another advantage of not using the color green is to avoid the most

common color-blindness problem, which is the inability to distinguish red from green.

We ultimately hope that the new notation, or at least a subset of the new notation, becomes

standardized by the OMG (Object Modeling Group) [OMG, 2011]. One of the main issues that OMG

has against adopting notation that utilizes color is its readability by people who are color-blind. We

argue that the color-blind may still find the new notation useful since it uses many visual variables

other than color, such as shape and brightness. It is highly unlikely that color-blind people will find

models created using the new notation actually less readable. Of course, another empirical study is

required to provide the proof.

Size

Size is an ordinal visual variable which can be leveraged to encode different information. For the

―Defensive‖, ―Quarantine‖ and ―Recovery‖ states, a thicker boundary is used to signify a protected

state. In this sense, size is used to indicate different protection levels. To avoid confusion with the

existing UML notation of active objects, the borders of these states are double-padded, which also

signifies extra protection. The boundary size of the ―Threatened‖, ―Vulnerable‖ and ―Compromised‖

states are the same as the existing notation for a state. This design decision is made to indicate that

the system is not receiving any protection while in any of these states. The arrow sizes of the

―Threat‖ and ―Countermeasure‖ events are bigger than a regular event. In this sense, size is used for

emphasis, whereby ―Threat‖ and ―Countermeasure‖ events should be emphasized given the

importance of security in a system. The ―Threat‖ and ―Countermeasure‖ events both share the same

size to indicate that they are of equal importance. Note that the arrows were not made much thicker

as they may clog the overall view of the diagrams.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 18

Brightness

The term brightness is commonly interpreted as the strength of a particular color. However in the

relative literature, the term brightness is used to refer to solid vs. dashed lines. The brightness visual

variable is used to indicate the lack of protection in the ―Threatened‖ and ―Vulnerable‖ states. These

state boundaries are depicted using dotted lines rather than solid lines. The use of dotted-lines implies

gaps and hence vulnerabilities in a defense. Dotted-lines have been used in other security modeling

languages to indicate vulnerability, such as misuse sequence diagrams [Katta et al., 2010] and misuse

case maps [Kárpáti et al., 2010]. The ―Compromised‖ state is also open to further attacks, however,

when damage is already occurring or has occurred, then encoding information about vulnerability is

useless because the current situation has exacerbated. This concept emphasized visually by the

―Compromised‖ state, whereby if it would have had a dotted-line boundary, then the boundary would

be invisible given the black background.

3.2.4 Principle of Semantic Transparency

The principle of Semantic Transparency refers to the use of graphical representations whose

appearances are suggestive of their meaning. For example, using an icon of a medical doctor in a use

case model is a clear indication that the actor represented by the icon is a real-world medical doctor.

Using semantically transparent graphical representations speed up recognition and improves

intelligibility, especially for novice users [Britton and Jones, 1999; Masri et al., 2008]. However,

caution should be exercised when using semantically transparent graphical representations as a

wrong graphical representation can actually be misleading rather than helpful, which is worse than

not having any semantically transparent graphical representations in the first place. Some graphical

representations can be cultural or domain dependent. The design of the proposed notation extension

aims to be globally applicable and therefore it intentionally avoids using representations that are

better understood in some countries than others. For example, a red-cross symbol is used by hospitals

in Christian countries, while a red half-moon symbol is used by hospitals in Muslim countries.

However, the ‗H‘ sign is a common sign for hospitals in all countries.

Icons

The design of the new notation makes use of icons. However, icons are only limited to being a

secondary notation. The rationale behind this design decision is that graphical icons require a high

degree of artistic skills which is unlikely to be possessed by users of software engineering notations.

Consequently, mandating the use of graphical icons will hinder the adoption and the standardization

of the new notation. If tool support is provided for the new notation then using icons will have an

added value. In fact, icons and 3D shapes have been shown to be cognitively and perceptually very

effective [Bar and Neta, 2006; Irani and Ware, 2003; Winn, 1993]. The following icons are used in

the new notation:

 A shield: A shield is a sign that is synonymous with defense. It is used by popular antivirus

and firewall software to indicate that the operating systems and other virtual assets are

protected from intrusion. The shield is therefore used to annotate the ―Defensive‖ state and

―Countermeasure‖ event symbols.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 19

 A caution traffic sign: A caution traffic sign is used to draw attention to a potentially

hazardous situation. However, as it is the case with actual traffic laws, a caution traffic sign

does not mandate or forbid any particular action; it only warns and recommends caution. The

caution traffic sign shield is therefore used to annotate the ―Vulnerable‖ state symbol in order

to draw attention for countermeasure but not in the severe sense as an imminent threat.

 A lightning bolt sign: In the real-world, a lightning bolt is a scary (for many people) and life

threatening phenomenon. A lightning bolt is therefore commonly used to indicate threat and

danger in general. The lightning bolt is used to annotate the ―Threatened‖ state and ―Threat‖

even symbols. The lightning bolt sign is used in KAOS models to represent conflicting

requirements meaning that each requirement poses a threat to the other [Dardenne et al.,

1993].

 A skull and bones sign: This sign is indicative that damage has already occurred or is

currently occurring.

 A hospital sign: Hospitals are a place for healing. Once a patient is healed they no longer

stay at the hospital. Analogously, once recovery is complete the system transitions to another

state that is not concerned with recovery. Therefore, the hospital sign is used for the

―Recovery‖ state symbol.

 The caution tape sign: Caution tape is used to quarantine an area where an incident has

occurred. The tape is strung to prevent any further incidents occurring whether intentionally

or unintentionally. The caution tape sign is used to annotate the ―Quarantine‖ state symbol.

Double-padded state borders

Padding is a natural mechanism to repel and defend against external entities such as cold weather or a

flooding. The ―Defensive‖, ―Quarantined‖ and ―Recovery‖ states have double-padded borders. In

these states, protection is applied to repel and defend against further attacks.

3.2.5 Principle of Dual Coding

While the use of text in diagrams is ostensibly forbidden, it is actually encouraged to use text to

supplement, not replace graphics. According to dual coding theory, using a combination of graphics

and text is more effective than using either of them alone [Paivio, 1986]. Therefore, a general

guideline to text use in notation is that text should be used as a form of redundant coding to reinforce

and clarify meaning. Text should not be used as the sole basis for differentiating between symbols.

The new state types introduced in the new notation include stereotypes that indicate their type. The

use of stereotypes was chosen as it is a formal extension mechanism provided by the UML.

However, in order to determine whether or not the principle of dual coding is adhered to or violated,

an evaluation of the entire notation (new and original) is necessary. This evaluation is performed by

ridding all symbols of all text then determining if they can be distinguished from one another. The

result of this evaluation has shown that each symbol in the entire notation is distinguishable without

text.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 20

3.2.6 Principle of Graphic Economy

The principle of Graphic Economy refers to the number of different symbol categories used in a

notation. Studies have shown that the human ability to discriminate between perceptually distinct

symbols is around 6 categories [Miller, 1956], which define an effective upper limit for graphic

complexity. It is beyond the scope of this paper to evaluate the original UML statechart notation with

respect to the Graphic Economy principle (which it does satisfy because it includes only 3

categories). Instead, the focus here should be to evaluate whether the newly added notation makes the

entire notational set exceed the upper limit of 6 categories. However, counting the number of

categories is not necessary since all the symbols introduced in Table 2 belong to one of three

categories in the original notation. Therefore, with the new notational set included, the number of

perceptually distinct symbols remains at 3. If icons were included in the evaluation then the count

would reach 4, which is still within the upper limit. However, icons were assigned as secondary

notation so they will not count.

3.2.7 Principle of Complexity Management

The principle of Complexity Management states that a notation should contain mechanisms within its

visual vocabulary to effectively control complexity. The new notation, namely the new states types

introduced, inherit the complexity mechanisms already defined by UML statecharts. UML statecharts

define the concept of superstates. A superstate is essentially a container of other state machines. This

means that statecharts containing the new state types can have their complexity managed effectively.

The semantic concept of superstates can be formally added to the newly added state types.

3.2.8 Principle of Cognitive Integration

The principle of Cognitive Integration states that a notation should provide mechanisms to achieve

conceptual and perceptual integration. Conceptual integration is a mechanism that will allow the

reader to fit statecharts within an overall cognitive map of the whole system. Perceptual integration is

a mechanism that will allow the reader to effectively navigate between diagrams. The new notation

does not explicitly introduce any new mechanisms to achieve conceptual and perceptual integration.

The new notation inherits conceptual integration mechanisms from the original notation and the

UML in general. For example, the UML allows use cases to be depicted as a package containing a

state machine that visualizes its textual behavior. UML lacks any mechanisms for perceptual

integration. The UML also has Interaction Overview Diagrams (IODs) which are essential activity

diagrams but whose nodes can contain other types of interaction diagrams. According to the UML,

nodes in IODs do not contain statecharts. IODs were however formally extended by [Whittle, 2010]

to contain statecharts. To date, this extension has not been standardized by the UML.

3.2.9 Principle of Cognitive Fit

The principle of Cognitive Fit states that different visual dialects should be used for different tasks

and audiences. A visual dialect is a visual form that represents a certain set of semantic constructs.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 21

Some notations can exist in multiple visual dialects such as Data Flow Diagrams (DFDs). DFDs exist

in two dialects: the DeMarco dialect [DeMarco, 1979] and the Gane and Sarson dialect [Gane and

Sarson, 1979]. Both dialects are semantically equivalent. Certain tasks may be easier with one

particular dialect than the other. A particular dialect may be easier to understand by novices than

another. Therefore, different visual dialects should be used when most suitable. Although there are

competing notations that are semantically similar to statecharts, determining which dialect is the

most suitable for a particular task or audience will require an empirical evaluation which is beyond

the scope of this paper. Considering the notation of UML statecharts exclusively, UML statecharts

only have one visual dialect. The design of the extended notation does provide a means for cognitive

fit via the use of the secondary notation. Usage of icons can aid understanding by stakeholders who

are not experienced with abstract modeling languages. Icons can later be removed when the models

are used by developers whom do not need them. Another dialect can be created to cater for color-

blind users by using different pattern fills. Pattern filling however requires a high degree of artistic

skills and as such was not incorporated in the notation design but rather left as an option to be

provided via tool support.

A summary of the proposed improvements and how they meet (or partially meet) the principles of

PoN is shown in Appendix B.

3.3 Accessiblity

The new notation will have inherent accessibility problems. It is important note that the newly

proposed notation is not intended to replace the original notation. The proposed notation is not

intended to be used exclusively. Users of statechart modeling who cannot access the new notation

can simply revert to the original notation. As such, when it comes to hand sketching or black-and-

white printing, we suggest users should use the original notation. If a user finds the original notation

more readable than our proposed notation, then the user is encouraged to use the original notation.

The same applies to users from the color-blind community.

Having mentioned these accessibility limitations, there remains numerous opportunities to leverage

the benefits of the new notation. More specifically, when statecharts are viewed on computer screens,

it is arguable that all computer screens use high-resolution color. Many users may also have color

printers. Most printers that are designed to print large-sized posters to be displayed on a wall for

teamwork purposes, do print in color. Existing UML tool support can be used to create notation that

resembles our proposed notation, as evident by the diagrams we present in the paper which were

developed by existing tools. In case the specific tool support is made for the notation (as already

planned for future work), then users who prefer using UML modeling tools can use the developed

tool.

Therefore, given that fact that the original notation will not be removed, users can leverage the

benefits of our notation when permissible.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 22

4 The New Notation in Action: Juxtaposing with the Original Notation

This section presents a real-world case study that motivates the introduction of the proposed security-

extended statechart notation.

4.1 Case Study Definition and Motivation

The main purpose of this case study is to compare the effect of using the new and original notations

to model security aspects in-situ setting. Evaluation is mainly based on the modeling capabilities of

the two notations rather than the perception of the model users. Evaluating the effect of the new

notation on model users (creators and readers) is performed empirically in Sections 5 and 6.

4.2 Case Study Formulation

The context of this case study pertains to modeling the state-based functional security behavior of the

AndroidOS.FakePlayer malware (See Figure 5) [Symantec, 2010]. The AndroidOS.FakePlayer malware

is one of the eight worst pernicious Android malware attacks. Discovered in 2010,

AndroidOS.FakePlayer allows an attacker to easily steal from users without their knowledge. The

malware masquerades as a media player application (―app‖). Upon installation the malware begins to

silently send costly SMS (Short Message Service) messages to predetermined SMS numbers

[Symantec, 2010]. The purpose behind this case study is to model the state based behavior of an

Android based system infected with the malware and to design countermeasures that allows it to

defend against this malware. The requisite design describes the countermeasures also from a state

based perspective. As a countermeasure, once abnormal behavior is detected due to unexpected

change in configurations, the security center is then checked for anti-malware software. After

installing the anti-malware code, the malware is removed and the configuration settings are restored.

If no anti-malware is found, then further changes to configuration settings are disabled and the

corresponding SMS message is locked. The scope of attacks considered in this case study is a

mixture of cyber security and social engineering attacks. Figures 5 and 6 show the corresponding

statecharts using the extended and original notations, respectively.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 23

Fig. 5. The AndroidOS.FakePlayer malware threat state machine modeled using the new notation

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 24

Fig. 6. The AndroidOS.FakePlayer malware threat state machine modeled using the original notation

4.3 Case Study Evaluation

As shown in this case study, there is only one normal state while the remaining 10 states relate to

various security aspects. Using the original notation, the other types of the other 10 states can only be

identified using textual stereotypes; a generic extension mechanism used throughout the entire suite

of UML diagrams. The original notation offers to visual mechanism to specify the different types of

security related states. It can also be shown that there are only 2 regular events in comparison to 15

various security related events. As shown in Figure 6, security related events can only be modeled as

regular events. A modeler will have to be careful in choosing the event labels in order to signify that

they security related. Moreover, there is one security related start node and one security related final

node. As shown in Figure 6, a modeler cannot specify these specific types of semantics. A modeler is

forced to resort to the normal start and final nodes.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 25

It is certainly important to specify formal semantics before the new notation comes into full

operation. As it stands, the new notation simply inherits the formal semantics of the original notation.

This means that the users of the new notation have the flexibility to use the new notation as they find

suitable while adhering only to the base semantics of UML statechart. The specification of formal

semantics however is considered part of the model construction aspect of the new notation. This

paper focuses on the model comprehension aspects of the new notation. Whilst model construction is

equally as important, ensuring effective model comprehension is a prelude to this next phase of

research. This next phase of research is a major undertaking that will require separate empirical

validations and will be the subject of future research.

5 Do the New Symbols Provide a Clearer Indication of their Semantic

Meaning? An Industrial Survey

In this section we validate whether the design of the new notation symbols actually provide a clearer

indication of their semantic meaning in comparison to the original notation, which is a matter of great

subjectivity. Naturally, a designer of a notation may be biased towards a favorable evaluation of the

notation. The following research questions were specifically addressed by this study:

RQ1: Is the design of the notation indeed semantically transparent?

RQ2: Is the design of the notation more semantically transparent than the original notation?

To this end, we created an online survey to collect the independent opinions of professional security

analysts, which can be accessed from this research‘s companion website [El-Attar, 2013]. The survey

method is recommended when self-reported data from a large number of participants is to be elicited

[Pfleeger and Kitchenham, 2001].

5.1 Survey Design

A questionnaire was developed to conduct the survey. The questionnaire evaluates the meaning of

each new symbol in isolation first, and then it evaluates each new symbol against its counter symbol

from the original notation for comparison purposes. Qualitative data about each symbol is presented

to request the survey participant to provide an explanation for their answers to both parts of a symbol

evaluation. To ensure that visual aspects of the new notation are the reason behind a participant‘s

choice, the new symbols are handicapped by removing their corresponding textual stereotypes. The

following is an excerpt from the questionnaire that shows a two-part question about the recovery

state symbol (see Figure 7).

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 26

Page n

What does this symbol mean?

o The system is vulnerable to an attack.

o The system is currently being attacked.

o The system is quarantined to avoid further attacks and damage.

o The system is recovering and fixing damage.

o The system is performing defensive actions that will later allow fixing

damage, or stopping further or new attacks.

o This is an ordinary business-related state.

o Other

Please provide the reasons for your choice:

Page n+1

Which of these two symbols better

indicates that the current state is a

recovery state, i.e. a state where the

system is fixing damages it has

sustained?

(Place a check mark adjacent to the symbol

of your choice)

Please provide the reasons for your choice:

Fig. 7. An excerpt of the questionnaire used

In the actual questionnaire, the two parts of a question pertaining to a particular symbol are presented

on two webpages. The rationale behind this is to avoid providing the participant with a clue about the

correct meaning of the symbol (first part), which is shown in the second part of the question. To

mitigate against learning effects, the order of the symbols to be evaluated is randomized amongst

participants. This was achieved by adding a randomization function in the PHP (Hypertext

Preprocessor) script that links to the survey. Initially, a pilot study was conducted with graduate

students to validate the questionnaire. As a result of the pilot, study the questionnaire was subject to

minor improvements, particularly with respect the wording of some questions.

The questionnaire begins with eliciting information about the participant followed by a small tutorial

of the basic notation elements of statecharts, namely the concepts of a state and an event, and the

semantic definition of states and events. Only professional security analysts were invited to

participate in the survey. It was considered important to only invite professional security analysts to

partake as they would have a greater knowledge and deeper understanding of security related aspects.

Such professionals are believed to be better judges between the new and original notation. They are

also more likely to determine if there is important security aspects that were overlooked in the new

notation. Most respondents were recruited via the LinkedIn website [LinkedIn 2015], a social-media

website for professional. There were also some who we reached via direct referrals.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 27

5.2 Survey Results

In total we received 68 responses; however 10 responses were excluded as they were deemed invalid

mainly because the respondent was not actually a security analyst professional. All of the

respondents indicated they were familiar (with varying degrees) with the concept of finite state

machines and some were also familiar with the UML statecharts diagram notations. The data from

the remaining 58 respondents were analyzed and the results are shown in Table 4. Table 4 shows the

ratio of correct answers for first part of each question, as well as the ratio of respondents who felt that

the new notation was more expressive and suggestive of its corresponding security aspect than the

original notation. Familiarity with statecharts was expected to create bias towards the original

notation, however the results showed that despite their familiarity, the respondents still preferred the

new notation.

Table 4 Survey responses

Notation
Expected the

intended meaning

Felt it was more suggestive of the underlying

security aspect than the original notation as

stated by the UML

Threatened state 86.2% 100%

Vulnerable state 87.9% 94.8%

Defensive state 96.5% 100%

Compromised state 79.3% 100%

Quarantined state 82.7% 100%

Recovery state 96.5% 96.5%

Threat event 100% 100%

Countermeasure event 100% 100%

Initial threat node 100% 94.8%

Final compromised node 100% 93.1%

With respect to guessing the correct meaning of a symbol, all respondents answered correctly for the

initial and final node notations as well as all event notations. Almost all respondents answered

correctly for the recovery state symbol as well. The remaining four symbols were not as intuitive as

the other symbols; however the majority of the respondents still answered the corresponding

questions correctly. The compromised state symbol was the least intuitive of all symbols, yet 79.3%

respondents were able to guess the intended meaning.

With respect to comparing the new notation with the original notation; the new notation scored much

better than the original notation, despite being rid of textual stereotypes. The new notation was

preferred 100% of the time for 6 symbols. For the remaining symbols, the new notation was

preferred by at least 93.1% respondents.

The survey results show that the respondents find the new notation more descriptive than the original

notation. The survey results also show that new symbols were highly suggestive of their underlying

security semantics. For the compromised and quarantine state symbols, they did not score

overwhelmingly high as other symbols did; this however is not a serious deterrent. After all, users of

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 28

the new notation are expected to undergo some training of the new notation before actually using it,

similar to when they were trained to use the original notation of statecharts. Given the survey results,

it can be argued that users can get to firmly grasp the concepts of the new notation without extensive

training.

Qualitative information from the survey attests the quantitative data. The following is a

categorization of the answers provided:

Drawbacks of the new notation: The respondents mainly indicated that the quarantine and

compromised states were easy to confuse with each other. In fact, further analysis has shown that the

majority of incorrect answers for the quarantine state is when the respondent thought it was the

compromised state, and vice versa. Therefore, the score for the quarantine and compromised states

were similar. The same situation occurred with the threatened and vulnerable states, where

respondents confused one for the other and hence the scores for these two symbols were very similar.

Coverage of security related semantics: One of the most important findings from the qualitative

data is that all security analysts felt that the modeling language encompasses the most important

security aspects. Other security aspects indicated by the respondents as not covered by the new

notation were indeed a sub-type of one of the security aspects already covered. Recall that it may be

counterproductive to create a symbol for every aspect as that will lead to too many symbols being

created, hence actually reducing cognitive effectiveness and increasing the difficulty of learning and

use.

Call for tool support: Many security analysts indicated that they would definitely prefer using the

new notation but only if tool support is available. State, node and arrow coloring, and creating

custom stereotypes, are features that are available in just about all major UML modeling tools.

5.3 Threats to Validity

This section presents the threats to the validity of the study in accordance with the standard

classification [Wohlin et al., 2000].

5.3.1 Conclusion Validity

Like other researchers of many studies involving experience or opinion data [Baddoo and Hall, 2002;

Hall et al., 2002; Khan et al., 2012; Niazi et al., 2006], we also have full confidence in our results, as

we have elicited data from experts working in diverse cultures and organizations. We also have no

reason to believe that a respondent would intentionally provide arbitrary answers to sabotage the

results since participation is absolutely voluntary. Finally, we have confidence that the respondents

are indeed professional security analysts as they indicated in the survey. This confidence is based on

the lack of reason to partake in the survey by intentionally falsifying their actual profession. This

confidence is also based on the fact that respondents were required to provide their professional

contact information, which can be used to verify their professions. The 10 respondents who were

excluded from the analysis most likely participated in the survey because they were somehow

unaware of the survey‘s profession restriction.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 29

5.3.2 Internal Validity

Internal validity provides confidence in the overall assessment of the results. The questionnaire was

developed in consultation with IT security experts. A pilot study was conducted to validate the

questionnaire and its results provide an acceptable level of validity.

5.3.3 Construct Validity

A common problem in questionnaire-based surveys is that they consist of closed-ended questions.

Closed-ended questions tend to pre-empt a particular solution from respondents. To mitigate this

threat, the ordering of solutions is randomized throughout all questions in the questionnaire. Each

question is designed to provide an extra choice in which a respondent can indicate that they simply

do not know (or have no basis for judgment), or they can indicate that there is no difference between

a particular aspect of a particular new symbol and its original counterpart. The last question in each

set of questions pertaining to a particular symbol is an open-ended one. The purpose of the open-

ended question is to elicit qualitative information from respondents that validates their choices.

Validation in this sense refers to a respondent making the correct answer selections based on their

actual intentions.

5.3.4 External Validity

External validity is concerned with the generalization of results to contexts and situations other than

the one in which original study was conducted. The survey results are based on the opinions of 58

security experts from 18 different countries spanning all continents. Although it cannot be assumed

that the results obtained from this survey represent the opinions all security experts across the globe,

we do believe that they provide a reasonable representative sample.

6 But Can the New Notation Be Read Quicker? A Subject-Based Empirical

Evaluation

In this section we report a controlled subject-based experiment that was used to validate the cognitive

effectiveness of the new notation. In particular, this experiment investigates if statecharts using the

new notation can be read quicker and more accurately than graphs that use the original notation. The

experiment involved software professionals from Saudi Arabia. The experiment follows the

experimentation process proposed by Wohlin et al. [Wohlin et al., 2000]. The following subsections

describe the experiment‘s definition, context, hypothesis formulation, subject selection, design,

instrumentation and measurement techniques, and validity evaluation, respectively.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 30

6.1 Experiment Definition

The main research question posed by this experiment is whether the proposed notation can be used to

develop statecharts that can be syntactically read more effectively than statecharts built using the

original notation. Syntax readability in this sense refers to the speed and accuracy of which subjects

can read the graphs. A better notation is one that can be read quicker and one that will lead its readers

to fewer cases of misreading. The experiment is defined to have one independent variable, which is

the use of the proposed notation. If the changes applied by the new notation are eliminated then what

will be left are diagrams that use the original notation. Hence two treatments exist, the use of the

extended notation (EN) and the use of the original notation (ON). To assess the effect of using the

EN, two dependent variables were recorded: the response time for the subjects to answer questions

related to one diagram type (T), and the errors committed when answering questions related to one

diagram type (E).

6.2 Experiment Context

The experiment involved software engineering professionals from various companies. The

experiment was conducted over many sessions in order to accommodate the busy and varying

schedules of the professionals and to gather a sufficient number of subjects as required to perform

meaningful statistical analysis. The experiment was conducted as a voluntary exercise without

financial compensation. Instead, the subjects received educational value for participating. The

experiment was divided into two components. The first component was a tutorial about the involved

notations to familiarize the subjects with them and their underlying semantics. The tutorial provided

the subjects with all the necessary background about statecharts in order to perform the prescribed

experimental tasks. The second component of the exercise consisted of an unlimited time session in

which the subjects undertook the assigned experimental tasks. The subjects were never informed

about the hypotheses under investigation to prevent the threat of bias towards either of the two

notations.

6.3 Hypotheses Formulation

Two hypotheses were produced to account for the potential effects of using the extended notation.

For the response time variable (T), the alternative hypothesis indicates that subjects reading

statecharts built with the extended notation will be able to answer questions about them faster than

subjects reading statecharts built with the original notation. For the errors committed variable (E), the

alternative hypothesis indicates that subjects will make fewer incorrect answers when they are

concerned with statecharts using the extended notation. Both variables were set as one-tailed

hypotheses. A one-tail test allots the alpha to testing the statistical significance to one direction while

completely disregarding the possibility of a relationship in the other direction. This direction of the

hypotheses were set as one-tailed as the new notation was specifically designed to be an

improvement of the original, hence a better result is expected in the experiment. The dependent

variables and their corresponding hypotheses are shown in Table 5.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 31

Table 5 The dependent variables and their corresponding hypotheses

Dependent Variable Null Hypothesis (Ho): Alternative Hypothesis (Ha):

Response Time (Ho1): T (EN) ≥ T (ON) (Ha1): T (EN) < T (ON)

Errors (Ho2): E (EN) ≥ E (ON) (Ha2): E (EN) < E (ON)

6.4 Subject Selection

The professionals who participated in this experiment worked in different organizations across the

eastern province of Saudi Arabia. All of them had less than 3 years of industrial experience with

statecharts. It should be noted that having less than 3 years of experience was not a selection

criterion, coincidently all the subjects that volunteered were under this category. They were randomly

divided into two groups (A and B). In total there were 39 subjects.

6.5 Experimental Statecharts and Tasks

A 2×2 partial factorial design with repeated measure was used to mitigate the effect of individual and

group abilities. Accordingly, all subjects were required to consider two distinct state machines; one

that uses the new notation while the other uses the original notation (see Table 6).

Table 6 Experimental design

 Group A Group B

Session 1
EN ON

Statechart Diagram 1 Statechart Diagram 1

Session 2
ON EN

Statechart Diagram 2 Statechart Diagram 2

There exist two types of graphs: abstract and domain-specific graphs. Abstract graphs contain no

information that references the real world (i.e. the underlying domain). Abstract graphs are

commonly referred to as syntactic graphs. Domain-specific graphs contain information about the

underlying domain. Domain-specific graphs are commonly referred to as semantic graphs. For this

experiment, we are evaluating how fast subjects can obtain syntactical information from the graph.

The underlying domain is therefore irrelevant. Hence, the type of graphs used in this experiment is

only syntactical graphs. Prior experimental research in notation understandability demonstrated the

effect of diagrammatic layout features on comprehension [Purchase et al., 2002]. Therefore, each pair

of structurally identical statecharts (one using the new notation, while the other using original

notation) were presented using identical layouts in order to eliminate any effects caused by different

diagrammatic layouts. Besides the type and layout of the statecharts, the statecharts used in this

experiment were required to satisfy the following criteria:

1. The statecharts used must include the entire notational set of the new notation.

2. The statecharts used must be of similar complexity. Similar syntactical complexity is

achieved by using statecharts that have a similar number of nodes and edges in both

statecharts. Similar syntactical complexity is also achieved by using statecharts that contain

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 32

similar numbers of each type of nodes and edges used. This criterion is important to prevent

the relative complexity levels of the statecharts used from influencing the results.

3. The statecharts used must be of considerable size and complexity in order to draw meaningful

conclusions. Certainly, the bigger the artifacts the better. Bigger artifacts provide greater

confidence in any statistically significant (or insignificant) result. But how big is big enough?

To answer this question we referred to other empirical evaluations conducted that evaluate

notation readability and understandability by subjects, such as [Purchase et al., 2002;

Purchase et al., 2004; Gopalakrishnan et al., 2010; Reijers and Mendling, 2011]. In this

experiment, we used artifacts that were roughly twice the size of the artifacts used in

[Purchase et al., 2002; Purchase et al., 2004; Gopalakrishnan et al., 2010; Reijers and

Mendling, 2011] in terms of the number of nodes and edges.

4. The statecharts used must be developed by authors independent of this research work. This

requirement is important to eliminate bias towards the new notation since it is proposed by

the authors of this paper. The graphs used were developed by two graduate student groups as

part of their course project work. Some minor modifications were made to the statecharts in

order to satisfy criterion (2). The impact of the minor modifications is believed to be

negligible with respect to biasing subjects towards any particular notation.

Satisfaction of the aforementioned four criterion can only be validated upon completing the

experiment and analyzing the results statistically.

The subjects were given one statechart at a time and were required to answer questions presented as a

questionnaire. Both sets of questionnaires contained an identical set of system-independent questions.

The questions only require identifying the syntactical properties of the symbols. For example,

―Identify the threatened states‖. The order of these questions was randomized in both questionnaires

to mitigate learning effects. Since the questionnaires contained the same set of questions, the

questionnaires have the same maximum score. Because we used abstract graphs from which the

domain-specific information has been removed, it will be impossible for subjects to identify any

security constructs conveyed by the symbols. Therefore, some advantages were handed to the

original notation. Firstly, the textual stereotypes of states in the new notation are not removed.

Secondly, for threatening events, they were annotated with the textual tag (t) and depicted on the

event arrows. Finally, for the ―initial threat‖ and ―final compromised‖ nodes, they were also

annotated with the textual tag (t) and depicted as part of the node. For ―countermeasure‖ events, they

were annotated with the textual tag (d). Due to the large size of the statecharts used in the

experiment, the statecharts are shown in Appendix A.

The subjects were given handouts containing the legends for both notations printed in color.

Providing the legends as handouts allows them to be displayed in front of subjects at all times. This

reduces the cognitive load needed to consciously maintain meanings of symbols in working memory

and avoid having to flip back and forth between different pages.

The time required to answer a set of questions related to one particular statechart was recorded for

each subject (see details in the next section). The subjects were requested to complete the

experimental tasks within one session. This means that the subjects were not allowed to take the

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 33

experimental artifacts away and return them later. However, there was no time limit for the session

so that the subjects will not face any timing pressures. A post-experiment questionnaire included a

question that specifically asked if the subject felt any timing constraints. The responses of all subjects

to that question confirm that they did not feel any timing pressures. Regardless of the number of

subjects involved in a session, the experiment conductors were present at all times. The presence of

the conductor helps prevent the threat of subjects completing their tasks but forgetting to stop the

timer. The presence of the conductor is useful for answering questions that subjects may have during

the experiment.

6.6 Instrumentation

All the experimental artifacts were printed in color on paper. Black and white models were also

printed using the same size paper. The subjects were requested to answer questions on paper using

pencils, which were provided to all subjects. Subjects also used stopwatches available in their own

mobile phones to keep time.

6.6.1 Why not Conduct the Experiment Online?

Certain limitations prevented us from conducting the experiment online whereby a larger set of

subjects can participate. One reason was to ensure that subjects who are involved in this experiment

did not participate in the survey presented in Section 5, in order to eliminate learning effects or bias

that may have developed from participating in the survey. Another reason is to ensure that each

subject completed their prescribed tasks individually without the help of other individuals. Another

reason is the uncontrolled effect of the size of the display devices used by subjects. Some subjects

may use large screen monitors while others may use a small handheld device. The size of the display

device will surely have an effect on the speed of browsing and reading of the diagrams. Moreover,

the physical presence of the conductors prompts subjects from losing their focus on the experimental

tasks. Finally, the availability of the experiment conductors allows them to answer any on-the-spot

inquiries by the subjects.

6.7 Analysis Procedure

Quantitative data related to errors was considered as discrete count data since there was no evidence

that would lead us to believe that the questions had unequal unit weighting. Quantitative data related

to response time was also considered as discrete data. The data sets were examined for their

compliance to the normality assumptions using the Shapiro-Wilk test [Shapiro and Wilk, 1972]. An

advantage of this test in comparison to other common ―normality‖ tests is that it tends to be more

powerful and it does not require the mean or variance of the hypothesized normal distribution to be

specified in advance. This feature of the Shapiro-Wilk test is required since there was no causal

explanation as to the nature of the distribution that the data points are sampled from. Data sets were

first compared to detect any linear correlation between the two dependent variables. They were then

compared to detect if there are any statistical significant results.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 34

6.8 Scoring and Measurement

The speed of each subject‘s responses was measured using stopwatches held by each subject. We

also measured the number of errors made by each subject by scoring the answered questionnaires.

Scoring the questionnaires is not a subjective process as all the questions had definitive correct

answers. Therefore, there was no need to elicit independent researchers to perform unbiased

evaluations. Scoring of the questionnaires was performed by the research team. The research team

recorded qualitative data on a spreadsheet to determine any threats to validity and to gain any useful

insights by the subjects. In particular, the subjects were asked which notation they found clearer and

more suggestive of its underlying semantics. The qualitative data was also elicited about the subjects‘

general preference between the two notations. The subjects were also asked if the new notation has

sufficiently covered the major security related semantics. Although this question was previously

answered by professional security analysts in the industrial survey (see Section 5), and although the

subjects are not specifically professional security analysts, it is possible that they may suggest an

important security semantics that was otherwise missed (by professional security analysts) in the

results of the survey. Other qualitative data elicited pertained to timing pressures. Timing pressures

may have affected the results of the experiment.

6.9 Analysis and Interpretation

In this section we present analyses of the data collected followed by a discussion of the findings. For

each analysis performed we present a descriptive summary for each non-parametric variable. The

correlations between time and errors were calculated, accumulated according to the groups,

statecharts and notation types. Detecting linear correlations between errors and response time was

necessary to determine whether there was any relationship between the two dependent variables that

would make it inappropriate to analyze them separately. Statistical significance was also set at the

standard 95% level. In case the variables are indeed independent, the Mann-Whitney U statistic was

used to test for differences between the medians of related samples, which was calculated as

prescribed in [Siegel and Castellan, 1988]. The Hodges-Lehman method [Lehmann and D‘Abrera,

1998] was used to compute the confidence intervals, given at the standard 95% level, around the

difference between medians.

6.9.1 Performed Analysis

The analyses performed investigate the effects of the treatment variables and experimental artifacts in

isolation. An outline of the analyses performed in the following subsections is shown below. The

rationale behind performing each analysis is presented in its corresponding subsection.

 Section 6.9.1.1: Correlation analysis (Time vs. Errors)

 Section 6.9.1.2: Extended Notation vs. Original Notation

 Section 6.9.1.3: Extended Notation vs. Original Notation (Aggregated Results)

 Section 6.9.1.4: Statechart diagram 1 vs. Statechart diagram 2

 Section 6.9.1.5: Group A vs. Group B

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 35

6.9.1.1 Correlation Analysis – Time vs. Errors

In this section we investigate if there is a correlation between the time and errors variables. The

correlations between time and errors were calculated, accumulated according to each notation type

individually and according to all performances in general (i.e. new and old notations). Correlation

was calculated using the Pearson correlation coefficient [Rodgers and Nicewander, 1988] (r ≠ 0) at

the 0.05 level of significance. The Pearson correlation coefficient test is used as it is more appropriate

for measurements taken from interval scales. Correlation results are shown in Table 7. As shown in

Table 7, no linear correlation was detected between the two variables. This indicates that the subjects

were not affected by time in order to influence the correctness of their answers. Similarly, the

subjects were not influenced by their goal to answer questions correctly to reduce time. Accordingly,

a statistically insignificant result for one variable does not influence the hypothesis evaluation of the

other variable. Figure 8 shows the scatter plot for all subject performances.

Fig. 8. Scatter plot for all performances showing time vs. errors

Table 7 Correlation results

Time vs. Errors r statistic n t statistic 95% C.I. p

Extended Notation -0.03 39 -0.18 -0.34 to 0.29 0.8583

Original Notation -0.28 39 -1.79 -0.55 to 0.047 0.0816

Overall 0.03 78 0.22 -0.20 o 0.25 0.8252

6.9.1.2 Extended Notation vs. Original Notation

In this section we investigate the effect of using the extended notation vs. the original notation on

each statechart in isolation with respect to the two dependent variables, using both groups in isolation

and for each statechart separately. Figures 9 and 10 show the results for the response times and errors

committed variables for group A. Table 8 presents descriptive statistics for group A‘s performance.

-2

0

2

4

6

8

10

12

14

16

150 250 350 450 550 650

E
rr

o
rs

 C
o

m
m

it
te

d

Response Time

Scatter Plot

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 36

Figures 11 and 12 show the results for the response times and errors committed variables for group

B. Table 10 presents descriptive statistics for group B‘s performance. Tables 9 and 11 show the

results of the Mann-Whitney test for both dependent variables for groups A and B, respectively.

Fig. 9. Group A‘s performance with respect to response time and each statechart in isolation

Fig. 10. Group A‘s performance with respect to errors committed and each statechart in isolation

250

300

350

400

450

500

550

600

650

700

SC Diagram 1 (EN) SC Diagram 2 (ON)

T
im

e
 (

s
e

c
o

n
d

s
)

Group A

95% CI Notched Outlier Boxplot

0

1

2

3

4

5

6

7

8

9

SC Diagram 1 (EN) SC Diagram 2 (ON)

E
rr

o
rs

Group A

95% CI Notched Outlier Boxplot

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 37

Table 8 Descriptive statistics for the Group A (n = 18, EN = Extended Notation, ON = Original Notation)

Table 9 Mann-Whitney test for the Group A (n = 18, EN = Extended Notation, ON = Original Notation)

Fig. 11. Group B‘s performance with respect to time and each statechart in isolation

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

550

SC Diagram 1 (ON) SC Diagram 2 (EN)

T
im

e
 (

s
e

c
o

n
d

s
)

Group B

95% CI Notched Outlier Boxplot

Variable Notation Min 1st Quartile Median 3rd Quartile Max IQR

Response
Times

EN 257 285.8 315.0 343.5 374 57.7
ON 370 383.8 454.0 496.8 655 113.0

Errors
Committed

EN 0 0.0 1.0 2.0 4 2.0
ON 0 1.0 2.0 4.1 8 3.1

Variable Notation
Rank
sum

Mean
rank

U
Median

difference
95% CI

Mann-Whitney
U statistic

p

Response
Times

EN 175.0 9.72 320
-132.5 -∞ to -102.0 320 <0.0001

ON 491.0 27.28 4.0

Errors
Committed

EN 256.5 14.25 238.5
-1.0 -∞ to 1.0 238.5 0.0065

ON 409.5 22.75 85.5

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 38

Fig. 12. Group B‘s performance with respect to errors committed and each statechart in isolation

Table 10 Descriptive statistics for the Group B (n = 21, EN = Extended Notation, ON = Original Notation)

Table 11 Mann-Whitney test for Group B (n = 21, EN = Extended Notation, ON = Original Notation)

As shown in Tables 9 and 11, statistical significance was observed in performance of both groups

with respect to the time variable. This means that use of the EN needed significantly less time to read

than the ON. However, statistical significance was only observed in performance of group A with

respect to the errors committed variable.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

SC Diagram 1 (ON) SC Diagram 2 (EN)

E
rr

o
rs

 C
o

m
m

it
te

d

Group B

95% CI Notched Outlier Boxplot

Variable Notation Min 1st Quartile Median 3rd Quartile Max IQR

Response
Times

EN 311 378.0 460.0 489.0 541 111.0
ON 160 189.0 247.0 315.7 384 126.7

Errors
Committed

EN 2 4.0 6.0 9.0 12 5.0
ON 1 2.7 6.0 8.0 14 5.3

Variable Notation
Rank
sum

Mean
rank

U
Median

difference
95% CI

Mann-Whitney
U statistic

p

Response
Times

EN 247.5 11.79 424.5
-190.0 -∞ to -149.0 424.5 <0.0001

ON 655.5 31.21 16.5

Errors
Committed

EN 417.0 19.86 255.0
-1.0 -∞ to 1.0 255.0 0.1917

ON 486.0 23.14 186.0

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 39

6.9.1.3 Extended Notation vs. Original Notation (Aggregated Results)

In this section we investigate the effect of using the extended notation vs. the original notation once

again but while using aggregated results from both statecharts. This analysis explores the

experimental results to provide some illustrative experiment-wide numerical statements about the

study. The results provide a more general assessment of the overall impact of using the different

notations in comparison to the analysis shown in Section 6.9.1.2. This analysis is especially

interesting for the errors variable since previous analysis has shown that statistical significance was

observed in the performance of only one group. Hence, performing analysis with the aggregated

results will provide stronger confidence to reject the hypothesis regarding correctness. Figures 13 and

14 show the aggregated results for the response times and errors for both statecharts and groups,

respectively. Table 12 presents descriptive statistics while Table 13 shows the results of the Mann-

Whitney test for both dependent variables for both statecharts.

Fig. 13. The cumulative performance of both groups with respect to time for both statecharts

Table 12 Descriptive statistics for the both groups (n = 39, EN = Extended Notation, ON = Original Notation)

150

200

250

300

350

400

450

500

550

600

650

700

(EN) (ON)

T
im

e
 (

s
e

c
o

n
d

s
)

Groups A U B

95% CI Notched Outlier Boxplot

Percentiles (95% of Distribution)

Variable Notation Min 1st Quartile Median 3rd Quartile Max IQR

Response
Times

EN 160 245.3 286.0 330.7 384 85.3
ON 311 382.3 460.0 492.7 655 110.3

Errors
Committed

EN 0 1.0 2.0 6.0 14 5.0
ON 0 2.0 4.0 7.0 12 5.0

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 40

Fig. 14. The cumulative performance of both groups with respect to errors committed for both statecharts

Table 13 Mann-Whitney test for the aggregated performance results with both groups and statecharts (n = 39, EN =

Extended Notation, ON = Original Notation)

Table 13 further concurs with the findings of the analysis performed in the previous section whereby

statistical significance was observed in the aggregated results for the response times variable.

However, statistical significance was also observed for the errors committed. We will however take a

conservative approach and reject the hypothesis related to the errors committed variable. Recall that

no correlation was detected between the response times and errors committed variables (see Section

6.9.1.1), therefore even if the hypothesis relating to the errors committed variable was rejected, this

does not result in rejecting the hypothesis regarding the time variable as well. However, given the

rejection of the errors committed variable hypothesis in our previous analyses, subsequent analysis

performed in sections 6.9.1.4 and 6.9.1.5 will no longer consider the errors committed variable.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(EN) (ON)

E
rr

o
rs

 C
o

m
m

it
te

d

Groups A U B

95% CI Notched
Skeletal Boxplot

Variable Notation
Rank
sum

Mean
rank

U
Median

difference
95% CI

Mann-Whitney
U statistic

p

Response
Times

EN 833.5 21.37 1467.5
-164.0 -∞ to -136.0 1467.5 <0.0001

ON 2247.5 57.63 53.5

Errors
Committed

EN 1349.5 34.60 951.5
-1.0 -∞ to 0.0 951.5 0.0273

ON 1731.5 44.40 569.5

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 41

6.9.1.4 Statechart Diagram 1 vs. Statechart Diagram 2

In this section we investigate differences between the two statecharts. The investigation is conducted

using aggregated results from both statecharts regardless of the applied treatment. It is important to

conduct this investigation to ensure that the complexity levels of the used statecharts indeed did not

affect the results of the experiment. Figure 15 shows the results of the subjects‘ performances for

both statecharts with respect to the response times variable. A statistical significance between the two

statecharts will indicate that the complexity levels of the statecharts had affected the results obtained.

Table 14 presents descriptive statistics while Table 15 shows the results of the Mann-Whitney test for

the response times variables.

Fig. 15. The cumulative performance of subjects with respect to errors committed for each statechart in isolation

Table 14 Descriptive statistics for statechart diagram 1 vs. statechart diagram 2 (n = 39)

Table 15 Mann-Whitney test for Statechart Diagram 1 vs. Statechart Diagram 2 (n = 39)

150
175
200
225
250
275
300
325
350
375
400
425
450
475
500
525
550
575
600
625
650
675
700

SCD 1 SCD 2

T
im

e
 (

s
e

c
o

n
d

s
)

Group A U B

95% CI Notched Outlier Boxplot

Percentiles (95% of Distribution)

Variable Diagram Min 1st Quartile Median 3rd Quartile Max IQR

Response
Times

Statechart 1 160 245.3 286.0 330.7 384 85.3
Statechart 2 311 382.3 460.0 492.7 655 110.3

Variable Diagram
Rank
sum

Mean
rank

U
Median

difference
95% CI

Mann-
Whitney U

statistic
p

Response
Times

Statechart 1 1665.5 42.71 635.5
40.0 -15.0 to 93.0 635.5 0.2115

Statechart 2 1415.5 36.29 885.5

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 42

As shown in Table 15, no statistical significance was observed between the used statecharts thus

eliminating the relative complexity of the statecharts as a factor towards the statistical significances

observed in the previous sections.

6.9.1.5 Group A vs. Group B

In this section we investigate the performance of Group A vs. Group B with respect to each of the

two dependent variables, using aggregated results from both statecharts. It is important to conduct

this investigation to ensure that the relative ability levels of both groups did not affect the results of

the experiment. Figure 16 shows the results of the subjects‘ performances from both groups with

respect to the response times variable. A statistical significance between the two groups will indicate

that the ability levels of the groups had affected the results obtained. Table 16 presents descriptive

statistics while Table 17 shows the results of the Mann-Whitney test for both dependent variables for

Groups A and B.

Fig. 16. The cumulative performance of each group with respect to time for both statecharts

Table 16 Descriptive statistics for Group A vs. Group B (n = 39)

450
475
500
525
550
575
600
625
650
675
700
725
750
775
800
825
850
875
900
925
950
975

1000

Group A Group B

T
im

e
 (

s
e

c
o

n
d

s
)

Statechart 1 + Statechart 2

95% CI Notched Outlier Boxplot

Variable Group Min 1st Quartile Median 3rd Quartile Max IQR

Response
Times

A 641 734.7 759.5 832.2 970 97.5
B 471 564.7 735.0 774.3 906 209.7

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 43

Table 17 Mann-Whitney test for Group A vs. Group B (n = 39)

Once again no statistical significance was observed between the performances of both groups. This

finding eliminates the relative ability levels of the groups as a factor towards the statistical

significances observed in previous analyses.

6.9.2 Discussion of the Results

The statistical results obtained from the experiment has shown that the new notation can significantly

increase the speed by which statecharts rich with security aspects are read by its users. The delta of

reading times between the two notations is only expected to increase as the size of the statecharts

increase. The results obtained with respect to reading accuracy do not allow us to safely accept the

corresponding hypothesis. With only one statistically significant result, it can be argued that if the

statecharts used in the experiment were larger then statistically significant results may have been

observed.

Ostensibly it may seem that the subjects have used more time to ensure that they commit the fewest

possible reading mistakes. However, the linear correlation analysis performed has shown that this

was indeed not the case. This means that the subjects would undertake the prescribed tasks at their

normal pace. The subjects did not hurry-up or slow-down in order to ensure accuracy in reading the

models.

6.10 Threats to Validity

This section presents the threats to the validity of the study in accordance with the standard

classification [Wohlin et al., 2000].

6.10.1 Conclusion Validity

Heterogeneity is the most obvious threat when using professionals from various backgrounds, despite

most of them mentioning before the experiment that they have experience with statecharts. To

mitigate against this threat the subjects were subjected to in-depth training sessions about statechart

modeling and its original notation. The new notation is inherently unknown to any of the subjects

before the experiment. All subjects were subjected to the same level of training with the new notation

as well. The subjects were involved in hands-on exercises to develop several statecharts despite the

fact that they were not required to perform any statechart modeling during the experiment. However,

the hands-on exercises will further familiarize the subjects with the notations: original and new.

Quality
Attribute

Group
Rank
sum

Mean
rank

U
Median

difference
95% CI

Mann-Whitney
U statistic

p

Response
Times

A 426.0 23.67 123.0
82.5 -3.0 to 183.0 123.0 0.0630

B 354.0 16.86 255.0

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 44

6.10.2 Internal Validity

Fatigue and maturity are the forefront internal threats in any subject-based experiment. To mitigate

against this threat the training sessions and experimental tasks were conducted on different days. As

for the effect of fatigue and maturity during the experiment, it is not believed that these two aspects

affected the results since the groups finished all exercises in approximately 14 minutes (on average).

Group A‘s slowest subject needed 16 minutes and 10 seconds while group B‘s slowest subject

required 15 minutes and 6 seconds. Such task durations are well within the physical abilities of the

subjects as per their daily job requirements.

The experiment was conducted under the context of voluntary participation in exchange for the

learning value. This raises the issue of self-selection. The threat of self-selection in subject-based

experiment that uses professionals can only be fully eliminated if the experimental tasks were

assigned by an authority figure relative to the professionals, such as their direct employers or

managers. Even if such conditions were satisfied, the mandatory nature of the experiment will then

raise morality threats and disinterest. The participation of subjects in the experiment on voluntarily

basis eliminates the threat of morality issues. The subjects were self-motivated to learn and

participate in the experiment. Self-selection would be a greater threat if the target of the experiment

was to measure the effectiveness of a technique in absolute terms, whereby self-selection would

result in an unrepresentative population of the average work-force. However, in this experiment the

target was to compare the cognitive effectiveness of two notations. Self-selection was also applied to

participating in the experiment as a whole, but not to deciding which group to join, which was

determined by the researchers randomly.

Conducting the experiment over multiple sessions raises the issue of having different environment

settings. To mitigate against this threat, the sessions were always conducted during the same time of

the day. The sessions were also always conducted during a weekday. All experiment sessions were

conducted in a 3 weeks span to eliminate any effects results from a season change. During each

session, the subjects were requested to sit far from each other in order to ensure that they do not

collaborate during the experiment.

There is also a threat of bias given the ever-presence of one of the authors during the experiments. It

should be noted however that the experiment was conducted with the help of graduate students.

Despite the ever-presence of the author, the author was not ―proctoring‖ the participants. The author

was sitting in one place throughout the experiment and only attending to participants who requested

his assistance to answer questions. The author and other experiment conductors tried to avoid an

overbearing presence to the best of our abilities. However, it can be argued that leaving the

participants unattended may have reduced unintentional situational pressures. This experiment design

decision would undoubtedly result in many uncontrolled in a controlled experiment. Examples can

include:

• Participants collaborating with each other.

• Participants forgetting to start or end the timer on time.

• Participants using the bathroom and forgetting to pause the timer.

• Participants losing focus and drifting away whilst the timer is running.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 45

Therefore it can be argued that the advantage of being physically present (without overbearing the

participants) would heavily outweigh the advantage of leaving them to work independently.

Training was offered by the first author, and bias in favor of the author by the subjects was prevented

by not informing the subjects that the creator of the new notation is the trainer. We are not aware of

any participant explicitly knowing this fact or if any participant deduced that themselves. The

concepts of the original notation were revised for all the subjects despite some of them already

having some experience. This revision of original notation helped increase homogeneity. Teaching of

the original notation took much more time than the extended notation because the original notation

was taught first and the extended notation seemed a relatively small addition to their knowledge base.

However, the subjects went through the same number of training exercises for both types of

notations.

6.10.3 Construct Validity

It is almost impossible to fully eliminate the construct validity threat of the dependent variables in

subject-based experiments. Their threat was minimized to the greatest possible extent by using a

traditional 2 x 2 fractional factorial experiment design. This commonly used experiment design

minimizes the effects of individual capabilities, system differences and ordering effects. Bias towards

the new or original notation is minimized on two fronts: (a) Firstly, the subjects were unaware of the

hypothesis until the end of the experiment. (b) Secondly, the subjects were unaware that the new

notation was devised by the authors of the paper.

In this experiment we assigned equal weighting to all types of defects. Perhaps some defects are

more important that others, however there lacks any empirical evidence that proves a differentiation

between the defect types that will allow us to safely quantify defects differently.

6.10.4 External Validity

Unlike experiments that use students as subjects, there is greater confidence to generalize the results

of this experiment to industry professionals. However, the results should be interpreted with a

conservative view due to two reasons: Firstly, all the professionals involved had 3 years of industrial

experience or less. Would the results differ had the subjects been more seasoned professionals? This

remains unknown. Secondly, the professionals used indicated that they deal with security aspects

during daily software development work; however none of them has explicitly identified themselves

as expert security specialist or statechart modeling experts. The experiment does not require expert

security specialists as subjects; however, would the results differ had the subjects been expert

security specialists? Once again, this remains unknown.

A common reason for not generalizing the results of software engineering related experiments to

industry is the size of the artifacts utilized in the experiments as they are considered smaller than

artifacts used in full-scale industrial settings. However, the new proposed notation is the only

notation, to the authors‘ best knowledge, which models security aspects in statecharts. Therefore,

diagrams created using the new proposed notation by default have no precedence in industry, which

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 46

disables benchmarking efforts. The only benchmarking that could be done is with other similar

empirical studies that were performed to evaluate the readability and understandability of models.

The models used in this experiment were made to be at least twice the size of the models used in

similar empirical studies such as [Purchase et al., 2002; Purchase et al., 2004; Gopalakrishnan et al.,

2010; Reijers and Mendling, 2011].

Another threat to external validity is that the artifacts used in this experiment were only syntactical

(abstract). Statecharts used in an industrial setting will certainly refer to domain-specific concepts.

The text shown in the nodes (states) and on the edges (events) will be domain-specific. Determining

the effect of the extended notation in improving domain-specific security modeling is not evaluated

by this experiment.

6.11 Experiment Replication

In conformance with the commended practice to allow replication of experiments, the experimental

artifacts used are available on the paper‘s companion website [El-Attar et al., 2013]. The

experimental artifacts include the statecharts used (in color and black and white), the questionnaires

and notation legend. Using the artifacts available on the companion website and the experiment

design described in this paper, the experiment can be replicated.

7 Conclusion and Future Work

The concept of state machines is crucial in software systems analysis and development. Statecharts

are the ideal mechanism to model the behavior of any state-dependent system. Many real-time and

embedded systems are considered to be state-dependent. The UML provides statecharts as the only

design diagram that is visually tailored for modeling state-based behavior. As the importance of

security in systems is constantly increasing, a notation is needed that supports the specification of

security aspects in the design of state-dependent software systems. The visual design of such notation

needs to be developed following principles of designing cognitively effective notations. However,

there is currently no notation that satisfies this requirement. To counter this deficit, this paper

presents a proposed notational set that extends the original UML statecharts notation. The new

notational set allows designers to model security related aspects in state machines. This will allow

state-dependent systems to have security designed within and so equipped against attacks in case

external defensive mechanisms fail. The notational set was developed using a theoretical approach

and not aesthetics. The approach included two phases: (a) an ontological analysis to determine the

necessary semantics not supported by the current UML statecharts notations and (b) an introduction

of new visual symbols based on nine evidence-based principles for developing cognitively effective

notations. The design of the new notation accounted for the missing semantics and the original

notation.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 47

To validate the semantic transparency of the new symbols, an industrial survey was conducted and

only security analysts were invited to participate. The responses of 58 respondents were measured.

The results show that the new symbols are largely intuitive and suggestive of their underlying

semantics. The responses also show that respondents find the new notation clearer and more

suggestive of their underlying semantics in comparison with the original notation. Qualitative data

collected from the survey also indicate that the new notation has sufficiently covered the major

security related semantics.

To validate the cognitive effectiveness of the proposed notation, we presented an experiment that was

conducted as a voluntary exercise using professional software engineers as subjects. The subjects

applied two treatments; understanding statecharts that use the extended notation and the original

notation. The results indicate a statistically significant improvement with respect to the time the

subjects needed to read the models. The results pertaining to the accuracy of reading the models were

not clear cut, whereby no statistical significance was observed when considering each statechart in

isolation, yet statistical significance was observed when considering the aggregated results from both

statecharts. We take a conservative approach by rejecting the hypothesis until new empirical

evidence proves otherwise.

Qualitative data obtained from the subjects after the experiment indicates that all subjects finished

the experimental tasks without facing time pressure. Therefore, the results obtained with respect to

response times were considered to be purely influenced by the treatments. Qualitative data obtained

has also shown that the subjects generally preferred the extended notation over the original notation.

The subjects indicated that the main reason for their preference of the new notation was the use of

color. Two minor improvements were suggested: (a) that the text used in defensive states would be

more readable if it was white rather than black, and (b) the recovery state should be given a colorful

background rather than its grey color. There were very few questions asked by the subjects during the

experiment and in general there were no obvious problems observed during the experiment.

Recall that the statecharts used in the experiment presented in Section 6 are abstract. They were

intentionally rid of domain-specific information to the contrary of statecharts used in industrial

settings. Since the ultimate goal of this research is to improve practical security modeling, it would

certainly be beneficial to perform another empirical study to evaluate the effect of the extended

notation on effectiveness of security modeling with domain-specific statecharts. The experiment may

also be repeated with a larger number of participants. Perhaps a larger number of participants may

lead to statistical significance with respect to the errors committed variable. Future work may also be

directed towards conducting empirical studies in which subjects are tasked to perform modeling

activities. Such empirical studies will provide further insight on the effect of using the extended

notation on security modeling with statecharts as a whole.

Motivated by the results of this research, we strongly recommend other researchers to evaluate other

popular notations and suggest improvements based on the principles defined in [Moody, 2009]. The

UML alone includes many diagrams that can be evaluated and improved. Evaluations and

improvements can be extended to other types of diagrams such as misuse cases, i*, KAOS…etc.

Their improvements should be empirically evaluated. Notation design has long been a neglected

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 48

topic in software engineering. It is time now to change the view and approach to notation design.

Future work will be directed towards contacting major vendors of UML modeling tools in an effort

to incorporate the new notation within their tools. Tool support will significantly support the

widespread use and adoption of the new notation. Tool support can also significantly aid in

overcoming the issue of using a color-rich notation by the color-blind community whereby a tool can

provide its users the option to use different pattern fills instead of colors.

Notation design is ultimately a design activity. Design inherently is a product that can always stand

to improve as there is no maximum score. There are many aspects of proposed design that can be

improved. The proposed notation is a best first-effort to adhere to Moody‘s principles while

achieving the main objective of the paper, which is to allow modelers the capability of modeling

security related aspects in state-based systems. The main success criterion was based on achieving

statistically significant improvements in comparison to the original notation. The proposed notation

design is not intended to be a final untouchable design. One outstanding issue for example is the use

of too many contrasting primary colors. We encourage research work to be directed towards further

improving our design to account aspects such as color harmony and design layout.

The results of the empirical studies also prompt an empirical investigation of the effect of the new

notation on the model construction aspect. It is interesting to investigate if the new notation helps

modelers create higher quality security statecharts and whether it improves their modeling and

analysis skills.

Tool support will have a significant influence on the adoption of the new notation. Tool support is

currently under-development. The tool will allow modelers to create statecharts using the new

notation without requiring artistic skills. Upon finalizing the metamodel of the new notation, the

metamodel will be embedded in the tool which will allow it to verify the syntactical correctness of

the diagrams being created. Other similar research works are underway to improve existing notations

based on the PoN principles. It is planned for the tool that will be developed to support a multitude of

PoN-enhanced notations.

Acknowledgements

We would like to thank all the software engineering professionals who took part in this experiment.

We would also like to thank Dr. Jan Jürjens for providing us permission to use the diagram which we

have re-drawn in Figure 1. The authors would like to acknowledge the support provided by the

Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals

(KFUPM) for funding this work through project No. IN141010.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 49

References
[Amoroso, 1994] E. G. Amoroso, Fundamentals of Computer Security Technology. Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 1994.

[Arbaugh et al., 2000] W. A. Arbaugh, W. L. Fithen, and J. McHugh, "Windows of vulnerability: A

case study analysis", IEEE Computer, vol. 33, no. 12, pp. 52-59, 2000.

[Baddoo, 2002] N. Baddoo and T. Hall, ―Motivators of Software Process Improvement: an analysis

of practitioners‘ views,‖ J. Syst. Softw., vol. 62, no. 2, pp. 85–96, 2002.

[Balzarotti et al., 2007] D. Balzarotti, M. Cova, V. V. Felmetsger, G. Vigna, "Multi-module

vulnerability analysis of web-based applications", in Proc. 14th ACM conference on computer

and communications security, pp. 25-35, 2007.

[Bar and Neta, 2006] M. Bar and M. Neta, ―Humans prefer curved visual objects,‖ Psychol. Sci., vol.

17, no. 8, pp. 645–648, 2006.

[Basin et al., 2003] D. A. Basin, J. Doser, and T. Lodderstedt, ―Model driven security for process-

oriented systems,‖ in 8th ACM Symp. on Access Control Models and Technologies, Villa Gallia,

Como, Italy, 2003, pp. 100–109.

[Bertin, 1983] J. Bertin, Semiology of graphics: Diagrams, networks, maps. Madison, WI, USA:

University of Wisconsin Press, 1983.

[Britton and Jones, 1999] C. Britton and S. Jones, ―The untrained eye: how languages for software

specification support understanding in untrained users,‖ Human–Computer Interact., vol. 14, no.

1–2, pp. 191–244, 1999.

[Buhr et al., 1998] R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski,

―Feature-Interaction Visualisation and Resolution in an Agent Environment,‖ in Feature

Interactions in Telecommunications and Software Systems V, Malmö, Sweden, 1998, pp. 135–

149.

[Burt et al., 2003] C. C. Burt, B. R. Bryant, R. R. Raje, A. Olson, and M. Auguston, ―Model driven

security: unification of authorization models for fine-grain access control,‖ in Enterprise

Distributed Object Computing Conf., 2003, pp. 159–171.

[Blackwell, 2009] A. Blackwell. (2009). Cognitive Dimensions of Notations Resource Site [Online].

Available: http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/.

[Blackwell and Green, 2003] A. Blackwell and T. Green, ―Notational systems–the cognitive

dimensions of notations framework,‖ HCI Models Theor. Fram. Interdiscip. Sci. Morgan

Kaufmann, 2003.

[Dagit et al., 2006] J. Dagit , J. Lawrance, C. Neumann, M. Burnett, R. Metoyer, and S. Adams,

―Using cognitive dimensions: advice from the trenches,‖ J. Visual Languages and Computing,

vol. 17, no. 4, pp. 302–327, 2006.

[Dardenne et al., 2003] A. Dardenne, A. van Lamsweerde, and S. Fickas, ―Goal-directed

requirements acquisition,‖ Sci. Comput. Program., vol. 20, no. 1, pp. 3–50, 1993.

[DeMarco, 1979] T. DeMarco, Structured analysis and system specification. Yourdon Press, 1979.

[Dubois and Wu, 1996] E. Dubois and S. Wu, ―A framework for dealing with and specifying security

requirements in information systems,‖ in Information systems security, 1996, pp. 88–99.

[El Ariss et al., 2011] O. El Ariss, W. Jianfei, and X. Dianxiang, "Towards an enhanced design level

security: integrating attack trees with statecharts", in Proc. 5th international conference on secure

software integration and reliability improvement (SSIRI), pp.1-10, 2011.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 50

[El-Attar, 2013] M. El-Attar (2013, May). Companion Website to Security Enabled Statecharts

Research. [Online]. Available:

http://faculty.kfupm.edu.sa/ICS/melattar/ExtendedStatechartsNotationFiles.html.

[Ericson, 1999] C. Ericson, "Fault tree analysis—a history," in 17th International System Safety

Conference, 1999

[Fenz and Ekelhart, 2009] S. Fenz and A. Ekelhart, ―Formalizing information security knowledge,‖

in Proc. of the 2009 ACM Symp. on Information, Computer and Communications Security,

Sydney, Australia, 2009, pp. 183–194.

[Fettke, 2009] P. Fettke, ―How conceptual modeling is used,‖ Commun. Assoc. Inf. Syst., vol. 25, no.

1, p. 43, 2009.

[Gane and Sarson, 1979] C. P. Gane and T. Sarson, Structured systems analysis: tools and

techniques. Prentice Hall Professional Technical Reference, 1979.

[Goodman, 1968] N. Goodman, Languages of art: an approach to a theory of symbols. Bobbs-

Merrill Co., 1968.

[Gopalakrishnan et al., 2010] S. Gopalakrishnan, J. Krogstie, and G. Sindre ―Adapting UML activity

diagrams for mobile work process modelling: Experimental comparison of two notation

alternatives,‖ in The Practice of Enterprise Modeling, 2010, pp. 145–161.

[Gorn et al., 1997] G. J. Gorn, A. Chattopadhyay, T. Yi, and D. W. Dahl, ―Effects of color as an

executional cue in advertising: they‘re in the shade,‖ Manag. Sci., vol. 43, no. 10, pp. 1387–1400,

1997.

[Green et al., 2006] T. R. Green , A.E. Blandford, L. Church, C.R. Roast, and S. Clarke, ―Cognitive

dimensions: Achievements, new directions, and open questions,‖ J. Vis. Lang. Comput., vol. 17,

no. 4, pp. 328–365, 2006.

[Green and Petre, 1996] T. R. G. Green and M. Petre, ―Usability analysis of visual programming

environments: a ‗cognitive dimensions‘ framework,‖ J. Vis. Lang. Comput., vol. 7, no. 2, pp.

131–174, 1996.

[Hall et al., 2002] T. Hall, A. Rainer, and N. Baddoo, ―Implementing software process improvement:

an empirical study,‖ Softw. Process Improv. Pr., vol. 7, no. 1, pp. 3–15, 2002.

[Hassan et al., 2009] R. Hassan, S. Bohner, S. El-Kassas, and M. Hinchey, ―Integrating Formal

Analysis and Design to Preserve Security Properties,‖ in 42nd Hawaii Int. Conf. on Systems

Science, Waikoloa, HI, USA, 2009, pp. 1–10.

[Herzog et al., 2007] A. Herzog, N. Shahmehri, and C. Duma, ―An Ontology of Information

Security‖, Int. J. of Inform. Security, vol. 1, no. 4, pp. 1–23, 2007.

[Hitchman, 2002] S. Hitchman, ―The Details of Conceptual Modelling Notations are Important-A

Comparison of Relationship Normative Language,‖ Commun. Assoc. Inf. Syst., vol. 9, no. 1, p.

10, 2002.

[Irani and Ware, 2003] P. Irani and C. Ware, ―Diagramming information structures using 3D

perceptual primitives,‖ ACM Trans Comput-Hum Interaction, vol. 10, no. 1, pp. 1–19, 2003.

[Irani et al., 2001] P. Irani , C. Ware, and M. Tingley, ―Using Perceptual Syntax to Enhance

Semantic Content in Diagrams,‖ IEEE Comput. Graph. Appl., vol. 21, no. 5, pp. 76–85, 2001.

[Jürjens, 2005] J. Jürjens, Secure systems development with UML. Berlin, Germany: Springer, 2005.

[Jürjens, 2002] J. Jürjens, ―UMLsec: Extending UML for Secure Systems Development,‖ in UML

2002 - The Unified Modeling Language, 5th Int. Conf., Dresden, Germany, 2002, pp. 412–425.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 51

[Kárpáti et al., 2010] P. Kárpáti, G. Sindre, and A. Opdahl, ―Visualizing cyber attacks with misuse

case maps,‖ in Requirements Engineering: Foundation for Software Quality, 2010, pp. 262–275.

[Katta et al., 2010] V. Katta, P. Kárpáti, A. Opdahl, C. Raspotnig, and G. Sindre, ―Comparing Two

Techniques for Intrusion Visualization,‖ in The Practice of Enterprise Modeling, 2010, pp. 1–15.

[Khan et al., 2012] S. U. Khan, M. Niazi, and R. Ahmad, ―Empirical investigation of success factors

for offshore software development outsourcing vendors,‖ IET Softw., vol. 6, no. 1, pp. 1–15,

2012.

[Kordy et al., 2011] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer ―Foundations of attack–

defense trees,‖ in Formal Aspects of Security and Trust, 2011, pp. 80–95.

[Krsul, 1998] I. V. Krsul, "Software vulnerability analysis", PhD thesis, Purdue University, West

Lafayette, IN, USA.

[Larkin and Simon, 1987] J. H. Larkin and H. A. Simon, ―Why a diagram is (sometimes) worth ten

thousand words,‖ Cogn. Sci., vol. 11, no. 1, pp. 65–100, 1987.

[Lehmann and D‘Abrera, 1998] E. Lehmann and H. D‘Abrera, Nonparametrics: Statistical methods

based on ranks. Upper Saddle River, NJ: Prentice Hall, 1998.

[Lin et al., 2003] L. Lin et al., ―Introducing Abuse Frames for Analysing Security Requirements,‖ in

11th IEEE Int. Conf. on Requirements Engineering, Monterey Bay, CA, 2003, pp. 371–372.

[LinkedIn, 2015] LinkedIn Corp., LinkedIn Website. [Online]. Available: https://www.linkedin.com

(last accessed January 2015)

[Liu et al., 2003] L. Liu, E. Yu, and J. Mylopoulos, ―Security and Privacy Requirements Analysis

within a Social Setting,‖ in 11th IEEE Int. Conf. on Requirements Engineering, Monterey Bay,

CA, 2003, pp. 151–161.

[Lodderstedt et al., 2002] T. Lodderstedt, D. Basin, and J. Doser, ―SecureUML: A UML-Based

Modeling Language for Model-Driven Security,‖ in UML 2002 - The Unified Modeling

Language, 5th Int. Conf., Dresden, Germany, 2002, pp. 426–441.

[Mackinlay, 1986] J. D. Mackinlay, ―Automating the Design of Graphical Presentations of Relational

Information,‖ ACM Trans Graph, vol. 5, no. 2, pp. 110–141, 1986.

[Masri et al., 2008] K. Masri, D. Parker, and A. Gemino, ―Using Iconic Graphics in Entity-

Relationship Diagrams: The Impact on Understanding,‖ J Database Manag, vol. 19, no. 3, pp.

22–41, 2008.

[Miller, 1956] G. A. Miller, ―The magical number seven, plus or minus two: some limits on our

capacity for processing information.,‖ Psychol. Rev., vol. 63, no. 2, p. 81, 1956.

[Mitnick and Simon, 2009] K. D. Mitnick and W. L. Simon, The Art of Intrusion: The real stories

behind the exploits of hackers, intruders and deceivers. John Wiley & Sons, 2009.

[Moody, 2009] D. Moody, ―The ‗physics‘ of notations: toward a scientific basis for constructing

visual notations in software engineering,‖ Softw. Eng. IEEE Trans., vol. 35, no. 6, pp. 756–779,

2009.

[Mouratidis and Giorgini, 2007] H. Mouratidis and P. Giorgini, ―Secure Tropos: a Security-Oriented

Extension of the Tropos Methodology,‖ Int. J. Softw. Eng. Knowl. Eng., vol. 17, no. 2, pp. 285–

309, 2007.

[Niazi et al., 2006] M. Niazi, D. Wilson, and D. Zoghwi, ―Critical success factors for software

process improvement implementation: an empirical study,‖ Softw. Process Improv. Pr., vol. 11,

no. 2, pp. 193–211, 2006.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 52

[Nordbotten and Crosby, 1999] J. C. Nordbotten and M. E. Crosby, ―The effect of graphic style on

data model interpretation,‖ Inf Syst J, vol. 9, no. 2, pp. 139–156, 1999.

[OMG, 2011] OMG. (2011). Unified Modeling Language [Online]. Available:

http://www.omg.org/spec/UML/2.4.1/.

[Paivio, 1986] A. Paivio, Mental representations: A dual coding approach. Oxford University Press,

1986.

[Pfleeger and Kitchenham, 2001] S. L. Pfleeger and B. A. Kitchenham, ―Principles of survey

research: part 1: turning lemons into lemonade,‖ ACM SIGSOFT Softw. Eng. Notes, vol. 26, no.

6, pp. 16–18, 2001.

[Purchase et al., 2002] H. C. Purchase, D. Carrington, and J.-A. Allder, ―Empirical evaluation of

aesthetics-based graph layout,‖ Empir. Softw. Eng., vol. 7, no. 3, pp. 233–255, 2002.

[Purchase et al., 2004] H. C. Purchase , R. Welland, M. McGill, and L. Colpoys, ―Comprehension of

diagram syntax: an empirical study of entity relationship notations,‖ Int. J. Hum.-Comput. Stud.,

vol. 61, no. 2, pp. 187–203, 2004.

[Reijers and Mendling, 2011] H. A. Reijers and J. Mendling, ―A study into the factors that influence

the understandability of business process models,‖ Syst. Man Cybern. Part Syst. Humans IEEE

Trans., vol. 41, no. 3, pp. 449–462, 2011.

[Rodgers and Nicewander, 1988] J. L. Rodgers and W. A. Nicewander, ―Thirteen ways to look at the

correlation coefficient,‖ Am. Stat., vol. 42, no. 1, pp. 59–66, 1988.

[Røstad, 2006] L. Røstad, ―An extended misuse case notation: Including vulnerabilities and the

insider threat,‖ in The 12th Working Conf. on Requirements Engineering: Foundation for

Software Quality, Luxembourg, 2006, pp. 33–43.

[Schmidt and Jürjens, 2011] H. Schmidt and J. Jürjens, ―Connecting Security Requirements Analysis

and Secure Design Using Patterns and UMLsec,‖ in Advanced Information Systems Engineering -

23rd Int. Conf., London, UK, 2011, pp. 367–382.

[Schneier, 1999] B. Schneier (1999, December). "Attack Trees" Dr. Dobb’s Journal, vol. 24, no.12

[Online]. Available: https://www.schneier.com/paper-attacktrees-ddj-ft.html.

[Shapiro and Wilk, 1972] S. S. Shapiro and M. Wilk, ―An analysis of variance test for the

exponential distribution (complete samples),‖ Technometrics, vol. 14, no. 2, pp. 355–370, 1972.

[Siau, 2004] K. Siau, ―Informational and computational equivalence in comparing information

modeling methods,‖ J. Database Manag. JDM, vol. 15, no. 1, pp. 73–86, 2004.

[Siegel and Castellan, 1988] S. Siegel and N. Castellan, Non Parametric Statistics for the Behavioral

Sciences, 2nd ed. McGraw-Hill, 1988.

[Sindre and Opdahl, 2005] G. Sindre and A. L. Opdahl, ―Eliciting security requirements with misuse

cases,‖ Requir. Eng., vol. 10, no. 1, pp. 34–44, 2005.

[Sindre, 2007] G. Sindre, ―Mal-activity diagrams for capturing attacks on business processes,‖ in

Requirements Engineering: Foundation for Software Quality, 2007, pp. 355–366.

[Sindre et al., 2002] G. Sindre, A. Opdahl, and G. F. Brevik, ―Generalization/Specialization as a

Structuring Mechanism for Misuse Cases,‖ in 2nd Symp. on Requirements Engineering for

Information Security, 2002, pp. 1–16.

[Souag et al., 2012] A. Souag, C. Salinesi, and I. Comyn-Wattiau, ―Ontologies for Security

Requirements: A Literature Survey and Classification,‖ in Advanced Information Systems

Engineering Workshops, Gdańsk, Poland, 2012, pp. 61–69.

0098-5589 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2396526, IEEE Transactions on Software Engineering

 53

[Stytz, 2004] M. R. Stytz, ―Considering Defense in Depth for Software Applications,‖ IEEE Secur.

Priv., vol. 2, no. 1, pp. 72–75, 2004.

[Symantec, 2010] Symantec. (2010, August). AndroidOS.FakePlayer description [Online].

Available: http://www.symantec.com/security_response/writeup.jsp?docid=2010-081100-1646-

99.

[van Lamsweerde, 2004] A. van Lamsweerde, ―Elaborating Security Requirements by Construction

of Intentional Anti-Models,‖ in 26th Int. Conf. on Software Engineering, Edinburgh, United

Kingdom, 2004, pp. 148–157.

[Wand and Weber, 1990] Y. Wand and R. Weber, ―An Ontological Model of an Information

System,‖ IEEE Trans Softw. Eng, vol. 16, no. 11, pp. 1282–1292, 1990.

[O‘Connor, 2011] Z. O‘Connor, ―Logo colour and differentiation: A new application of

environmental colour mapping,‖ Color Res. Appl., vol. 36, no. 1, pp. 55–60, 2011.

[Whittle, 2010] J. Whittle, ―Extending interaction overview diagrams with activity diagram

constructs,‖ Softw. Syst. Model., vol. 9, no. 2, pp. 203–224, 2010.

[Winn, 1993] W. Winn, ―An account of how readers search for information in diagrams,‖ Contemp.

Educ. Psychol., vol. 18, no. 2, pp. 162–185, 1993.

[Wohlin et al., 2000] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén,

―Experimentation in Software Engineering: An Introduction,‖ Kluwer Int. Ser. Softw. Eng., 2000.

[Zhang and Norman, 1994] J. Zhang and D. A. Norman, ―Representations in Distributed Cognitive

Tasks,‖ Cogn. Sci., vol. 18, no. 1, pp. 87–122, 1994.

