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Abstract: This work focused on the high pressure PCT and in situ neutron powder 

diffraction studies of the LaMg2Ni9-H2 (D2) system at pressures up to 1,000 bar. LaMg2Ni9 

alloy was prepared by a powder metallurgy route from the LaNi9 alloy precursor and Mg 

powder. Two La3−xMgxNi9 samples with slightly different La/Mg ratios were studied, 

La1.1Mg1.9Ni9 (sample 1) and La0.9Mg2.1Ni9 (sample 2). In situ neutron powder diffraction 

studies of the La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) deuterides were 

performed at 25 bar D2 (1) and 918 bar D2 (2). The hydrogenation properties of the (1) and 

(2) are dramatically different from those for LaNi3. The Mg-containing intermetallics 

reversibly form hydrides with Hdes = 24.0 kJ/molH2 and an equilibrium pressure of H2 

desorption of 18 bar at 20 °C (La1.09Mg1.91Ni9). A pronounced hysteresis of H2 absorption 

and desorption, ~100 bar, is observed. The studies showed that LaNi5-assisted 

hydrogenation of MgNi2 in the LaMg2Ni9 hybrid structure takes place. In the 

La1.09Mg1.91Ni9D9.5 (1) and La0.91Mg2.09Ni9D9.4 (2) (a = 5.263/5.212; c = 25.803/25.71 Å) D 

atoms are accommodated in both Laves and CaCu5-type slabs. In the LaNi5 CaCu5-type 

layer, D atoms fill three types of interstices; a deformed octahedron [La2Ni4], and 

[La(Mg)2Ni2] and [Ni4] tetrahedra. The overall chemical compositions can be presented as 

LaNi5H5.6/5.0 + 2*MgNi2H1.95/2.2 showing that the hydrogenation of the MgNi2 slab proceeds at 
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mild H2/D2 pressure of just 20 bar. A partial filling by D of the four types of the tetrahedral 

interstices in the MgNi2 slab takes place, including [MgNi3] and [Mg2Ni2] tetrahedra. 

Keywords: in situ studies; neutron powder diffraction; metal hydrides; lanthanum; 

magnesium 

 

1. Introduction 

Despite significant differences in chemistry between La and Mg, magnesium forms a very extensive 

solid solution in the LaNi3 intermetallic alloy, crystallizing with a PuNi3 type trigonal structure. Up to 

67% of La atoms can be replaced by Mg to form a LaMg2Ni9 intermetallic compound. The LaNi3 

crystal structure is formed by a stacking of the LaNi5 (Haucke CaCu5 type) and MgNi2 (Laves type) 

slabs along the trigonal 00z axis (LaNi5 + 2MgNi2 = LaMg2Ni9). Studies of hydrogen absorption– 

desorption properties of the LaMg2Ni9 [1,2] have shown that it forms a hydride containing up to  

1.2 wt% H (~0.8 H/M; LaMg2Ni9H9.6). 

The building blocks of LaMg2Ni9—LaNi5 and MgNi2—are well characterized individually as  

hydride-forming intermetallic compounds. The thermodynamics and structural features of their 

interaction with hydrogen are quite different. At room temperature, LaNi5 forms a saturated LaNi5H6.7 

hydride and shows a reversible interaction with hydrogen at hydrogen pressures slightly exceeding 

atmospheric pressure. Hydrogen atoms fill tetrahedral La2Ni2, LaNi3 and Ni4 sites in the hydride 

crystal structure [3]. 

In contrast, hydrogenation of the Laves phase MgNi2 compound is possible only at hydrogen 

pressures close to 30 kbar, while maintaining an interaction temperature of 300 °C. Formation of 

MgNi2H3 results in a complete rebuilding of the metal sublattice. Hydrogen atoms in the orthorhombic 

structure of trihydride fill two different sites, the Mg4Ni2 octahedra and the positions within the 

buckled Ni nets, consequently forming directional Ni-H bonds [4]. 

A gradual increase of Mg content in La3−xMgxNi9 is accompanied by a linear decrease of  

the volumes of the unit cells. Interestingly, a substantial contraction takes place not only for the 

(La,Mg)2Ni4 slabs, but also for Mg-free CaCu5-type LaNi5 slabs. Hydrogen interaction with the 

La3−xMgxNi9 alloys has been investigated by in situ synchrotron X-ray, neutron powder diffraction, 

theoretical modeling, electrochemical studies as metal hydride battery anode materials, rapid 

solidification and pressure–composition–temperature studies [1,2,5–10]. In the whole substitution 

range, La3−xMgxNi9 alloys form intermetallic hydrides with H/M ratios ranging from 0.77 to 1.16. 

Magnesium influences structural features of the hydrogenation process and determines various aspects 

of the hydrogen interaction with intermetallics causing: (a) more than a 1,000-fold increase in the 

equilibrium pressures of hydrogen absorption and desorption for the Mg-rich LaMg2Ni9 as compared 

to the Mg-poor La2.3Mg0.7Ni9 and a substantial modification of the thermodynamics of the formation– 

decomposition of the hydrides; (b) an increase of the reversible hydrogen storage capacities following 

increase of Mg content in the La3−xMgxNi9 to ~1.5 wt% H for La2MgNi9; (c) improvement of the 

resistance against hydrogen-induced amorphisation and disproportionation and (d) change of the 

mechanism of the hydrogenation from anisotropic to isotropic. Thus, optimisation of the magnesium 
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content provides different possibilities for improving properties of the studied alloys as hydrogen 

storage and battery electrode materials. Studies of the thermodynamics and crystal chemistry of the 

RE2MgNi9H12−13 (RE = La and Nd) hydrides showed that La substitution by Pr or Nd causes 

destabilization of the formed hydrides without affecting their hydrogen storage capacities and leaves 

unchanged the most important features of their crystal structures [11]. 

Observed values of H capacities in the LaMg2Ni9-based hydride of 9.6 atoms H/f.u. cannot be 

explained by exclusive hydrogen insertion into the LaNi5 slabs, and requires H incorporation into the 

MgNi2 blocks of the structure to reach the experimentally observed H/M ratios. Thus, studies of the 

thermodynamics and crystal chemistry of La3−xMgxNi9-H2 systems are very interesting and important 

from the point of view of the effect of magnesium on the behaviours of the metal-hydrogen systems. 

The goal of the present study was to study two alloy compositions formed close to the limiting value of 

the magnesium solubility in LaNi3, LaMg2Ni9, by performing in situ neutron powder diffraction 

studies of the deuterated La0.91Mg2.09Ni9 and La1.09Mg1.91Ni9 and by studying the thermodynamics of 

the metal-hydrogen interactions by measurements of the PCT diagrams. 

2. Experimental 

La1.09Mg1.91Ni9 and La0.91Mg2.09Ni9 alloys were prepared by a powder metallurgy route from LaNi5 

alloy precursor, Mg and Ni. Initial metals La, Mg and Ni with high purity exceeding 99.9% were used 

in the synthesis. LaNi5 precursor was prepared by arc melting of a stoichiometric 1:5 mixture of La 

and Ni. 

The powder mixture LaNi5 + Mg + Ni was ball milled under protective atmosphere of argon gas in 

a SPEX 8000D mill for 8 h. After the milling process, the mixture was placed into a tantalum crucible 

and then annealed in Ar atmosphere in the sealed stainless steel containers at 600–1000 °C. Two samples 

with a slightly different stoichiometry were prepared. Their stoichiometric compositions were: sample 1: 

La1.09(1)Mg1.91(1)Ni9; sample 2: La0.91(1)Mg2.09(1)Ni9. 

The first sample was annealed at 800 °C for 8 h and then at 600 °C for 8 h. The second sample was 

annealed at 1000 °C for 2 h and, later, at 800 °C for 12 h. The samples were quenched into a mixture 

of water and ice after the annealing. A small excess of Mg (5 wt%) was introduced into the initial 

mixtures to compensate for its sublimation at high temperatures. 

The homogeneity of the prepared samples was characterized by XRD. Laboratory powder X-ray 

diffraction data were collected with a Siemens D5000 diffractometer (Oslo, Norway) equipped with a 

Ge primary monochromator giving Cu Kα1 radiation. Initial phase-structural analysis was performed 

by X-ray powder diffraction using a Bruker D8 Advance diffractometer (Kjeller, Norway) with Cu-Kα 

radiation. High-resolution SR XRD data were collected at the Swiss-Norwegian Beamlines (SNBL, 

BM01B) at ESRF, Grenoble, France. A monochromatic beam with λ = 0.5009(1) Å was provided by a 

double Si monochromator. A 2θ angular range of 1°–50.5° was scanned with a detector bank 

consisting of six scintillation detectors mounted in series with 1.1° separation. The data were binned to 

the step size Δ2θ = 0.003°. The instrumental contribution to the line broadening was evaluated by 

refining the profile parameters for a standard Si sample.  

In situ neutron powder diffraction studies were performed at HRPT diffractometer, SINQ, PSI, 

Switzerland using a wavelength of λ = 1.494 Å. The deuteride of sample 1 was synthesized at 25 bar 
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D2 and −30 °C (Peq. for absorption ~20 bar); it was synthesized and studied by NPD using a thin walled 

stainless steel sample cell (6 mm OD). The deuteride of sample 2 was synthesized at 950 bar D2 and 

measured at 912 bar D2 at room temperature. The experimental setup for the in situ NPD study 

consisted of a high-pressure Sieverts’ manometric hydrogenator connected to a high-pressure sample 

cell made of a null matrix coherent scattering alloy (Zr–Ti) with a thin stainless steel inner liner. 

Powder diffraction data were analysed by the Rietveld whole-profile refinement method using the 

General Structure Analysis System (GSAS) [12] and FULLPROF [13] software packages.  

Pressure-composition-temperature isotherms were measured at −40, −20, 0 and 20 °C. 

3. Results and Discussion 

3.1. XRD Characterization of the Initial Intermetallic Alloys La0.91Mg2.09Ni9 and La1.09Mg1.91Ni9 

XRD characterization of two studied alloys La0.91Mg2.09Ni9 and La1.09Mg1.91Ni9 showed that they 

both contain PuNi3 trigonal La3−xMgxNi9 as the main phase constituents (80% for sample 1 and 75% 

for sample 2). The common secondary constituent was identified as a LaNi5 binary intermetallic. 

Furthermore, sample 1 contained an admixture of the MgNi2 Laves-type intermetallic phase, while 

sample 2 contained a cubic MgNi3 intermetallic compound recently also observed during the studies of 

the MgNi2-H2 system [4]. MgNi3 compound (sp.gr. Pm3m; a = 3.7185(5) Å) has an AlCu3-type 

structure and earlier it was synthesized by high-energy ball milling of a mixture of Mg and Ni  

metals [14]. We assume that in present study MgNi3 was synthesised already during the reactive ball 

milling and remained stable during the consecutive annealing at 1,000 and 800 °C. As an example, 

Figure 1 shows an excellent fit of the experimental X-ray powder diffraction pattern collected for the 

sample 2, La0.91Mg2.09Ni9. 

 

Figure 1. XRD pattern of La0.91Mg2.09Ni9 (sample 2) (Cu-Kα1 radiation). 

Crystallographic data for the studied intermetallic samples obtained from the refinements of the 

XRD pattern are listed in Table 1. 
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Table 1. Crystal structure data for the La0.91Mg2.09Ni9 and La1.09Mg1.91Ni9 alloys from 

Rietveld refinements of the X-ray diffraction data. PuNi3 type of structure, space group R3m. 

Alloy Sample 1 Sample 2 

Source of experimental data 
SR XRD collected at BM01B, SNBL 
using a wavelength λ = 0.5009(1) Å 

Siemens D5000 diffractometer, 
Cu Kα1 radiation 

Composition of AB3 phase La1.09 (1)Mg1.91(1)Ni9 La0.91(1)Mg2.09(1)Ni9 

Unit cell parameters:   

a (Å) 4.94024(8) 4.8986(1) 

c (Å) 23.8188(4) 23.957(1) 

V (Å3) 503.44(1) 497.86(2) 

Atomic parameters:   

La1/Mg1 in 3a (0, 0, 0)  
Uiso×100 (Å2)  
nMg, (nLa = 1–nMg) 

 
0.43(5)  
0.0(–) 

 
2.1(2)  
0.09(1) 

La2/Mg2 in 6c (0, 0, z)  
z  
Uiso×100 (Å2)  
nMg, (nRE = 1–nMg) 

 
0.1453(3)  
1.2(3)  
0.954(5) 

 
0.1471(6)  
0.5(3) 
1.0(–) 

Ni1 in 3b (0, 0, ½)  
Uiso × 100 (Å2) 

0.7(1) 0.8(3) 

Ni2 in 6c (0, 0, z)  
z  
Uiso×100 (Å2) 

 
0.3335(2)  
0.13(8) 

 
0.3334(4)  
1.8(3) 

Ni3 in 18h (x, –x, z)  
x  
z  
Uiso × 100 (Å2) 

 
0.5009(3)  
0.08529(8)  
0.57(5) 

 
0.5014(6)  
0.0854(2)  
1.4(2) 

R-factors of refinements  
Rp  
Rwp  
χ2 

 
8.9  
11.9  
2.0 

 
7.4  
9.6  
2.1 

Impurity phases 
LaNi5 7.8(2) wt%  
MgNi2 12.0(2) wt% 

LaNi5 20.5(2) wt%  
MgNi3 4.2(3) wt% 

The crystallographic characteristics of LaNi3 change significantly on Mg → La substitution;  

a decrease in the unit cell parameters takes place from a = 5.0842(2); c = 25.106(1) Å (LaNi3) to  

a = 4.8986(1) (sample 2)-4.94024(8) (sample 1); c = 23.8188(4) Å (sample 1)-23.957(1) (sample 2). 

Furthermore, comparison of the data shows that the studied intermetallic samples exhibit significant 

differences in the volumes of the unit cells and c/a ratios. A shrinkage along [001] appears to be more 

pronounced (Δc/c, −5.1%) as compared to Δa/a, −3.7%. The overall volume contraction is quite 

significant reaching 10.5%–11.5%. The measured dimensions of the unit cells well agree with the  

data reported for the stoichiometric LaMg2Ni9 alloy studied by single crystal XRD (a = 4.9241,  

c = 23.875 Å; V = 501.3 Å3 [15]), which shows intermediate values of a, c and V being in  

between the values for the samples 1 and 2, as it could be expected from comparison of their  

chemical compositions. 
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Refined volumes of the unit cells correlate with their chemical compositions and Mg/La ratios. 

Indeed, sample 1, La1.09(1)Mg1.91(1)Ni9 with a larger unit cell has a higher content of lanthanum, while 

for sample 2, La0.91(1)Mg2.09(1)Ni9 with a smaller unit cell, the content of lanthanum becomes smaller 

than 1 atom/f.u., and the content of Mg reaches overstoichiometric compositions with more than 2 Mg 

atoms/f.u. (La,Mg)3Ni9. 

Comparison of the data presented in Table 1 with crystallographic data for the (La,Mg)3Ni9 

intermetallics studied in [1] shows a linear dependence between the decrease of the unit cell volumes 

and the content of Mg in the alloys. 

We note a very interesting feature of the crystal structure of La0.91(1)Mg2.09(1)Ni9 where a partial 

substitution of La by Mg takes place within the CaCu5 type layer in the position 6c. This contrasts with 

the behaviour of the alloys in the La-Mg-Ni system with compositions close to LaNi5. In the latter case 

studies of phase equilibria showed no dissolution of an appreciable amount of Mg in LaNi5 [16]. Thus, 

the present study demonstrates that the situation with Mg solubility in the LaNi5 slabs of the LaNi3 

structure becomes different in the sample 2 La0.91(1)Mg2.09(1)Ni9. Here LaNi5, when influenced by the 

MgNi2 slabs of the hybrid structure, becomes capable of forming solid solutions of such a type with 

experimentally refined composition of La0.95Mg0.05Ni5. Thus, La0.91(1)Mg2.09(1)Ni9 should be considered 

as the first reported case where a CaCu5 type layer accommodates Mg atoms allowing a Mg content of 

2.09 at./f.u. (La,Mg)3Ni9. Consequently, the limits of Mg solubility in LaNi3 are not confined to 

LaMg2Ni9 and extend to the composition La0.91Mg2.09Ni9. 

3.2. Thermodynamics of the (La,Mg)3Ni9—H2 systems 

The hydrogenation/deuteration properties of the prepared La1±0.1Mg2±0.1Ni9 intermetallics appear to 

be dramatically different from those for LaNi3. While LaNi3 is prone to the hydrogen-induced 

disproportionation, the Mg-containing intermetallics reversibly form hydrides with ΔHdes = 24.0 kJ/molH2 

and equilibrium pressure of H2 desorption of 20 bar at room temperature for La1.09Mg1.91Ni9  

(see Figure 2). A pronounced hysteresis of H2 absorption and desorption is evidenced by a high value 

of H2 absorption pressure, more than 100 bar higher than that for desorption. 

For La2MgNi9 [6] at room temperature the values of plateau pressures are 0.05 and 0.1 bar for 

hydrogen desorption and absorption, respectively, ΔHdes = 35.9 kJ/molH2. Equilibrium pressure of 

hydrogen desorption for La0.91Mg2.09Ni9 is by more than 1000 times higher than that for La2MgNi9. 
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(a) 

 
(b) 

Figure 2. Room temperature isotherms of hydrogen absorption and desorption (a); and 

van’t Hoff plots (b) for La1.09Mg1.91Ni9-based hydride. At room temperature equilibrium 

pressure of hydrogen absorption is ~120 bar D2, while for the desorption Peq. equals to  

~20 bar D2. 

3.3. In situ NPD studies 

In situ neutron powder diffraction studies of the La1±0.1Mg2±0.1Ni9D9.4−9.5 deuterides were performed 

at the Spallation Neutron Source SINQ accommodated at Paul Scherrer Institute (Villigen, 

Switzerland). Two samples, La1.09Mg1.91Ni9D9.5(3) (sample 1) and La0.9Mg2.1Ni9D9.4(6) (sample 2) were 

synthesised and studied under different conditions.  

For the synthesis of La1.09Mg1.91Ni9D9.5, a 6 mm diameter stainless steel autoclave with a wall 

thickness of 0.2 mm was used. The synthesis was performed by saturating activated samples with 
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deuterium gas (25 bar) at a sub–zero temperature of −30 °C. This was done in order to decrease the 

equilibrium pressure of hydrogen absorption-desorption in the La1.09Mg1.91Ni9—D2 system. The alloy 

absorbed deuterium to reach a composition La1.09Mg1.91Ni9D9.5 and was measured at 25 °C and 

deuterium pressure of 25 bar. 

The second sample, La0.9Mg2.1Ni9D9.4, was synthesized at high pressure deuterium gas of 950 bar 

D2. The studied sample was placed inside a TiZr sample cell with a stainless steel liner, which was 

used as a sample holder during the in situ NPD experiments (see Figure 3). The pressure during the 

NPD measurements performed at 20 °C was set to 912 bar D2. No preliminary activation was applied 

prior to the synthesis. 

 

Figure 3. High pressure synthesis setup for the in situ NPD measurements at pressures up 

to 1000 bar D2. 

For the La1.09Mg1.91Ni9D9.5(5) sample (No.1) at the highest applied deuterium pressure of 25 bar D2, 

the deuteration resulted in the formation of a two-phase mixture of the α-solid solution of deuterium in 

the alloy and a corresponding β-deuteride. Such a mixture of the phase constituents was observed  

after allowing a deuteration time of ~20 h at interaction temperature of −30° C. Since applied 

temperature-pressure conditions were rather close to the equilibrium ones (see Figure 2), the transformation 

was slow and was not completed on the time scale of the measurements performed. The second sample 

with a slightly higher content of magnesium, La0.91Mg2.09Ni9D9.3(7) was saturated by deuterium at 

deuterium pressure of 950 bar and was equilibrated at 912 bar D2 and 25 °C. Analysis of the diffraction 

pattern showed an excellent fit between the experimental data and calculated NPD profiles (Figure 4) 

and indicated a completeness of the transformation of the α-solid solution into the β-deuteride. 
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The results of the refinements of the NPD data for La1.09Mg1.91Ni9D9.5(5) and for 

La0.91Mg2.09Ni9D9.4(6) are summarized in Table 2. The data show a formation of very similar structures, 

with only minor differences in the occupancies of the specific D-sites of five various types. These sites 

are shown in Figure 5 and include four types of tetrahedral and one tetragonal bipyramid.  

A partial filling by D atoms of the four types of the tetrahedral interstices takes place inside the 

MgNi2 slab; these include two types of the [MgNi3] (18h and 6c) tetrahedra and two types of the 

[Mg2Ni2] (36i and 18h) interstitial sites. 

In addition, similar to the other studied La3−xMgxNi9-based deuterides, the remaining 5.0 or 5.6 

at.  D/f.u. form a standard hydrogen sublattice within the LaNi5 slab which are statistically 

distributed within the four types of the interstices; hydrogen atoms partially occupy [La2Ni4] 

octahedra, three types of [Ni4] tetrahedra, and two types of the [LaMgNi2] sites. 

 

Figure 4. NPD pattern of La0.9Mg2.1Ni9D9.4(6) (912 bar D2, 298 K). Note that the most 

significant contributions to the difference intensities are coming from the sample cell.  

Rp = 2.4%, Rwp = 3.2; χ2 = 6.0. 

Table 2. Crystal structure data for the deuterated La1±0.1Mg2±0.1Ni9 alloys (PuNi3 type, sp.gr. 

R3m) from the Rietveld refinements of in situ neutron diffraction data.  

Deuteride La1.09Mg1.91Ni9D9.5(5) La0.91Mg2.09Ni9D9.4(6) 

Conditions 
25 bar at 25 °C  

(prepared at −30 °C) 
912 bar at 25 °C 

Unit cell parameters:   

a (Å) 5.263(1) 5.212(1) 

c (Å) 25.803(9) 25.71(1) 

V (Å3) 618.9(3) 604.8(3) 
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Table 2. Cont. 

Deuteride La1.09Mg1.91Ni9D9.5(5) La0.91Mg2.09Ni9D9.4(6) 

Unit cell parameters:   

Δa/a (%) 6.5 6.4 

Δc/c (%) 8.3 7.3 

ΔV/V (%) 23.0 21.6 

ΔV/V[LaNi5] (%) 20.4 20.7 

ΔV/V[MgNi2] (%) 25.4 22.2 

Atomic parameters:   

La1/Mg1 in 3a (0, 0, 0)  
nMg, (nLa = 1–nMg) 

0.0(–) 0.09(–) 

La2/Mg2 in 6c (0, 0, z)  
z  

Uiso × 100 (Å2)  
nMg, (nRE = 1–nMg) 

1.0(–)  
0.95(–) 

1.0(–)  
1.0(–) 

Ni1 in 3b (0, 0, ½)  
Uiso × 100 (Å2) 

1.0(–) 1.0(–) 

Ni2 in 6c (0, 0, z)  
z  

Uiso × 100 (Å2) 

0.3279(7)  
1.0(–) 

0.3220(6)  
1.0(–) 

Ni3 in 18h (x, –x, z)  
x  
z  

Uiso × 100 (Å2) 

0.498(1)  
0.0871(4)  

1.0(–) 

0.506(1)  
0.0859(3)  

1.0(–) 

D1 in 18h (x, –x, z)  
x  
z  
n 

0.484(4)  
0.023(1)  
0.33(1) 

0.496(3)  
0.023(1)  
0.31(2) 

D2 in 6c (0, 0, z)  
z  
n 

0.390(1)  
0.50(3) 

0.385(1)  
0.58(3) 

D4’ in 18h (x, –x, z)  
x  
z  
n 

0.814(3)  
0.0626(9)  

0.43(2) 

0.792(2)  
0.051(1)  
0.33(3) 

D5’ in 18h (x, –x, z)  
x  
z  
n 

0.201(2)  
0.120(1)  
0.45(2) 

0.192(3)  
0.123(1)  
0.35(2) 

D6 in 18h (x, –x, z)  
x  
z  
n 

0.819(4)  
0.117(1)  
0.20(2) 

0.819(4)  
0.117(1)  
0.39(2) 

Uiso × 100 (Å2) for D1-D6 2.0(–) 2.0(–) 
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Table 2. Cont. 

Deuteride La1.09Mg1.91Ni9D9.5(5) La0.91Mg2.09Ni9D9.4(6) 

Atomic parameters:   

D distribution in the 
structure  

LaNi5  
2 MgNi2 

5.6(3)  
3.9(2) 

5.0(4)  
4.4(2) 

Shortest Metal—Hydrogen 
distances, Å  

La…D  
Mg…D  
Ni…D 

2.34(3)  
1.97(3)  
1.56(3) 

2.29(2)  
1.93(2)  
1.53(2) 

R-factors of refinements  
Rp  
Rwp  
χ2 

2.7  
3.4  
5.0 

2.4  
3.2  
6.0 

Secondary constituents 

α-solid solution La0.9Mg2.1Ni9D0.9.  
Sp.gr. R3m; a = 4.9459(2);  

c = 23.842(2) Å; V = 505.10(4).  
0.3 D in D3 18h (0.15, 0.3, 0.085) 

and 0.6 D in D4 18h (0.3, 0.15, 
0.085); 35.7(2) wt%  

LaNi5D7; Sp.gr. P63mc;  
a = 5.438(3), c= 8.598(5) Å;  
V = 220.3(2) Å3; 4.6(3) wt%.  

Atomic structure was taken from [3]. 
MgNi2; MgNi2 structure type;  

Sp.gr. P63/mmc;  
a = 4.8356(4), c = 15.850(3) Å;  
V = 320.97(5) Å3; 12.4(2) wt%.  

Atomic structure was taken  
from [4].  

Sample holder: stainless steel;  
Sp.gr. Fm 3 ; a = 3.598 Å. 

LaNi5D7; Sp.gr. P63mc;  
a = 5.430(1), c = 8.606(4) Å;  

V = 219.8(2) Å3; 21.5(5) wt%.  
Atomic structure was taken from [3]. 

MgNi3; AuCu3 structure type;  
Sp.gr. Pm3m; a = 3.7185 Å;  

1 Mg in 1a: 0, 0, 0;  
3 Ni in 3c: 1/2, 1/2, 0;  

3.7(2) wt%.  
Sample holder: zero matrix TiZr 

alloy with Fe liner. The peaks from 
Fe liner are only observed.  

Sp.gr. Fm	3 ; a = 3.5949(1) Å. 

From the refinements of the NPD data we conclude that the overall chemical compositions 

La1.09Mg1.91Ni9D9.5/La0.91Mg2.09Ni9D9.4 can be presented as LaNi5H5.6/LaNi5H5.0 + 2*MgNi2H1.95/MgNi2H2.2. 

Thus, in the hybrid La1±0.1Mg2±0.1Ni9 structure, a LaNi5-assisted hydrogenation of the MgNi2 slab 

proceeds at rather mild H2/D2 pressure conditions; the equilibrium D2 desorption pressure is just 20 bar 

D2. In contrast, the parent MgNi2 intermetallic remains inert with respect to hydrogenation even at 

much higher hydrogen pressures as well as the conditions applied in the present study of 912 bar D2 

for sample 2. 
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Figure 5. Crystal structure of La1±0.1Mg2±0.1Ni9D9.4−9.5 and types of the filled interstices. 

The shortest Me–D distances in the studied deuterides are listed in Table 2 and are within the regular 

values for the La–H, Mg–H and Ni–H distances in the structures of the metal and intermetallic hydrides. 

The data of the present study clearly shows an influence of the LaNi5 and MgNi2 layers in the 

hybrid La1±0.1Mg2±0.1Ni9 structures on the hydrogenation of the other buildings blocks of the structure. 

MgNi2 slabs accommodate hydrogen up to a composition MgNi2H2.2 at much lower pressures as 

compared to those required to form a hydride by the pure MgNi2 intermetallic. In contrast, the LaNi5 

block absorbs 5.0–5.6 at.H/f.u., which is quite close to the maximum hydrogenation capacity of the 

title intermetallic alloy, LaNi5H7; however, hydrogen desorption from the LaNi5H5.0/5.6 block proceeds 

much easier, at significantly higher pressures of H2/D2 as compared to the individual LaNi5H7 

hydride—as a result of influence of the MgNi2 slab.  

4. Conclusions 

LaNi5-assisted hydrogenation of MgNi2 is observed in the LaMg2Ni9 hybrid structure. Formation 

of LaMg2Ni9D9.5 proceeds via an isotropic expansion of the trigonal unit cell. D atoms are 

accommodated in both Laves and CaCu5-type slabs H atoms filling interstitial sites in both LaNi5 

and MgNi2 structural fragments. 

Limits of Mg solubility in LaNi3 are not confined to LaMg2Ni9 and extend to the composition 

La0.91Mg2.09Ni9 with a refined composition of the CaCu5-type block of La0.95Mg0.05Ni5. 

Within the LaNi5 CaCu5-type layer, D atoms fill three types of interstices; a deformed octahedron 

[La2Ni4], and two types of tetrahedra, [LaNi3] and [Ni4], to yield LaNi5D5−5.6 composition.  

D distribution is very similar to that in the individual β-LaNi5D7 deuteride. 
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In the MgNi2 slab hydrogen atoms fill two types of tetrahedra, [Mg2Ni2] and [MgNi3]. The  

hydrogen sublattice formed is unique and is not formed in the studied structures of the Laves-type 

intermetallic hydrides. 

A significant mutual influence of the LaNi5 and MgNi2 slabs causes a dramatic altering of their 

hydrogenation behaviours leading to: 

(a) significant decrease of the stability of the LaNi5-type hydride;  

(b) much easier hydrogenation of the MgNi2 slabs compared to the parent intermetallic compound;  

(c) increased hysteresis. 
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