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Abstract 

This paper responds to Kaber’s reflections on the empirical grounding and design utility of 

the Levels of Automation (LOA) framework. We discuss the suitability of the existing human 

performance data for supporting design decisions in complex work environments. We 

question why human factors design guidance seems wedded to a model of questionable 

predictive value. We challenge the belief that LOA frameworks offer useful input to the 

design and operation of highly automated systems. Finally, we seek to expand the design 

space for human-automation interaction beyond the familiar human factors constructs. 

Taken together, our positions paint LOA frameworks as abstractions suffering a crisis of 

confidence that Kaber’s remedies cannot restore.  

Differing perspectives on common ground 

Professor David B. Kaber’s position paper invites a welcome exchange of ideas about a 

central construct in human factors engineering: Levels of Automation (LOA). We applaud 

JCEDM for airing a range of responses to his views in the same issue. This approach offers 

a promising contrast to slow motion, ping pong exchanges between journals with competing 

perspectives on human factors science.  

 

The authors collaborate on human-automation interaction research as both empiricists 

[Burns et al., 2008; Lau et al., 2008a, 2008b; Lau, Jamieson & Skraaning, 2014, 2016a, 

2016b] and designers [Hurlen, Skraaning, Myers, Jamieson & Carlson, 2015; Jamieson, 

Hurlen & Skraning, 2014; Skraaning, Hurlen, LeDarz & Jamieson, 2016]. We adopt an 

inductive approach to research, building knowledge through prototyping and experimentation 

in complex work environments. We seek to support designers by aligning that knowledge 

with the richness of the design problem, and not primarily through models of questionable 

predictive value. This perspective has evolved through twenty years of realistic simulator 

studies of human-automation interaction on complex process control tasks; where human 

factors models have shown little utility in predicting performance outcomes (Skraaning & 

Jamieson, in preparation). It is from this perspective that we respond to Kaber’s comments 

on the empirical basis for, and design relevance of, LOA models.  

 

We concur with much of Kaber’s critical consideration of the empirical evidence for LOA 

predictions. We agree that human factors research should move away from constrained 



 

artificial situations and toward the problems faced by designers of real operating 

environments. As he proposes, existing models of types and levels of automation based on 

human information processing may not be descriptive of operator behavior in complex 

systems, yielding a frustrating discrepancy between the models’ predictions and real-life 

observations. As Kaber points out, human-automation interaction outcomes are likely a 

function of more than human information processing. We heartily agree to his opening up of 

the model space to encompass teamwork, trust, and other metaphors. 

On the need for, and utility of, human performance data in 

support of LOA-based predictions 

Fitts et al. (1951) recognized a need for a research program to create the human 

performance data to effectively compare human and machine execution of tasks. Yet nearly 

35 years after they introduced MABA-MABA and levels of automation, Price (1985) cited a 

“general weakness of applicability” (p.35) of function allocation methods. These methods: 

presumed that human performance data would exist from which the performance of 

humans could be predicted... [They] would depend on the availability of large 

quantities of quantified data on human performance, data that could be calibrated to 

the specific conditions of a new design. Such data do not now exist, and they 

probably never will. (Price, 1985, pp. 35-36, emphasis added.)  

 

Today, more than 65 years since the genesis of the Fitts List, the theory of levels of 

automation, and the recognition of the need for large quantities of human performance data, 

Price’s prediction has proved prescient. LOA models depend on data that we largely do not 

have. And like him, although we share the appetite for more data, we cannot envision the 

human factors community mustering the resources needed to supply it.  

 

We interpret Kaber’s call for finer grained LOA models as an effort to more precisely specify 

the data needed to validate new deductive models for increasingly complex systems. Like 

Rouse (1988), we have reservations about the practicality of using empirical data to 

deductively predict task performance for any reasonably complex system. We also share 

Perrow’s (1984) perspective that simple and complex technological systems differ in kind as 

opposed to degree. Such systems are essentially unpredictable; their behaviors emergent. 

In such settings, we argue, an inductive research approach is preferred to build knowledge 

and extract design principles.  

On the strength of evidence in support of LOA-based 

predictions in complex work settings 

Kaber expresses concern about the inconsistent response trends in individual LOA 

experiments. Onnasch et al. (2014) applied reasonable selection criteria to a much larger 

body of research to identify studies for inclusion in their meta-analysis. Those 18 studies 

provide a proxy for a discussion about the strength of the empirical support for LOA models. 

However, we argue that the composition of the studies themselves fails to support the 

application of the results to complex work systems. 

 



 

Most of the studies included in the meta-study were conducted in laboratory multi-task 

contexts. According to Onnasch et al. (2014, p. 485), only four of the 18 studies included 

non-student participants; one of which employed military personnel not engaged in tasks 

pertaining to their expertise (i.e., Calhoun et al. 2009). Similarly, Cummings and Mitchell 

(2007) recruited active duty military personnel with overlapping subject-matter expertise with 

respect to an anticipated future-world experimental task (Cummings, personal 

communication, March 31, 2017). The participants in Metzger and Parasuraman (2005) and 

Sarter and Schroeder (2001) were en route controllers and commercial aircraft pilots, 

respectively. 

  

Table 1 extracts from Onnasch et al. (2014, p. 481) the studies that employed non-student 

participants and introduces results from an experiment that we are currently preparing for 

dissemination (Skraaning & Jamieson, in preparation). We have also added a column noting 

the experimental characteristics of each study, including the participants, the simulation 

environment, and the experimental tasks or scenarios. Table values are Kendall’s Rank 

Correlation Coefficients, referred to as Kendal’s Tau; a non-parametric measure of 

correlation. DOAs in each study were converted to sequential rank values and compared to 

dependent meta-variable indicators distinguished in rank by statistical significance. For 

Skraaning & Jamieson (in preparation), we followed the ranking method as described in the 

meta-study (although, we have lingering questions about the validity of Onnasch et al.’s 

(2014) ranking method to support inferences about DOA effects on performance, workload 

or SA.) 

 

Table 1. Selected (and supplemented) results from Onnasch et al. (2014) pertaining to 

findings from complex work environments.  

 

Study Experiment 
Characteristics 

Routine 
Primary 
Task 
Perform. 

Return-
to-
Manual 
Primary 
Task 
Perform. 

Routine 
Second-
ary Task 
Perform. 

Return-
to- 
Manual 
Second- 
ary Task 
Perform. 

Subject- 
ive 
Work- 
load 

SA 

Calhoun et al. 
(2009) 

Military personnel 
(non-SME); 
Commercial 
simulator; complex 
scenarios 

-.816  0   0 

Cummings & 
Mitchell 
(2007) 

Active-duty military 
personnel; 
laboratory 
simulator; futuristic 
scenarios 

0     0 

Metzger & 
Parasuraman 
(2005) 

En route 
controllers; medium 
fidelity task 
simulator; multi-task 
scenarios 

0 0 0 0 0 0 

Sarter & Commercial aircraft 1      



 

Schroeder 
(2001) 

pilots; Full-scope 
simulator; Complex 
scenarios 

Skraaning & 
Jamieson (in 
preparation)  

Licensed NPP 
operators; Full- 
scope simulator; 
Complex scenarios 

0    0 1
1
 

 

In stark contrast to the conclusions of Onnasch et al. (2014), Table 1 reveals little empirical 

evidence for a predictive model of LOA effects on task performance, situation awareness or 

workload for complex work settings. Ironically, removing these studies from the Onnasch et 

al. (2014) meta-study would presumably improve the predictive power of LOA 

characterizations for laboratory tasks that can be executed by students after a few hours of 

training (cf., Li et al, 2014).  

 

Onnasch et al.’s (2014) findings do support the position that human factors engineers might 

use LOA predictions to make valid, reliable and useful predictions about automation design 

for simple work environments. However, their article offers no caution regarding limiting the 

application of the predictions to complex work settings given the current paucity of data.  

On the adherence to LOA-based predictions despite their poor 

predictive power 

Although Kaber acknowledges the conflicting results from individual LOA experiments, he 

gives two reasons for standing behind predictive modeling of LOA as the general research 

strategy to support automation design. First, he argues that they are “handy”. But how handy 

can models of poor predictive value be? Do we have sufficient confidence in these models to 

encourage their use in the design of safety-critical applications? 

 

By admitting that LOA-models developed and evaluated for seven decades are imprecise 

and unreliable (as Kaber does), it becomes hard to believe in the practical usefulness of the 

approach. Engineers will continue to make difficult HAI design decisions without the 

trustworthy technical basis promised by advocates of LOA models. We sympathize with the 

desire to offer consistent and universal human response trends that are truly useful to 

designers, but suspect that the LOA approach has overplayed its role in this regard.  

 

Kaber, on the other hand, calls for a research program to establish fine-grained LOA models 

under the assumption that more sophisticated classification will lead to descriptive 

performance predictions and thereby greater utility to designers. We are skeptical of the 

assumption that more detail in these models will yield more accurate predictions than they 

have to date.  

 

The second reason that Kaber remains committed to LOA look-up tables is that they are the 

best human factors researchers have to offer to designers and we should be reluctant to 

                                                
1
 Linear contrast analysis showed a large experimental effect (partial eta-squared for four levels of 

procedure automation, ŋ
2
= 0.30) 



 

dispose of them without a suitable replacement at hand. In our view, this argument is false 

and impedes the search for better alternatives. It is an argument in favour of function 

allocation that has long been refuted by a minority in our community (e.g., Fuld, 2000): 

...when a scientific discipline finds itself in a dead end, despite hard and diligent work, 

the dead end should probably not be attributed to lack of knowledge of facts, but to 

the use of faulty concepts which do not enable the discipline to order the facts 

properly. The failure of human factor engineering to advance in the area of allocation 

of function seems to be such a situation. (Jordan, 1963, pp.161-162.) 

 

Kaber himself asserts that, “If actual performance observations on LOAs cannot be 

connected to theoretical descriptions, then such descriptions have little import in terms of 

systems design.” Kaber, p.19. We agree with Kaber’s appraisal of the quality of the empirical 

efforts to generate knowledge about human-automation interaction. We see no systematic 

flaw in the research methods employed to create the body of evidence. Rather, like Jordan 

(1963), we suspect that the poor predictive power of LOA-based predictions of human 

behavior in the presence of automation is based on faulty concepts. We do not see how 

greater refinement of these concepts will lead to more predictive models.  

 

From our perspective, Kaber adopts a remarkably high threshold for rejecting the LOA 

concept. We should hesitate to throw this LOA baby out with the bathwater he says 

metaphorically. We concur with Kaber that LOA modeling is in its infancy: A 65-year old 

infancy. The LOA concept is the Benjamin Button of human factors research. After 65 years 

of imprecise and unreliable predictions, what more reason do we need to at least entertain 

the idea of throwing out this baby that fails to thrive? 

On the use and rejection of LOA taxonomies in system design 

and operation 

Kaber points to the SAE’s recent adoption of a taxonomy and definitions of driving 

automation systems (SAE, 2016) as evidence for their utility. However, other practitioner 

communities have expressed difficulty in applying the LOA concept. For example, The FAA’s 

report on Operational Use of Flight Path Management Systems cites a limited utility in 

hierarchical LOA descriptions of flight deck automation. 

The [working group] found that several operators started with a policy that used 

explicit definitions of levels of automation described as a simple hierarchy in a rigid 

and prescribed fashion. After gaining operational experience with training and 

operational use of these rigid definitions, several airlines concluded that such a 

description assumed a linear hierarchy that does not exist. The various features of 

the autoflight system (autopilot, flight director, autothrottle/autothrust, FMS, etc.), can 

be, and are, selected independently and in different combinations that do not lend 

themselves to simple hierarchical description. As a result of this experience, those 

operators revised their policies to allow the pilot to use the appropriate combination 

of automation features for the situation, without rigidly defining them in terms of 

levels. (Abbott, McKenney & Railsback, 2013, P. 55, emphasis added) 

 

This example is noteworthy for two reasons. First, the critique emphasizes how the blend of 

automation capabilities in complex operating environments overwhelms simplistic 



 

hierarchical descriptions. We have observed similar difficulties in the process industries as 

well, where the integration of individual automatic devices such as protections, controllers, 

scripts, routines and programs makes assignment of automation configurations to ordinal 

levels of a hierarchy a speculative endeavour. Instead of a single hierarchy, human factors 

researchers might appeal instead to multiple LOA hierarchies defined by stages of 

automation (Parasuraman, Sheridan & Wickens, 2000), system functions (autopilot, flight 

director...), or otherwise. Furthermore they might adopt the notion of adaptive selection of 

LOAs depending on the context of dynamic operational circumstances or operator state 

(Byrne & Parasuraman, 1996). In doing so we risk gravitating toward a descriptive theory of 

unique function allocation situations instead of providing general LOA predictions that are 

useful to designers. 

 

Second, the FAA example highlights the value of operational experience with rigid LOA 

descriptions. In contrast, the SAE standard describes a simplified abstraction agreed to by 

stakeholders. In Kaber’s words, the standard is a social construct. Looking beyond the six 

levels of automation reveals trade-offs in the taxonomy’s negotiated formulation. The 

taxonomy excludes active safety systems and driver assistance systems such as automated 

emergency braking and lane keeping assistance, respectively (SAE, 2016, p.2). Thus, 

although the SAE’s notion of the dynamic driving task includes longitudinal and lateral 

motion control, automation systems that intervene in these functions are excluded from the 

taxonomy. While this may be a useful simplifying assumption, a skeptic might wonder how 

effective such an abstraction can be in providing a framework for design specification and 

regulatory practice.  

 

A second example of rejection of the LOA notion was provided by Dr. Clinton D. Chapman, 

Production Group Chief Software Architect at Schlumberger. He spoke in a session on 

Automation Case Studies at the September, 2014 Society of Petroleum Engineers 

Workshop on “Implementation of Drilling Systems Automation”. Dr. Chapman reviewed both 

the Endsley and Kaber (1999) and Sheridan and Verplank (1978) LOA descriptions and 

recounted how the Drilling Systems Automation Technical Section had been “...reviewing 

this perspective over the previous 5 to 6 meetings…”. He then asked if any of the workshop 

attendees was finding the concept useful. Not a single positive response was offered. The 

first author [Jamieson] was nonplussed. He rose to ask Dr. Chapman if he had understood 

correctly that the Technical Section was finding the LOA concept to be of no use in 

supporting the development and implementation of drilling automation. Chapman’s reply was 

that the LOA concept was considered an abstraction that was not “fit for purpose” for drilling 

automation design. 

 

It should come as no surprise that practitioners are split on the utility of the LOA concept. 

Like other human factors notions, LOA-based taxonomies offer an intuitive description and 

an apparently concise aid to cope with a wicked design problem. However, implementing the 

taxonomy can lead to the realization that the abstraction does not survive beyond the 

conceptual design phase. It remains to be seen whether the SAE taxonomy will enjoy 

greater success in surface transportation than reported in aviation and drilling. 



 

On the prospects for new thinking in HAI design 

We agree with Kaber that HAI research asks some of the right design questions. But the 

LOA tradition prematurely closes off other questions. For example, it implies that the answer 

to, “How should automation interact with humans?” should be “by throttling the LOA (i.e., 

adjusting function allocation) and monitoring task performance, situation awareness and 

workload effects”, as if this was the only alternative. From our perspective, the teamwork 

metaphor (Christoffersen & Woods, 2002) and Dekker and Woods’ (2002) “abracadabra” 

accusation are responses to this unnecessary narrowing of the design space. 

 

There are many more questions that LOA research does not address - questions that are 

discovered both in operational settings via automation “surprises” (Sarter & Woods, 1997) 

and through design experiences (Guerlain, Jamieson, Bullemer & Blair, 2002). Questions 

arising from an effort to develop concepts of operation for highly automated nuclear plants 

(Jamieson et al., 2014) include: 

● Should we design for human interaction with many individual automated agents 

working at the component or sub-system level? Or through a single meta-agent? 

● How should the designer allocate dialogue with machine agents amongst human 

agents? Should these dialogues be discretely held between one crew member and 

the agent, or held in the open? Should dialogue with automated agents be the role of 

one operator or shared amongst the crew?  

We found no useful guidance on these questions in existing LOA research. Designers 

cannot wait for empiricists to discover the relevant questions through theory-driven research.  

 

Of greater concern is that Kaber leaps from the assurance that we have the right questions 

to the assumption that we’re answering them in the right way. To the extent that he is willing 

to consider new approaches to HAI modeling, he assumes that starting over means 

returning to human information processing models (p. 22). Why make this assumption? After 

trying a single strategy for a long time with questionable success, should researchers fiddle 

with the same basic recipe? Or instead demonstrate some creativity in coming up with new 

ways of supporting designers of HAI in complex work environments? 

 

At the same time let us also not succumb to nuevo-folk models of HAI that fixate on a single 

construct or mechanism. While constructs such as teamwork, trust and the like almost 

certainly serve as factors in predicting HAI, if taken in isolation they also threaten to close off 

degrees of design freedom. Engineers working on under-specified design problems must 

adopt a pragmatic approach. Like Sheridan’s (2000) bridge builder, they must start out with 

subjective intuitions before they can move on to normative/objective tools. Likewise, we 

human factors researchers should also be pragmatic and not subscribe to narrow models. 

Conclusion 

In our view the LOA-paradigm has lost its momentum and is approaching a crisis. New HAI 

challenges are emerging along with continual technological development. It is not evident 

that automation is evolving in such a way that the LOA framework accurately describes the 

new design problems. We suspect that it is too late to save the concept through refinement 

or by hunting for stronger evidence of its predictive power. The failure of LOA theory thus far 

to account for human behaviour and experience in operational environments is as likely 



 

attributable to faulty concepts as to insufficient facts (Jordan, 1963). If the evidence doesn’t 

support the predictions of LOA models for safety- and production-critical work, we must be 

willing to at least consider rejecting the theory. We cannot persist in our unwillingness to be 

guided by accumulated evidence that forms a clear pattern over time just because we lack a 

contingency plan. And we cannot dismiss the critics for having nothing better (or even 

nothing at all) up their magician’s sleeves.  
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