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Abstract

Numerical simulations of turbulent, stratified two-phase flow with a surfac-
tant laden interface were analyzed. The turbulence was forced in the upper
and lower liquids to emulate the dynamics of an interface between turbu-
lent fluids, without requiring (prohibitively) large simulation domains. This
setup was used to test and develop a phenomenological roughness scale model
where we assume that the energy required to deform the interface (buoyancy,
interfacial tension, and viscous work) is proportional to the turbulent kinetic
energy adjacent to the interface. The addition of surfactant lead to an in-
creased roughness scale (for the same turbulent kinetic energy) due to the
introduction of interfacial dilatational elasticity that suppressed horizontal
motion parallel to the interface, and enhanced the vertical motion. We foresee
that the phenomenological roughness model can be used as a building block
for more general interfacial closure relations in Reynolds averaged turbulence
models where also mobile surfactant is accounted for.
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1. Introduction

The development of a better understanding of turbulence near deformable
interfaces has been a long standing research challenge, and experiments and
numerical simulations have already revealed many important aspects of the
structure of the interface and the adjacent turbulence (e.g., Lugt and Ohring,
1992; Tsai, 1996; Lombardi et al., 1996; Fulgosi et al., 2003; Guo and Chen,
2010). The interfacial fluctuations respond to the turbulent kinetic energy,
length scales and vortex structures in the fluids adjacent to the interface (e.g.,
Rein, 1998; Smolentsev and Miraghaie, 2005) and the turbulence is affected
by the interfacial properties (elasticity, viscosity and energy), posing a two-
way interface-turbulence coupling. For rigid or stiff interfaces, the turbulence
structures resemble those of wall bounded flow, while more flexible interfaces
with low energy content are easily deformed by the fluid motions, and the
turbulence structures resemble those in the fluid interior, outside boundary
layers.

The turbulence-induced interfacial roughness scale in stratified gas/liquid
or liquid/liquid flow is an important quantity with respect to the hydrody-
namic coupling between the phases. Many two-phase turbulence models for
pipe and channel flow rely on interfacial friction models to predict the tur-
bulent (axial) momentum flux transported over the interface from one fluid
to the other. In Reynolds averaged models, such as k− ε models, one adopts
an interfacial friction model that is often modelled in terms of a roughness
scale (e.g., Durbin et al., 2001; Berthelsen and Ytrehus, 2005; Biberg, 2007;
de Sampaio et al., 2008), and it is of importance to develop reasonable rough-
ness scale models that can respond to the length, time and energy scales of
the turbulence near the interface. Perhaps the most obvious natural sys-
tem where the roughness scale is central, is the coupling between the ocean
surface and the overlying wind (e.g., Charnock, 1955; Wu, 1980; Fernando,
1991). For example, the driving of hurricanes depends on the roughness scale
(friction) but also entrainment (heat exchange by sea-spray or droplets) (e.g.,
Bao et al., 2011).

Earlier, we derived a phenomenological roughness scale model by assum-
ing proportionality between the energy needed to deform the interface and
the turbulent kinetic energy adjacent to the interface (Skartlien et al., 2014).
This model was tailored to turbulence controlled interfaces with entrain-
ment, and it was tested for gas/liquid pipe flow. The modelled roughness
scale could be recast in terms of interfacial capillary, Weber, Froude and
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Reynolds numbers, and consistency with models for gravity dominated flows
(Charnock, 1955; Wu, 1980) was demonstrated. In the current work, we
tested and developed this roughness scale model by using numerical simula-
tions, where all the turbulence length scales and energies near the interface
are readily available (within the limitations of the simulation setup). The
lattice Boltzmann simulation model we have developed (e.g., Furtado and
Skartlien, 2010; Skartlien et al., 2011, and references therein) also includes
surfactant, such that we were able to explore how the roughness scale depends
on the surfactant dynamics in terms of Marangoni stresses.

Direct numerical simulations of naturally developed turbulence with in-
terfaces in two-phase flow is computationally expensive due to the required
domain size that is needed to obtain sufficiently large Reynolds numbers
(e.g., Menard et al., 2007; Guo and Chen, 2010). In contrast, forced turbu-
lence in volumes near the interface allows one to drastically reduce the size
of the computational domain while still obtaining sufficiently vigorous tur-
bulence in the interfacial region. However, this offers only an approximate
and qualitative way of studying the response and dynamics of the interface
to turbulence, since one does not necessarily capture all aspects of the turbu-
lence structures (morphology and size distribution of the vortex structures)
that is found in naturally driven two-phase flows. Furthermore, the natural
feedback on the turbulence from the interface is not necessarily captured. To
prevent a direct forcing of the interface and allow for a naturally developed
flow near the interface, ”forcing windows” with finite support well outside
the interfacial region were invoked. The forcing scheme of ten Cate et al.
(2006) for lattice Boltzmann simulations was implemented.

Surfactant lowers the interfacial tension on the average, so that the as-
sociated interfacial energy is reduced and the interface may be less stable
with larger fluctuation amplitudes, if we assume the same forcing condi-
tions. However, advection of surfactant on the interface in response to the
external turbulent flow introduces surfactant density gradients when the in-
terfacial flow is locally divergent/convergent (expanding/contracting). The
associated interfacial tension gradients induces tangential Marangoni stresses
that oppose the tangential velocities adjacent to the interface (e.g., Sarpkaya,
1996), and this provides a feedback effect that reduces the liquid turbulent
kinetic energy near gas/liquid interfaces (e.g., Tsai, 1996; Lee and Saylor,
2010). Much focus has been put on this phenomenon in the context of sup-
pressed surface renewal rates and gas transfer rates over the interface (with
emphasis on CO2 transfer from the atmosphere to the ocean). Tsai (1996)
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used numerical simulations to study the effect on the turbulent shear layer
under the air-sea interface. The horizontal fluctuations were suppressed, and
the vertical fluctuations were also attenuated, in the presence of insoluble
surfactant. Lee and Saylor (2010) performed experiments in a wind/water
tunnel with a surfactant monolayer, and confirmed that surfactant reduced
both the subsurface turbulent fluctuations, and the gas mass transfer rate
over the interface.

It must be noted that surfactant may also introduce viscous effects in the
interface in addition to elasticity and Marangoni stresses. A more viscous
interface acts stabilizing and may suppress capillary waves (the ”oil-on-water
effect”), while lowered interfacial tension, elasticity and Marangoni effects
may act destabilizing on propagating waves (Blyth and Pozrikidis, 2004).

First, we develop a small amplitude version for the interfacial energy
model, and this constitutes the the main ingredient in the roughness scale
model that we use in the current work. A discussion of the roughness scale
model in terms of closure relations in turbulence models, follows thereafter.
The 3D simulation setup with the oil/water/surfactant lattice Boltzmann
model with forced turbulence is then summarized, before we discuss the
roughness scale model in the context of the simulation results.

2. Model for the interfacial energy and roughness scale

An interfacial energy was derived in Skartlien et al. (2014), where we
considered interfacial deformations with horizontal scale L (comparable to
the turbulent length scale in the fluids parallel to the interface), and height
scale δ (the vertical displacement relative to the unperturbed interface in the
absence of turbulent kinetic energy). It was assumed that the characteristic
fluctuation magnitude was large, so that δ ∼ L, and that fragmentation of
the interface (entrainment) could occur. In the current work we assume small
fluctuations δ ¿ L and no entrainment. There is no fundamental amplitude
restriction in the simulation model, but we preferred to study fluctuating
interfaces that were not disturbed directly by the turbulence forcing. The
forcing was then imposed only beyond a certain distance from the interface,
and in this case, our interfaces had small fluctuations.

2.1. Interfacial energy for small fluctuations

A small fluctuation approximation can be obtained by modeling the lifted
(or depressed) fluid element by a small cordial segment of a sphere (a spher-
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ical cap), of height δ and a circular base area with a diameter equal to the
characteristic scale L. This is a suitable model that captures the smoothness
of the interface when the fluctuations are small1. The excess area relative to
the flat interface is now ∆A ' πδ2, and the lifted volume is ∆V ' (π/8)L2|δ|.
The center of mass of the lifted element is at ȳ ' δ/3, and the gravitational
potential energy is therefore

EG = (π/8)(L2|δ|)g∆ρ(|δ|/3), (1)

where ∆ρ is the (positive) density difference between the fluids, and g is
the acceleration of gravity. The excess interfacial energy due to interfacial
tension σ is

Eσ = σ∆A = πσδ2. (2)

The energy spent on viscous dissipation when a fluid element is displaced
vertically by an amount |δ| over the horizontal scale L, is

µ
u∗I
L

(πLδ)δ, (3)

expressing the viscous work associated with the internal shearing motion
of the fluid inside the lifted volume element (in the ”inner fluid”). The
characteristic velocity fluctuation of the interface is chosen as

u∗I =
√

(2/3)k̄ (4)

where k̄ is the average turbulent kinetic energy per unit mass, in the interfa-
cial zone (the averaging is here performed in a horizontal ”slab” of sufficient
thickness to encompass the interfacial fluctuations).

The viscous resistance in the ”outer fluid”, that is also displaced, can
be significant (displacement into a viscous oil, for example). The associated
energy loss can be estimated as a constant factor Cν times a viscous work
term of the same form as that for the inner fluid, so that the total viscous
dissipation can be modelled by

Ev = (µ + Cνµ
′)

u∗I
L

(πLδ)δ (5)

1The associated sphere has a radius of curvature given by R. The radius of curvature
goes to infinity for a flat interface, and limits to L/2 for a half sphere with δ = R as the
maximum reasonable excursion.
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where µ′ is the dynamic viscosity of the outer fluid, and µ is the dynamic
viscosity of the inner fluid. With this formulation, we expect that Cν = O(1),
and we simply choose Cν = 1 in the following. The total energy that is needed
to displace an interfacial element vertically by an amount δ is therefore

EI = (π/8)L2g∆ρδ2/3 + πσδ2 + π(µ + Cνµ
′)u∗Iδ

2 ≡ F (L)δ2. (6)

2.2. Roughness scale model

We assume that the interface is fully covered with displaced elements. It
is then sufficient to consider the statistics of a single displaced element in
order to derive the variance and standard deviation of the fluctuation over
the entire interface. The turbulent kinetic energy in the lower fluid serves to
displace the elements both upward or downward, and the turbulent kinetic
energy in the upper fluid has a similar effect.

We assume that the interface is in local equilibrium with the turbulence,
so that the average interfacial energy equals the turbulent kinetic energy that
is available to the interface,

eT Ab = 〈EI〉 = F (L̄)〈δ2〉, (7)

where angle brackets denote ensemble averaging, eIAb is the available energy,
eT is the available energy per unit area, Ab = (π/4)L̄2 is the base area of a
lifted element, and L̄ is an effective interfacial length scale that is induced
by the turbulence on both sides of the interface. This defines the model for
the roughness scale δ∗ =

√
〈δ2〉.

For turbulence-controlled interfacial fluctuations where propagating waves
only provide a relatively small contribution, we propose that L̄ is approxi-
mately equal to an average value between the parallel turbulent length scales
in the fluids adjacent to the interface (e.g., Lugt and Ohring, 1992). We will
adopt this approximation in the following, and not distinguish the interfacial
length scale from the average value of the parallel length scales in the flu-
ids, near the interface. In the following analysis, we will estimate the length
scale L̄ directly from the velocity field adjacent to the interface, by using the
simulation data.

For turbulence modelling purposes, we propose that one could use an
energy averaged length scale for L̄,

L̄ =
Luρuku + Llρlkl

ρuku + ρlkl

, (8)
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where Li denotes the parallel turbulent length scale in the fluids. The length
scales in either fluid may be taken from the auxiliary turbulence models.

The turbulent kinetic energy adjacent to the interface in fluid i, that is
available per interfacial element, is modelled by

eT (i)Ab = ξρiki(diAb)/6, (9)

where di is the turbulence correlation length perpendicular to the interface,
and ρiki is the turbulent kinetic energy density in fluid i, adjacent to the
interface. The physical meaning of this is that the maximum amount of
energy that is available to lift (or depress) a fluid element of area Ab, is equal
to the turbulent kinetic energy contained in the volume diAb adjacent to the
interface. This is the volume over which the fluid moves coherently (over
the size scale of an eddy). The factor 1/6 is due to the three degrees of
freedom of motion, and the fact that the energy can be transported in six
directions, among which only one direction involves delivery of energy to the
interface. Since the interface is likely to suppress perpendicular motion (due
to the ”interfacial stiffness”), we introduce a damping factor 1 > ξ > 0. This
damping is discussed below.

The total kinetic energy that is available per displaced element is therefore
modelled by

eT Ab = ξAb(ρlkldl + ρukudu)/6 =
2

6
ξAb ρkd̄, (10)

by adding the upper and lower contributions. Here, ρk is the arithmetic
mean of the upper and lower turbulent kinetic energy densities, and

d̄ =
ρlkldl + ρukudu

ρlkl + ρuku

, (11)

is the energy averaged perpendicular length scale. From (7) we obtain the
following model for the roughness scale δ∗,

δ∗ =

√
(ξ/6)ρkd̄/2

g∆ρ/24 + σ/L̄2 + (µU + µL)u∗I/L̄2
. (12)

For relatively weak dissipation and a slow variation of the correlation
lengths with turbulent kinetic energy, the roughness scale varies as the square
root of the turbulent kinetic energy near the interface. It is also clear that
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the roughness scale diminishes for larger density contrast and/or larger inter-
facial tension and larger viscous dissipation. In the derivation of (12) it was
assumed that one half of the elements are upshifted and one half are down-
shifted, each contributing with a term (π/2)(µU + µL)u∗Iδ

2 to the viscous
dissipation.

A good fit to the data could only be obtained by choosing a small damping
factor of about ξ = 0.05. For higher interfacial energy (more rigid interfaces),
one may suspect that the damping is larger since the fluid motion is affected
more. This results in a smaller effective coherence length close to the inter-
face than what appears to be the size scale d of the most energetic eddies
adjacent to the interface (these eddies are illustrated in figure 1). For very
stiff interfaces, the coherence length (or mixing length) is proportional to the
distance from the interface in accord with the log-law near a solid wall. For
low energy interfaces, the fluid is able to move the interface and the coher-
ence lengths are less affected, and for a passive interface that is advected by
the flow, there is no damping effect.

2.3. The relation to the volume fraction profile

The ensemble average of the interfacial energy contains the variance 〈δ2〉
of the interface level h(x, y, t), and the corresponding roughness scale δ∗ =√
〈δ2〉 is the standard deviation of the interface level relative to the mean

value 〈h〉. This standard deviation corresponds to the width of an interfacial
probability distribution P (y), that relates to the volume fraction profile α(y)
over the interfacial zone (Skartlien et al., 2014),

α(y) =

∫ y

−∞
P (ζ)dζ. (13)

The roughness scale δ∗ is then also a measure of the characteristic thickness of
the ”interfacial zone” over which the volume fraction profile changes between
the limiting values (0 and 1).

2.4. Application in turbulence models

By using equation (7), one can normalize the contributions of the inter-
facial energy terms to the available turbulent kinetic energy, and obtain the
non-dimensional form

〈EI〉
eT Ab

=
1

12

1

CFr

(
δ∗

d̄

)2

+
2

C

1

We

(
δ∗

L̄

)2

+
2

C

1

Re

(
δ∗

L̄

)2

= 1, (14)
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where the interfacial Froude, Weber and Reynolds numbers are defined by

Fr =
ρk

g∆ρd̄
,

We =
ρkd̄

σ
,

Re =
ρu∗I d̄

(µU + µL)
,

and where C = ξ/6. In equation (14), the term in the Froude number
is due to gravitational potential energy, the term in the Weber number is
due to interfacial tension, and the term in the Reynolds number is due to
viscous dissipation. When any of these non-dimensional numbers are small,
the corresponding energy term is large. The roughness scale (12) can then
be recast in terms of these non-dimensional numbers,

δ∗ =

√
12CFr d̄√

1 + 24(Fr/Re + Fr/We)(d̄/L̄)2
. (15)

This model may be used in two-fluid turbulence models that rely on a
roughness scale for the prediction of the interfacial stress or interfacial tur-
bulent kinetic energies (e.g., Berthelsen and Ytrehus, 2005; Biberg, 2007).
For two-layer k − ε models, Durbin et al. (2001) suggested a quadratic in-
terpolation for the transitional regime between a plane interface where the
turbulent kinetic energy is zero (k = 0), and to the fully rough interface. The
corresponding boundary condition for the turbulent kinetic energy above and
below the interface took the form

ki =
τI

ρi

√
Cµ

Min[1, (R+
s /90)] (16)

with layer index i, and where R+
s is a roughness scale, and τI is the interfacial

shear stress. A specification of R+
s is necessary (e.g., via the RMS height of

the interface) if the interface is not considered to be ”fully turbulent” defined
by (R+

s /90) > 1. In this regime, the roughness scale increases with increased
turbulent kinetic energy and increased wave heights. Berthelsen and Ytre-
hus (2005) found that Charnock’s gravity controlled length scale (Charnock,
1955) gave reasonable predictions, for gas-liquid flow. The roughness scale
model (15) may be used also when viscosity and interfacial tension con-
tributes to the interfacial energy in addition to gravity.
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The limiting behavior of (15) is similar to the large amplitude model that
was devised in Skartlien et al. (2014). When gravity completely dominates
over viscosity and interfacial tension, the characteristic excursion of the in-
terface scales as δ∗ ' √

12CFr d̄. The damping constant ξ can be calibrated
to match the ”Charnock limit” δ∗ = βu2

τ/g, where β ' 0.1− 0.2 for ”shallow
water” pipe flow (Berthelsen and Ytrehus, 2005). To be consistent with the
roughness scale as it approaches the ”fully turbulent” limit, one can consider
the interfacial friction velocity in the same limit, u2

τ '
√

Cµk̄ = 0.3k̄. If
we can assume that the roughness scale equals the perpendicular correlation
length in this limit, δ∗ ∼ d̄ (which is reasonable but uncertain), we obtain
β ' 36C = 6ξ from setting 12CFr = 1, and this yields a value for the
damping constant of ξ ' β/6 (with a value of 0.03 for β ' 0.2 – which is
close to the fitted value of 0.05 which we use below).

For oil/water combinations with low density contrast, gravity is less im-
portant. If, in addition, the Reynolds number is large (small viscous loss),
then δ∗ ∼ √

CWeL̄. For very viscous fluids, the Reynolds number is small,
and we may have δ∗ ∼ √

CReL̄ where viscous dissipation limits the interfacial
excursions. When the interfacial tension and viscous losses are important,
Wu (1980) made a viscous-capillary correction to Charnock’s length scale
to account for an increased roughness scale due to smaller scale capillary
fluctuations. We note that (15) can also account for such viscous-capillary
effects.

3. 3D simulations with driven turbulence

3.1. Boundary conditions and simulation setup

The properties of the Shan and Chen type two-fluid lattice Boltzmann
model with surfactant were described in earlier work (e.g., Furtado and
Skartlien, 2010). A brief summary of the essential ingredients is given in
Appendix A. Figure 1 shows the simulation setup with a numerical grid of
100 × 100 × 200 grid points with uniform separation in all three directions.
We used Ny = 200 grid points in the vertical direction and Nx = Nz = 100 in
the horizontal directions. Periodic boundary conditions were invoked in both
horizontal directions. The upper and lower boundaries were moving no-slip
walls to impose a mean shear, and this may affect the interfacial structures
and generate a Reynolds shear stress.

The upper and lower fluids were separated by a deformable interface that
responded to the flow dynamics (figure 2), and that possessed an interfacial
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Figure 1: The simulation setup with a numerical grid of 100× 100× 200 grid points. The
interface between the upper fluid (less viscous), and the lower fluid (more viscous) is shown
in grey. Streamlines visualize the instantaneous velocity field, with a color coding that
depends on the velocity magnitude. Green/yellow indicates larger velocities than blue.
The small dots at the end of the streamlines mark the starting point of the integration.
The upper and lower walls were moving to impose a mean shear, and the lower fluid moves
to the left on the average.

tension that was reduced by the presence of surfactant. The upper fluid had a
smaller density than the lower fluid, making the setup Rayleigh-Taylor stable
against gravity. The lower, more dense fluid had the higher viscosity in the
current setup. This was more numerically stable in our lattice-Boltzmann im-
plementation. We note that a light-oil and water case implies oil as the upper
more viscous fluid, in contrast to our case. The density ratio and hence the
buoyancy of the fluids were controlled by van der Waals like self-interaction
forces via the force parameters GAA or GBB as described in Appendix A. We
chose a moderate density ratio of 2, and a kinematic viscosity ratio of 2.5.
The collisional relaxation times in lattice Boltzmann model that determine
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Figure 2: Interfacial fluctuations at a specific time.

the kinematic fluid viscosities, were τw = 1.1 and τo = 2.0 for the water and
oil phases respectively, providing the given viscosity ratio.

The simulations were started by imposing a piecewise linear velocity pro-
file u0

x(y) that matched the moving wall velocities, while obeying a constant
viscous stress τv = µ∂yu

0
x throughout the domain. The averaged streamwise

velocity Vx display a similar profile (figure 3), where the viscous stress dom-
inates and controls the slopes of the velocity profile. The Reynolds shear
stress was found to be marginal compared to the viscous stress. The mean
shear rate ∂yVx implies a turnover or circulation frequency of about 30 s−1,
with the lattice Boltzmann normalization parameters we chose (Appendix
B).

The surfactant is soluble in both fluids, and the mass density of the sur-
factant (mass per unit volume) relative to the water density was 1.5× 10−2

in the bulk phases. The surfactant forces were turned off for the ”surfac-
tant free case” where the interfacial tension had a constant and high value
of 15 mN/m with the chosen normalization parameters. Under static condi-
tions, the surfactant adsorbs to the interface in the lattice Boltzmann model
until an equilibrium is achieved with the bulk concentration (Skartlien et
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illustrate the velocity profile that corresponds to a constant viscous stress and the given
viscosity contrast. The boundaries of the upper and lower volumes where the turbulent
forcing was imposed, are shown by vertical lines.

al., 2011), and the interfacial tension was reduced by about 25%, with force
parameters given in Appendix A.

3.2. Driven turbulence and parallel processing

Forced turbulence was applied as a means of obtaining sufficient turbulent
kinetic energy to drive the interface without having to realize a large Reynolds
number that requires a much larger simulation domain. In this way, we
avoided the very large computational loads as noted in the introduction,
but at the cost of only approximate turbulence structures. A stochastic
force was applied in the upper and lower fluids (figure 1), within zones that
extended from the upper and lower moving walls and to a distance of 50
grid points above and below the interface as indicated in the figure. The
stochastic force was scaled down linearly towards the interface over a narrow
zone (10 grid points), and there was no forcing closer than 50 grid points of
the interface. One half of the simulation volume (centered at the interface)
was then forcing-free, in which the turbulence could evolve freely.

The stochastic force was defined in spectral space, with a low wave num-
ber, narrow band isotropic power spectrum, as described in Appendix C.
The power spectrum was defined on a spherical shell with a radius or central
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wavenumber kf , and a with a relatively narrow bandwidth ∆k. The energy
input rate provided by the driving force is given by ε = (u∗)3/l̄∗ (ten Cate
et al., 2006), where l̄∗ can be taken as the average driving wavelength which
is proportional to 1/kf . Several values of the energy input rate were used
by varying u∗ between 0.05 and 0.4. The energy input rate, and therefore
the interfacial fluctuations, were kept sufficiently small to avoid large inter-
facial undulations and direct forcing of the interface in the upper and lower
forcing volumes. A characteristic turbulent velocity parameter of u∗ = 0.1
corresponds to a turbulent RMS velocity of 0.14 m/s (with the chosen nor-
malization parameters in Appendix B).

A total of 18 simulations without surfactant and 9 with surfactant were
carried out. A large number of time steps (30000) were necessary in each case,
to suppress the statistical noise (or uncertainty) in the averaged simulation
data. The total computational time was about 25 days on 12 microprocessors
run in parallel. MPI was used to parallelize the code, by splitting the domain
in equal size slabs in the flow direction (x-direction). The discretized pop-
ulations of the Boltzmann distribution that move across the corresponding
boundaries were communicated between the microprocessors.

4. Results

First, we describe the flow morphology and resulting lengths scales that
emerge in the simulations, before we discuss the results in the context of the
roughness scale model.

4.1. Length scale estimates from the simulations

The average turbulent kinetic energy ρk in the interfacial zone (defined
as a 3D slab of vertical thickness equal to 20 grid points, that contained the
fluctuating interface) increased with the energy input rate ε. Figure 4 shows
that ρk increased roughly linearly with ε. The turbulent kinetic energy pro-
file as function of height, decreased exponentially from the forcing volumes
and towards the interface (figure 5). These profiles are approximately pro-
portional to ε, giving the variation in the average turbulent kinetic energy in
the interfacial zone, as shown in figure 4.

The turbulent length scales parallel and perpendicular to the interface in
the regions between the forcing volumes and the interface, were estimated by
visualizing the most energetic eddies using instantaneous streamlines, and by
using autocorrelation functions of the velocity field. Figure 6 (and figure 1)

16



Figure 4: The average turbulent kinetic energy ρk adjacent to the interface as function of
the input rate ε of turbulent kinetic energy in the forcing volumes.
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Figure 5: A profile of the turbulent kinetic energy ρk as function of distance between the
walls. The boundaries of the forcing volume are shown by vertical lines, and the turbulent
kinetic energy decayed towards the interfacial region in the middle of the domain.

show streamline visualizations, and figure 7 shows some of the autocorrelation
lengths that were calculated. The correlation lengths were consistent with
the eddy-size estimates, and they did not show a clear decreasing trend with
increasing energy input rate ε. We obtained d̄ ' L̄/2 ' 32 as an estimate
that could represent all the cases.

The eddy length scale was in general larger than the average forcing
length scale of l∗x = 20. The reason for this, and the almost constant length
scale with increasing energy input, is that the characteristic eddy size was
strongly influenced by the applied shear. The turbulent velocities induced
by the forcing, and the velocity components induced by the shear, were in
fact equally important; the velocity increment (∂yVx)∆y over the distance
∆y between the boundary of the forcing volume and the interface was of
similar magnitude as the characteristic turbulent velocity u∗ = O(0.1).

It was confirmed that the eddy size was not sensitive to the horizontal
extent of the simulation domain, as shown in the right hand panel in figure
6. The domain size in the flow direction (streamwise direction) was increased
by a factor of two. This indicates that the eddy size was mainly controlled by
the distance ∆y between the boundary of the forcing volume and the inter-
face. Furthermore, for non-moving upper and lower walls, the characteristic
regular pattern of the larger eddies vanished, leaving only smaller and more
randomly distributed eddies.
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Figure 6: Streamline visualization was used to estimate the eddy sizes (the streamline
coding is the same as in figure 1. Only the eddies above the interface is visible, since
the streamwise velocity component fluctuates around zero only in this region. The left
panel shows a characteristic eddy for a domain size of 100 grid points in the streamwise
direction, and the right hand panel shows that the characteristic eddy size did not change
appreciably even with 200 grid points in the streamwise direction.

Figure 7: The length scales were also estimated by using correlation functions of the veloc-
ity field. The figure shows the corresponding d̄ (diamonds, smaller values) and L̄ (squares,
larger values). The dashed lines mark the average values, and these were consistent with
visual eddy-size measurements using streamlines. We obtained d̄ ' L̄/2 for all the cases,
indicating that the sizes of the larger, more energetic eddies were strongly influenced by
the mean shear.
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Figure 8: The estimate of the interfacial roughness scale δ∗ in the simulation data without
surfactant (crosses), and with surfactant (triangles) as function of the turbulent kinetic
energy ρk in the interfacial zone. This log-log plot reveals the square root dependency
of the roughness scale as function of turbulent kinetic energy, as predicted from the phe-
nomenological roughness scale model. The thick full line shows the model result without
surfactant. With surfactant, the simulation data show an interfacial roughness that is
overall larger than expected: The thick dash-dot line shows the model result with zero
interfacial tension. The average surfactant density corresponds to a reduction of the inter-
facial tension only by about 25% relative to the surfactant free case, and the thin dash-dot
line shows the corresponding model result.

20



4.2. Roughness scale: model versus simulations

The roughness scale δ∗ was estimated from the simulation data, as the
standard deviation of the fluctuating interface level over all time steps after an
initial period that contained startup transients. Figure 8 shows the estimated
δ∗ as function of the average turbulent kinetic energy ρk. The roughness scale
with surfactant (triangles) was overall larger than for the ”clean” surfactant-
free case (crosses). Even though the noise component in these estimates is
significant, we confirm a square root dependency of the roughness scale as
function of turbulent kinetic energy (straight lines). This is predicted by the
model in the limit of relatively small viscous dissipation.

The thick full line shows the surfactant free model result, using the inter-
facial tension from the simulation model, and the model fit the data (crosses)
well when the damping factor was tuned to ξ = 0.05. The length scales (L
and d) are input parameters to the model, and these were taken from the
simulation data (d̄ ' L̄/2 ' 32 from figure 7).

Surfactant lowers the interfacial energy on the average, and based on this
alone, one should expect that the roughness should increase, provided that
the turbulent kinetic energy is the same. The average surfactant density
corresponds to a reduction of the interfacial tension by about 25% relative
to the surfactant free case. When this reduced interfacial tension was used
in the model, only a relatively small increase in the roughness scale was
obtained as shown by the thin dash-dot line. The thick dash-dot line shows
an upper limit estimate from the model by setting the interfacial tension to
zero, and this seems to represent a better fit to the data (triangles). The
interfacial roughness with surfactant was therefore larger than what can be
obtained by a simple reduction of the average interfacial tension.

We propose that the transversal (vertical) velocity fluctuations (these are
responsible for the roughness scale) increase when the tangential (horizontal)
velocity fluctuations are suppressed by the Marangoni stresses, as a conse-
quence of momentum balance and mass conservation near the interface. This
is expected if one imposes the same forcing conditions on the interface (the
same turbulent kinetic energy) also in the presence of surfactant. We analyze
this in more detail in section 5.2.

4.3. Interfacial energy contributions

The normalized interfacial energy contributions is given by equation (14).
Each term is proportional to the inverse Froude, Weber and Reynolds num-
bers, defined via the relatively small depth scale d̄ near the interface (this
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Figure 9: Non-dimensional numbers for the interface as function of average turbulent
kinetic energy density ρk in the interfacial zone. The Froude number was the smallest,
meaning that gravitational potential energy was the most important interfacial energy
term in the current setting.

Figure 10: The interfacial energy contributions as function of ρk. The full line shows the
total energy Et. Eg is the gravitational potential energy, Es is the interfacial tension term,
and Ev is the viscous dissipation term.
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generates small interfacial Reynolds numbers, even though the usual flow
Reynolds number can be large). These non-dimensional numbers are shown
in figure 9 as function of turbulent kinetic energy. The Froude number was
the smallest, and the Reynolds number was the largest, meaning that grav-
itational potential energy was the dominating interfacial energy term, and
that viscous dissipation was a small contribution. The interfacial tension
provided an intermediate energy term, via the Weber number.

The ensemble averaged interfacial energy terms in equation (6), with L
substituted by the energy averaged L from equation (8), are shown in figure
10. The thick full line shows the total energy (which is set equal to the
available turbulent kinetic energy in the roughness scale model). All terms
increase with turbulent kinetic energy mainly due to the increasing interfacial
fluctuation 〈δ2〉, but the viscous dissipation term increases more rapidly since
it is also directly proportional to the fluctuation velocity u∗I at the interface.

5. Influence of the dilatational elasticity

5.1. Interfacial surfactant distribution and flow fields

The surfactant was not evenly distributed on the interface, as shown in
figure 11. The surfactant density was about 0.02 in the bulk, and it fluctu-
ated between 0.03 and 0.05 on the interface. Consequently, the interfacial
tension fluctuated by about 15%, and this induced tangential stresses that
varied across the interface. If the interfacial flow expands locally due to
nearby turbulent flow (internal to the fluids), an opposing Marangoni stress
is induced that tends to oppose this expansion, and this corresponds to a
dilatational elasticity (e.g., Danov et al., 2001).

The length scale of the fluctuations in surfactant density on the interface
was comparable to the characteristic eddy size scale as seen in figure 11.
There was also a correlation between upward interfacial fluctuation into the
less dense/less viscous upper fluid and lowered surfactant density (the round,
lighter patches in the figure). The reason for this is that a local expansion
of the interface dilutes the surfactant density locally, when there is an up-
welling in the more viscous fluid towards the interface. The more viscous
fluid controlled this interfacial flow field, since the velocity gradients adja-
cent to the interface were of similar magnitude in the upper and lower fluids
and the interfacial viscous stress τv = µ∂yux is then larger when the motion
is induced by the more viscous fluid. The surfactant density was larger in
interfacial regions where the flow was converging, in between the expanding
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Figure 11: The surfactant density varied along the interface with a characteristic length
scale that was comparable to the size of the most energetic eddies (visualized by the
streamlines). Dark shades on the interface mark elevated surfactant concentrations, and
pink/yellow renders lower surfactant concentrations. The surfactant was soluble in both
phases, and the bulk concentrations are seen as a green ”haze”.
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patches. This is also where the interface was depressed into the more viscous
fluid.

5.2. Pressure fluctuations induced by dilatational elasticity

If the surfactant is sufficiently mobile (implying unsaturated interfaces),
gradients in the interfacial surfactant concentration will be induced in re-
sponse to the external flow. The corresponding Marangoni stress is (e.g.,
Danov et al., 2001)

τM = ∂sσ, (17)

where the interfacial tension σ is reduced for increasing interfacial surfactant
density Γ, and ∂s(..) signifies the derivative along the interface.

In the following analysis we assume a constant level of turbulent kinetic
energy near the interface (with and without surfactant), and impose a con-
stant localized mass flux towards the interface (from below) through the area
Ab ' L2, and calculate the resulting change of the interfacial lift when the
Marangoni stress is added. The mass flux is diverted horizontally and par-
allel to the interface (in an axis-symmetric fashion with a stagnation point
somewhere on the symmetry axis) and there is no mass flux through the
interface. The mass flux parallel to the interface is therefore equal to the
flux towards the interface. For an order of magnitude estimate, we assume
a simple 2D geometry and a steady flow (vanishing time derivatives). The
average fluid velocity parallel to the interface is then given by

ρ(∂y(u2
x/2)) = −∂yP +

1

h
(τM + τv), (18)

where h is a characteristic ”penetration depth” of the flow (the boundary
layer thickness of the horizontal flow), x is the coordinate along the interface,
u2

x and P (x) are the squared velocity and pressure averaged over the depth h
(starting at the interface), and τv is the viscous stress at the interface. Both
the velocity and the pressure vary with x, and the pressure decreases away
from the symmetry plane (in both directions). We have assumed that the
scale of variation of ux(x) is much larger than h, so that the viscous stress
term can be simplified.

The viscous stress at the interface is a source of interfacial flow that
generates a Marangoni stress τM that opposes the pressure gradient that
drives the diverging flow. Since we impose the same mass flux both with and
without surfactant, u2

x is not altered, and the pressure below the interface
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must increase locally to drive the same mass flux. Consequently, the interface
is lifted more in order to balance the increased pressure difference between
the upper and lower fluids. The change in pressure in the lower fluid is, by
(18),

∆P ' L

h
|τM | (19)

and the magnitude of the lift can be estimated by equating the increased
energy (∆P )V in the characteristic volume V = L2h, with the increased
interfacial energy ∆EI of the lifted element,

(∆P )V = ∆EI = F (L)(∆δ2). (20)

The Marangoni stress is

τM = ∂sσ = (∂sΓ)(∂Γσ) ' −EG

L

∆Γ

Γ
, (21)

where EG = −Γ∂Γσ is Gibbs elasticity. One then obtains an increment in
the variance of the interfacial level that scales as

∆〈δ2〉 ∼ L2

{
EG

F (L)

〈 |∆Γ|
Γ

〉}
. (22)

In the current simulations, we may take EG ' ∆σ (as explained in Appendix
D). F is an interfacial energy per unit area, and the non-dimensional number
EG/F measures the importance of the elasticity, relative to the total interfa-
cial energy that is associated to the length scale L. ∆Γ/Γ can be taken as the
fluctuation of the interfacial surfactant density relative to the average value
on the interface. These fluctuations increase with turbulent kinetic energy
due to increased fluctuations in tangential viscous stresses.

To estimate the order of magnitude of the increase in the roughness
scale, we adopted characteristic input parameters from the simulations. We
found EG/F ' 0.01/0.5 = 0.05, and based on the measured maximum
and minimum values of the interfacial surfactant concentration, we found
|∆Γ|/Γ ' 0.02/0.04 = 0.5. The corresponding estimate of the increase of
the roughness scale is then ∆δ∗ ∼ 0.1L̄ = O(1), which is relatively large.
The measured standard deviation indicates a more moderate increase on the
order of 0.1 units.
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6. Discussion

The large amplitude model for the interfacial energy that we devised
previously (Skartlien et al., 2014), did not yield results that compared well
with the simulation results, because the energy contribution from the inter-
facial tension was overestimated. A spherical cap geometry to capture the
smoothness of small amplitude interfacial fluctuations was therefore intro-
duced (rather than the cylindrical geometry for large amplitude, stretched
fluid filaments). A damping constant had to be invoked to account for a
reduction of the turbulent kinetic energy towards the interface. The tuned
value of the damping constant was consistent with the Charnock constant for
fully turbulent interfaces. The damping is expected to vary with turbulent
kinetic energy, being larger for more stiff interfaces, and a fully self contained
model should account for this effect.

In more realistic turbulence that develops from wall boundary layers
(rather than the forced turbulence we invoked), one expects that the cor-
relation lengths near the interface decreases significantly with turbulent ki-
netic energy (in our case these correlation lengths did not vary much with
turbulent kinetic energy, due to the eddies that were induced mainly by the
applied mean shear). This would increase the capillary energy (the interfacial
tension contribution) and the viscous dissipation relative to the gravitational
potential energy, when the turbulent kinetic energy increases. These depen-
dencies could result in a significant reduction of the roughness scale for higher
turbulent kinetic energies, relative to the square root dependency we found.

When surfactant is added, one can in general expect both elastic and
viscous effects in the interface. The extra interfacial viscosity was negligible
in the simulations due to a very small surfactant density, and interfacial shear
elasticity was not accounted for. However, dilatational elasticity (Marangoni
stresses) was accounted for via the variation of interfacial tension with local
interfacial surfactant density.

In naturally driven turbulence (such as wind driven turbulence) it is
known that the addition of surfactant tends to suppress the turbulent ki-
netic energy near the interface due to Marangoni stresses, given the same
external driving conditions (such as a given wind speed or a given pressure
drop along a pipe). This is a common effect below air water interfaces (e.g.,
Lee and Saylor, 2010), where also the vertical velocity fluctuations are sup-
pressed (e.g., Tsai, 1996). This implies a less rough interface in the vertical
direction, in contrast to our current findings where the vertical roughness
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scale increased. The reason for this discrepancy is that the forcing in the
simulations determined the turbulence levels adjacent to the interface, so
that the natural feedback (turbulence damping) from the Marangoni stresses
was not captured. Our model equations for the roughness scale can however
be applied directly with a reduced turbulent kinetic energy to allow for the
feedback effect.

Equation (20) suggests that the increased pressure perturbations near the
interface due to the opposing Marangoni stresses could be modelled by

〈∆P 〉V = η
L

h
〈|τM |〉(L2h) = ηL2EG

〈 |∆Γ|
Γ

〉
, (23)

and this could be added to the turbulent kinetic energy given by (10) to
account for the amplification of the roughness scale. The factor η is expected
to be less than unity (implied by the estimates in section 5.2). The ”missing
link” in this description is a relation between fluctuations in ∆Γ and the
turbulent kinetic energy near the interface. This would involve a model for
the turbulent viscous stresses at the interface, and a model for the flow of
surfactant on the interface that incorporates advection and diffusion.

7. Conclusion

Simulations with forced turbulence allowed for a study of interfaces in
turbulent flow without the need for very large simulation domains and large
Reynolds numbers. This setup offered only approximate turbulent condi-
tions, but it proved to be a useful ”test bench” to study the assumptions and
ingredients in the roughness scale model, also in the presence of soluble and
mobile surfactant.

The phenomenological model for the interfacial roughness scale repre-
sented the simulation results quite well in terms of a reasonable scaling with
varying turbulent kinetic energy. The model can, in its current form, be
used as a closure relation in two-phase turbulence models for stratified flow
without surfactant, provided that one can predict the damping of turbulent
kinetic energy towards the interface. Gravitational potential energy, interfa-
cial tension and viscous deformation work were accounted for, and the model
should therefore be reasonable for both oil/water and liguid/gas flows.

Larger interfacial fluctuations were observed in the simulations when sur-
factant was added (given the same level of turbulent kinetic energy adjacent
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to the interface), due to dilatational elasticity (Marangoni stress) that op-
poses tangentially divergent and convergent flow fields adjacent to the inter-
face. A lowered average interfacial tension parameter can not account for
this effect.

The roughness scale model was not fully developed for dilatational elas-
ticity in this work, but we proposed a source term for pressure fluctuations
near the interface, that can be added to the turbulent kinetic energy density
that would occur in the absence of surfactant. This source term should be
developed further so that the surfactant density fluctuations in the interface
can be related to the turbulence adjacent to the interface. With these devel-
opments, we expect that a complete roughness scale model with surfactant
can be developed.
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Appendix A. Three-component (oil/water/surfactant) lattice Boltz-
mann force model

The model surfactant is soluble in both fluids, representing an ampliphilic
surfactant structure with an organic tail and a polar head. The surfactant
is treated as continuous fluid with a vector associated to it, representing the
average direction of the surfactant molecules in the local computational cell.
This vector field evolves in time in response to the dynamic interfaces.

A detailed description of the Shan and Chen type lattice Boltzmann
model used in this work was given in earlier work (e.g., Furtado and Skartlien,
2010). The simple non-ionic surfactant model that uses two connected un-
like ”particles”, A and B, representing hydrophilic and hydrophobic parts of
a surfactant molecule, S=A+B. The two ordinary fluids are assumed to be
composed of particles similar to the A and B components of the surfactant,
producing an A-fluid and a B-fluid representing oil and water. The force
between any two pairs of ”particles” has the form

Fα = ± G
CD

Cα, (A.1)

where C = |C| = |Rj−Ri|, is the inter-particle separation, and where D = 3
is the number of spatial dimensions (3 in this work). The coupling constant
is chosen so that that like particles attract while unlike ones repel, and this
provides immiscibility between the fluids, A and B, and an affinity of the
surfactant with the interface between the fluids.

This basic force model give rise to a number of coupling constants: GAB

for interactions between fluids, GAA, GBB for interactions between particles
of the same kind, GAS and GBS for fluid-surfactant interactions, and GSS

for surfactant-surfactant interactions. The self interaction parameter of the
more dense fluid GBB (here, oil) is negative to provide a denser fluid for the
same pressure, inducing gravitational stabilization of the interface.

The model surfactant exhibits diffusion controlled adsorption kinetics
(Skartlien et al., 2011), where the surfactant adsorbs to the interface from

GAA GBB GAB GAS GBS GSS

0.0 -2 3 -2 2 0.13

Table A.1: Interaction coupling constants. The signs chosen for these constants are a
consequence of the formulation of the force model (Furtado and Skartlien, 2010).
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the bulk phases over a characteristic timescale. The solubility in either fluid
can to some extent be adjusted via the force parameters. The force param-
eters that were used in the current work are given in Table A.1, and these
give comparable solubilities in the fluids, and a significant reduction of in-
terfacial tension due to the surfactant. The equilibrium interfacial tension
was reduced by about 25% relative to the interfacial tension in a surfactant
free system. The dynamics in the fluids induce fluctuations in the interfa-
cial surfactant density and Marangoni effects (via the viscous stresses) and
no explicit advection/diffusion equation for the surfactant on the interface
is necessary. The diffusivity of the surfactant is controlled by the kinematic
viscosities of the fluids and of the surfactant fluid (Skartlien et al., 2011). We
chose a collisional relaxation time τS = 1.1 for the surfactant, defining the
kinematic viscosity of the surfactant, as a fluid. The rotational relaxation
time of the amphiphile was set to τd = 5.0, and the surfactant temperature
parameter was set to Ts = 0.1.

Appendix B. Normalization and scaling

In lattice Boltzmann models, all the physical quantities are normalized to
the length, time, and mass scales given by the grid separation ∆x, timestep
∆t, and the chosen mass density ρc. To obtain physical units, one can scale
the simulation results with the values of these primary normalization con-
stants. For the choice ∆x = 0.1 mm, ∆t = 70 µs and ρc = 1000 kg/m3, the
domain size is 1× 1× 2 cm, and the interfacial tension becomes 15 mN/m,
characteristic for an oil/water interfacial tension (the interfacial tension is
also dependent on the interaction forces and the coupling constant GAB as
described in Appendix A). The gravitational constant is now 6×10−4, which
corresponds to a low gravitational acceleration of 0.02 m/s2.

Appendix C. Spectral forcing

A low wave number, narrow band driving force F provided the same
acceleration to both fluids (including the surfactant). The isotropic power
spectrum of each force component i, was defined on a spherical shell of the
form (ten Cate et al., 2006)

Fi(k) = A exp

(
(k − kf )

2

∆k2

)
. (C.1)
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The central wavenumber is kf and the bandwidth is ∆k. For single phase
flow, it has been shown that when kf is located in the lower inertial subrange,
a turbulent cascade proceeds down to the Kolmogorov scale (ten Cate et al.,
2006). A divergence free force (∇ · F = 0 in physical space) was enforced to
limit compression/expansion and sound waves (the LBM fluid is compressible
by nature of the method). We note that by scaling the forcing with a spatially
varying function, one invalidates the divergence free forcing condition and
some sound waves were therefore generated in the narrow zones where the
force was scaled down.

The energy input rate is proportional to the RMS of the force fluctuations
and a work term of the form F ·V, where V is the local fluid velocity. The
method of Alvelius (1999) was adopted that provides F · V = 0 at every
timestep, to prevent an increase of energy in the system over time, and the
energy input rate is then only dependent on the variance (or total power) of
the driving force.

The input parameters for the forced turbulence is the characteristic turbu-
lent velocity u∗, and the central wavelength of the driving force, l∗i = Ni/kf ,
where Ni is the number of grid points over the domain in direction i. The
energy input rate provided by the driving force is given by ε = (u∗)3/l̄∗ (ten
Cate et al., 2006), where l̄∗ can be taken as the average driving wavelength.
We used the same turbulence driving force statistics (length and velocity scale
parameters) in both fluids and we chose a driving wavenumber of kf = 5 in
all three directions (meaning 5 wavelengths over the extent of the domain
in all directions), and we chose a bandwidth of ∆k = 4. The characteristic
eddy size in the forcing volumes was comparable to l∗x = Nx/kf = 20 grid
points.

Appendix D. Interfacial elasticity

The Langmuir interfacial tension isotherm

σ = σ0 + RTΓm ln(1− Γ/Γm), (D.1)

is a good representation of the current simulation model as shown in Skartlien
et al. (2011), where σ is the interfacial tension, σ0 is the surfactant-free
interfacial tension, Γm is the maximum interfacial concentration, T is the
temperature, and R is the ”gas constant”. Gibbs elasticity (e.g., Danov et
al., 2001) is then

EG =
RTΓ

1− Γ/Γm

. (D.2)
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For the current work, Γ/Γm ¿ 1, so that we may take EG ' RTΓ to first
order. To the same order, we may take ∆σ = σ0 − σ ' RTΓ, so that

EG ' ∆σ. (D.3)

Appendix E. Interfacial energy terms for large fluctuations

A different roughness scale model results for the large amplitude fluctu-
ations (Skartlien et al., 2014), where the interfacial tension becomes more
important relative to gravity and dissipation. If one assumes a base area
of Ab = πL2/4, and a finite amplitude, cylindrical geometry to represent
stretched liquid filaments, one obtains an interfacial energy per displaced
element of (Fakharian, 2013; Skartlien et al., 2014)

EI = (π/4)(L2|δ|)g∆ρ(|δ|/2) + πσL|δ|+ π(µ + Cνµ
′)u∗Iδ

2, (E.1)

where the interfacial tension term is of first order in the displacement δ, in
contrast to the current small amplitude model, where all terms are of second
order in the displacement. The roughness scale is now given by a second order
algebraic relation that can be recast in terms of the three non-dimensional
numbers, [

1

Fr

1

8d̄2
+

1

Re

2

L̄2

]
(δ∗)2 +

[
1

We

2

L̄

]
δ∗ − 1 = 0. (E.2)

When gravity is dominates over viscosity and interfacial tension, the char-
acteristic excursion of the interface scales as δ∗ ∼ √

Frd̄, as for the low
amplitude model. One obtains δ∗ ∼ WeL̄ for large Reynolds numbers and
low density contrast, and δ∗ ∼ √

ReL̄ for a viscosity dominated regime.
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