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Abstract A semi-analytical and a finite-difference 
scheme are presented for the simulation of tempera-
ture and the heat transfer in a multi-segment coaxial 
borehole heat exchanger. The single-segment solu-
tion on closed-form is extended to a semi-analytical 
multi-segment solution, where each segment may 
have unique properties. These properties are such as 
different casings, widths of the annulus, radius of the 
inner tubing, material properties, rock properties and 
geothermal gradients. The multi-segment model is a 
simple and powerful alternative to numerical meth-
ods for simulating a complex coaxial borehole heat 
exchanger with a constant flow rate. It is demon-
strated with a deep coaxial borehole heat exchanger 
made of three different segments. The analytical and 
semi-analytical models are validated by comparison 
with numerical solutions obtained with an upstream 
finite difference scheme. The match between the 
solutions is excellent. The solution on a closed-form 
is used to study the temperature difference between 
the outlet and the inlet regarding two dimensionless 
numbers. It is found that the maximum temperature 
difference occurs when the dimensionless heat trans-
fer coefficient for the casing-rock is much larger than 
one. A second necessary condition is that the dimen-
sionless heat transfer coefficient for the insulator 

between the inner tube and the annulus must be much 
less than one. The power leakage from the inner tub-
ing to the annulus is also at a maximum under these 
conditions.

Keywords Deep coaxial borehole heat exchangers · 
Multiple segments heat exchangers · Analytical 
solution · Dimensionless numbers

1  Article Highlights

• Analytical and numerical solutions for deep bore-
hole heat exchanger

• Semi-analytical solution for multi-segment deep 
borehole heat exchanger

• Conditions for the maximum temperature differ-
ence between the inlet and the outlet.

2 Introduction

Energy production from fossil fuels is responsible 
for enormous CO2 emissions. More than 30  Gt of 
anthropogenic CO2 has been emitted globally every 
year since 2000 (International Energy Agency 2016). 
The rapid increase in atmospheric CO2 concentrations 
over the last 100 years is the likely reason for current 
climate changes  (Bryant 1997). The need for alter-
natives to fossil fuels has resulted in a broad interest 
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in geothermal energy. In general, geothermal energy 
produces little or no CO2 emissions and requires lit-
tle surface area  (Gehlin et  al. 2016). Shallow bore-
hole heat exchangers are widely used for heating and 
cooling buildings when they are coupled with heat 
pumps (Sanner et al. 2003).

Shallow borehole heat exchangers normally have 
a U-tube design. The fluid is heated in one tube 
going down the well, and the heated fluid returns to 
the surface through another tube, which is thermally 
insulated from its surroundings  (Gehlin et al. 2016). 
An alternative to the U-tube is the coaxial borehole 
heat exchanger (CBHE). A CBHE has a tube-in-tube 
construction as shown in Fig. 1. The fluid enters the 
annulus at the top of the well and it is heated from 
the surrounding rock on its way down. Assuming that 
the rock temperature increases with depth, the fluid is 
maximally heated at the base of the well. The fluid 
returns to the surface through the inner tube, which 
is insulated from the annulus to avoid heat leakage 
between the two streams. For shallow geothermal 
energy, the CBHE has been found to be more efficient 
than the traditional U-tube (Quaggiotto et al. 2019).

The successful application of shallow borehole 
heat exchanger (BHE) has given rise to increased 
interest for deep BHE, and in particular in deep 
CBHE (DCBHE). Deep geothermal energy is defined 
by Breede et al. (2015) to be a depth of at least 400 m 

and a temperature of a least 20  ◦ C. Although other 
authors recommend depths of a least 1000  m and 
temperatures of more than 60 ◦ C (Breede et al. 2015). 
The term medium-deep has been applied to wells 
with depths from several hundred meters to 3000 m, 
where the rock temperature is between 70 ◦ C and 90 ◦

C (Ma et al. 2020). This temperature range is not suit-
able for electricity production, but it is well suited for 
district heating in cold areas with long heating sea-
sons. Two-phase flow in the DBHE may be a chal-
lenge when circulating water is heated to more than 
100 ◦ C. In the following, it is assumed that the fluid is 
always in the liquid phase.

Modelling BHE can be divided into two groups: 
analytical and semi-analytical models and numeri-
cal models. The analytical models are normally made 
in the cylinder coordinates assuming cylinder sym-
metry around a vertical well. These models provide 
much insight into coaxial borehole systems, and they 
often have a low computational cost. An important 
temperature solution for heat flow problems in sol-
ids is the infinite point source solution (Carslaw and 
Jeager 1959). It is the basis for the infinite line source 
model (Carslaw and Jeager 1959), which is often used 
for heat flow towards a well. There are much fewer 
analytical models for deep geothermal energy than for 
shallow. For shallow BHE, there are several models 
for the transient energy production or energy storage 
that build on the pioneering work of Ingersoll (Inger-
soll et al. 1954) for heat conduction in solids  (Beier 
et al. 2013; Li and Lai 2015; Zhang et al. 2016; Ban-
dos et  al. 2009). Several of these models deal with 
thermal response testing (TRT), where the inlet and 
the outlet temperatures are measured when heat at a 
constant power is delivered to the borehole. Calibrat-
ing the inlet and outlet temperatures with a linear heat 
source model yields average values of thermal con-
ductivity, thermal borehole resistance and ground 
temperature (Witte 2007).

In the rock, heat convection may dominate heat 
conduction in the case of groundwater flow. Two 
early analytical models to deal with heat convection 
in addition to conduction were introduced by Sutton 
et al. (2003), Diao et al. (2004) based on the moving 
line source model from  (Carslaw and Jeager 1959). 
These two models assume a constant Darcy flux in the 
plane normal to the well. The thermal impact of more 
complicated flow regimes on a geothermal well needs 

Fig. 1  The well consists of an inner tube separated from an 
annulus by a wall, and there is a casing between the well and 
the rock
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numerical treatment. It should be mentioned that the 
moving line source solution of the convection-diffu-
sion equation has applications in various fields such 
as the measurement of groundwater flow  (Simon 
et  al. 2021) and the distribution of contaminants in 
the groundwater (Antelmi et al. 2020).

The numerical models can be subdivided into 
those based on cylinder symmetry and those that are 
in full 3-D. 3-D models can account for the full geom-
etry when the cylinder symmetry is not valid. This 
may be the case for the U-tube BHE. For example, a 
3-D model for DCBHE has been developed (Gascuel 
et al. 2022), which is based on the FEFLOW numeri-
cal library  (Diersch 2013). Numerical models have 
an advantage over analytical models in that they are 
flexible with respect to the operating conditions such 
as flow rates, injection temperatures, rock properties, 
geothermal gradients, different casings and cement 
thickness. The numerical models can also be extended 
more easily than the analytical ones to greater depths. 
Cylinder symmetrical models are made with finite 
difference schemes  (Shao et  al. 2016) or with soft-
ware such as COMSOL-multiphysics  (Zanchini 
et  al. 2010). Shao  and coauthors  (Shao et  al. 2016) 
explained in detail how a numerical model for a BHE 
is built using the finite difference method.

So far, only a few DBHE have been tested in real 
life, and knowledge of DBHE is largely based on 
modelling  (Kohl et  al. 2002; Beier 2020; Ma et  al. 
2020; Gascuel et  al. 2022). An abandoned 2300  m 
deep borehole in Switzerland has been used to gener-
ate geothermal energy (Kohl et al. 2002). In this case, 
simulations showed that the heat production from the 
well could be increased to over 200  kW, which is 
more power per meter well than for a shallow BHE. 
(Gascuel et  al. 2022) have carried out a detailed 
design study of DCBHE that accounted for different 
drilling options, materials used, and operating condi-
tions, and they estimated a price per kW for different 
alternatives.

Kabir et al. (1996), Tóth and Bobok (2008), Tóth 
and Bobok (2016), Sharma et  al. (2020) have pre-
sented highly useful analytical models for a DCBHE. 
An analytical solution of CBHE was provided 
by  (Kabir et  al. 1996) in the context of well-control 
operation. The model (Kabir et al. 1996) can answer 
several questions related to the design of a DCBHE, 

such as well depth and flow rate. It assumes a con-
stant flow rate, cylinder symmetry around the well 
and a model for the heat flow  towards a well from 
the surrounding rock, for instance, such as Ramey’s 
approximation  (Ramey 1962). Ramey’s approxima-
tion has an initial rock temperature that increases lin-
early with depth.

The model proposed in this article builds on the 
works of Kabir et al. (1996), Tóth and Bobok (2008), 
Tóth and Bobok (2016), Al Saedi et  al. (2018), Al 
Saedi et al. (2019), Sharma et al. (2020). A solution 
of their model is obtained by a different approach 
which keeps the first-order nature of the problem. 
Then, the solution is expressed in terms of eigen-
vectors and eigenvalues of the main matrix of the 
model  (Kreyszig 2020). This alternative approach 
has only two linearly independent undetermined 
coefficients, which are obtained using two boundary 
conditions. The result is a simple solution on closed-
form that allows for  a straightforward generalization 
to a DCBHE with multiple segments. Sharma et  al. 
(2020) presents a similar two-segment model for the 
simulation of a horizontal geothermal well. Each seg-
ment may have its own properties, such as casing, the 
width of the annulus, the radius of the inner tubing, 
material properties, rock properties and the geother-
mal gradient. There are two unknown coefficients in 
the temperature solution for each segment, and they 
are obtained from the requirement that the tempera-
ture is continuous at each interface between segments. 
The fluid has the same temperature at the outlet of 
one section as at the inlet of the following section. 
The coefficients for a multi-segment well are obtained 
by solving a small linear equation system, where 
there are two unknown coefficients per segment. For 
instance, a 3-segment model gives a linear equation 
system for 6 unknown coefficients. This model does 
not account for heat convection by groundwater flow 
because it is not yet clear if Ramey’s approximate 
solution can be extended to include heat convection.

The manuscript is organized as follows: The equa-
tions of the model and the solution are discussed first. 
The difference in output and input temperatures is 
then discussed in terms of dimensionless numbers. 
The multi-segment solution is presented and tested. 
Finally, there is an example of a temperature solution 
for DCBHE made of three different segments.
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3  The equation for the vertical coaxial borehole 
heat exchanger

The following two equations give the temperature of 
the fluid in a coaxial borehole heat exchanger assum-
ing cylinder symmetry

where Td is the temperature of the fluid flowing down 
the annulus, Tu is the temperature of fluid flowing 
up the inner tube, and Tr is the initial rock tempera-
ture (Tóth and Bobok 2008, 2016). The z-coordinate 
points downwards, where z = 0 is the surface, and t 
is the time. The first term on the right-hand side of 
Eq. (1) represents heat flow from the inner tube to the 
annulus, and the second term is the heat flow from the 
rock to the annulus. Appendix A shows how Eqs. (1) 
and (2) follow from energy conservation in the annu-
lus and the inner tube. The coefficient Kw is the over-
all heat transfer coefficient Uw between the inner tube 
and the annulus,

where Cf  is the heat capacity of the fluid, ṁ is the 
fluid flow rate as mass per time, and dA/dz is the sur-
face area per length of the wall between the inner tube 
and the annulus. Notice that the two factors Uw and 
dA/dz do not appear separately, but only as a product. 
The overall heat transfer coefficient for the wall is

where U1 is the heat transfer coefficient between the 
inner tube and the tube wall, and U2 is the heat trans-
fer coefficient between the other side of the tube wall 
and the annulus (Incorpera et al. 2011). The tube wall 
is between the two radii, r1 and r2 , as shown in Fig. 1, 
and its heat conductivity is �w . The Nusselt numbers 
for the inner tube and the annulus give the heat trans-
fer coefficients U1 and U2 , respectively. The following 
simulations use the Nusselt number  (Incorpera et al. 
2011)

(1)
dTd

dz
= Kw(Tu − Td) + Kr(t)(Tr − Td)

(2)
dTu

dz
= Kw(Tu − Td),

(3)Kw =
Uw dAw∕dz

Cf ṁ
,

(4)
1

Uw dAw∕dz
=

1

2�r1U1

+
ln(r2∕r1)

2��w
+

1

2�r2U2

where Re and Pr are the Reynolds number and the 
Prandtl number, respectively. The coefficient

controls the heat transfer from the rock towards the 
well, and it follows from a time-dependent heat trans-
fer coefficient Ur(t) . The coefficient Ur(t) accounts for 
the cooling of the rock. It can also be expressed as the 
sum of three thermal resistivities as

where U3 is the heat transfer coefficient between the 
fluid and the outer wall of the annulus. The �c is the 
average heat conductivity between the radii r3 and r4 , 
which is the material that separates the annulus from 
the rock. This material could represent a steel casing 
and the cement between the casing and the rock. The 
third term in Eq.  (7) is the time-dependent thermal 
resistance of the rock. It is based on an approximation 
introduced by Ramey (Ramey 1962) for the heat flow 
towards a well. Ramey (Ramey 1962) showed that the 
heat flow radially towards a well in the interval dz can 
be approximated as

where �r is the heat conductivity of the rock, T4 is the 
temperature at radius r4 (see Fig. 1), and

is the initial rock temperature. The temperature of 
the rock increases linearly with depth, having a geo-
thermal gradient a, and a surface temperature b. 
Both the temperature T4 and the heat flow dq depend 
on time, and an exact expression for the ratio turns 
out to be a non-trivial problem. As demonstrated by 
Ramey  (Ramey 1962), the time dependence can be 
approximated as

(5)Nu =

{
0.027 Re4∕5 Pr0.33 for Re > 104

3.66 for Re < 104

(6)Kr(t) =
2𝜋 r3Ur(t)

Cf ṁ
,

(7)
1

Ur(t)
=

1

U3

+
r3 ln(r4∕r3)

�c

+
r3 f (t)

�r

(8)dq =
2��r(T4 − Tr) dz

f (t)

(9)Tr(z) = az + b

(10)f (t) = − ln
� r3

2
√
�t

�
− 0.288
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where � is the heat conductance of the rock. 
Ramey (Ramey 1962) demonstrated that the approx-
imation  (8) gets better with increasing time. The 
use of expression f(t) gives quite accurate results 
after only one day and very good results after one 
week (Ramey 1962). The increasing accuracy of the 
Ramey solution with increasing time makes it useful 

for benchmarking numerical codes simulating geo-
thermal wells over several years. For instance, Gola 
et  al. (2022) compare their numerical results with 
Ramey solutions and the match is excellent.

The full solution of Eqs.  (1) and  (2) is given in 
Appendix B by Eqs.  (21) to  (29). In addition to the 
two coefficients Kw and Kr , the solution depends on 
the inlet temperature T0 , the well length L, and the 
initial rock temperature by the parameters a and b. 
Appendix  C shows that the full solution of Appen-
dix B reproduces Ramey’s solution in the limit where 
Kw → 0 . It should also be mentioned that Eqs.  (1) 
and  (2) reduce to the equations for a standard coun-
ter flow heat exchanger when Kr = 0 , (Incorpera et al. 
2011).

4  The temperature solution

Figure  2 shows an example of the temperature 
solution for Td(z) and Tu(z) of the two coupled 
Eqs.  (1) and  (2). The temperature is computed 
using expression  (21) from Appendix  B. The fluid 
has properties of water (see Table  1), and Table  2 
lists the case data. The rock heat conductivity is 
�r = 3.5  W m−1 K−1   and the heat conductivity of 
the insulator between the inner tube and the annulus 
is �w = 1 ⋅ 10−3 W m−1 K−1 . The mass flow rate is 
1 kg s−1 . In Fig. 2a, the temperature in the annulus 
is blue, and the temperature in the return tube is red. 
The temperatures are plotted at 10  days, 100  days, 
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Fig. 2  a The well temperature at 10 days, 100 days, 1000 days and 10,000 days. b The output temperature as a function of time. c 
The output power as a function of time

Table 1  Fluid properties

cf  (fluid heat cap) [ J kg−1 K−1] 4000

�f  (fluid heat cond) [ W m−1 K−1] 0.6

�f  (fluid density) [ kg m−3] 1000
� (fluid viscosity) [ Pa s] 0.001

Table 2  Input data for multi-segment test case

Segment number [-] 0

L (length) [m] 4.0 ⋅ 103

r1 (radius inner tube) [m] 1.0 ⋅ 10−1

dw (thickness wall) [m] 2.0 ⋅ 10−2

da (thickness annulus) [m] 5.0 ⋅ 10−2

dc (thickness casing) [m] 5.0 ⋅ 10−2

�w (wall heat cond) [ W m−1 K−1] 1.0 ⋅ 10−3

�c (casing heat cond) [ W m−1 K−1] 3.50

cr (rock heat cap) [ J kg−1 K−1] 1.0 ⋅ 103

�r (rock heat cond) [ W m−1 K−1] 3.50

�r (rock density) [ kg m−3] 2.25 ⋅ 103
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1000  days (2.7  years) and 10,000  days (27.3  years). 
The well is 4 km deep, and the initial rock tempera-
ture increases from a constant surface temperature of 
10 ◦ C to a temperature of 110 ◦ C at the depth of the 
well, which makes the geothermal gradient 25 ◦C/km. 
The solution is demonstrated with an injection tem-
perature of 50  ◦ C, which leads to the heating of the 
rock surrounding the upper part of the well. The mod-
erate mass flow rate slowly cools the lower part of 
the well with time. The slow cooling is also observed 
from the output temperature plotted as a function of 
time in Fig.  2b. The output temperature decreases 
from 95 ◦ C to 80 ◦ C over 27 years. The power, plot-
ted in Fig. 2c, follows the output temperature because 
the output power is proportional to the difference 
in temperature between the outlet and the inlet (see 
Appendix  B). The analytical solution in Fig.  2a is 
verified by comparison with a numerical finite dif-
ference solution. The match is excellent. Appendix E 
provides details of the finite difference method used.

5  Dimensionless numbers

The behaviour of a CBHE can be understood in terms 
of two dimensionless numbers:

Several authors have used these dimensionless num-
bers to analyse CBHEs  (Beier 2011; Beier et  al. 
2014; Luo et al. 2019). Beier (Beier 2011) expressed 
the error in the total thermal resistance using Nr and 
Nw . These numbers are also useful in the study of the 
outlet temperature for different mass flow rates. Fig-
ure 3a shows the outlet temperature as a function of 
the mass flow rate. A “low” mass flow rate gives a 
fluid temperature nearly the same as the temperature 
of the surrounding rock. In the other regime with a 
“high” mass flow rate, the output temperature is 
nearly the same as the input temperature. Intermedi-
ate flow rates produce a noticeable difference between 
the initial rock temperature and the inlet temperature. 
Figure 3b shows Nr and Nw as functions of the mass 
flow rate. The outlet temperature is at a maximum 
when Nr ≫ 1 and Nw ≪ 1 . These two conditions 
define an intermediate flow rate. The first inequality 
can be interpreted as a condition for when the sur-
rounding rock provides heat to the fluid in the annu-
lus. The inequality Nw ≪ 1 is a condition for when 
the inner tubing is a good insulator.

The dimensionless numbers can be interpreted 
as ratios of powers. For instance, Nw can be written 

(11)Nr = Kr L and Nw = Kw L

Fig. 3  a The outlet temperature for different flow rates at 5 years. b The dimensionless numbers Nr and Nw for the same rates as in  a 
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as Nw = Pw∕Pf  , where Pw = Uw(dAw∕dz)LΔT  and 
Pf = Cf ṁΔT  . The power Pw is the leakage from the 
inner tube to the annulus by a temperature difference 
ΔT  , and the power Pf  is the additional power carried 
by the fluid when the temperature increases with ΔT .

6  Multi‑segment solution

In the case of one segment, the solution for the fluid 
temperature in the annulus and the inner tube is given 
by Eqs.  (21) and  (22) in Appendix  B. These two 
equations have two unknown coefficients, D1 and D2 . 
In the case of just one well segment, these two con-
stants are determined by the knowledge of the injec-
tion temperature, Td(z=0) = T0 , and the fact that the 
temperature at the base of the well is the same in 
the annulus and the inner tube, Td(z=L) = Tu(z=L) . 
Appendix B gives the coefficients D1 and D2.

To extend the one-segment model to multiple seg-
ments, it is advantageous to introduce the notation Ek 
and Fk for the two parameters D1 and D2 , respectively, 
for segment number k. According to Appendix D, the 
temperature in segment k can then be written as

The z-coordinate is now local in each segment where 
the top of the segment is at z = 0 , the base of the seg-
ment is at z = Lk , and Lk is the length of segment k. 
The counting of the segments starts from the surface, 
and the segment numbers increase with depth. The 
unknown parameters Ek and Fk are found by requir-
ing that the temperature is continuous across each 
segment interface. At the interface between segment k 
and k + 1 , the temperature solution satisfies

In addition to the continuity of the temperature at the 
interfaces between the segments, the temperature at 
the inlet of the first segment is given and the tempera-
ture at the base of the last segment is the same in the 
annulus and the inner tube. In the case of N segments, 
this gives 2N linear equations for the 2N unknown 
coefficients Ek and Fk . There does not seem to be a 

(12)Td,k(z) = Ek ⋅ ek(z) + Fk ⋅ fk(z) + pk(z)

(13)Tu,k(z) = Ek ⋅ gk(z) + Fk ⋅ hk(z) + qk(z).

(14)
Td,k(z = Lk) = Td,k+1(z = 0) and

Tu,k(z = Lk) = Tu,k+1(z = 0)

simple analytical solution for this linear system of 
equations, unlike the case of just one segment.

Concerning programming, it is advantageous to 
represent the segments by a class using an object-ori-
ented language like Python. The multi-segment model 
is then a list of objects of a class segment. Once the 
parameters Ek and Fk are known, it is straightforward 
to compute the temperature in the annulus and the 
inner tube using the functionality of each object of 
class segment. The multi-segment model is a semi-
analytical alternative to numerical methods for simu-
lating a DBHE. The semi-analytical solutions are well 
suited to benchmark numerical solutions because they 
do have discretization errors.

A test of the multi-segment approach is to take a 
reference segment and split it into an arbitrary num-
ber of equally long subsegments. The multi-segment 
solution should be exactly the same as the one-seg-
ment solution in Appendix  B. Figure  4 shows the 
temperature solution of a reference segment and the 
multi-segment solution when the reference segment 
is spilt into 10 equal subsegments. Table 2 gives the 

temperature [C]
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h 
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0
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Fig. 4  The well temperatures for a single segment solution 
and for the same segment dived into 10 segments. The two 
solutions are the same



 Geomech. Geophys. Geo-energ. Geo-resour.           (2024) 10:17 

1 3

   17  Page 8 of 15

Vol:. (1234567890)

input parameters for the case. The single segment and 
the multi-segment solutions are exactly the same, as 
seen from Fig. 4. This demonstration case has an inlet 
temperature T0 = 50 ◦C  which is considerably higher 
than the surface temperature. The fluid is therefore 
cooled by the rock in the upper part of the well until 
the surrounding rock temperature becomes higher 
than the fluid temperature. This happens below the 
depth of approximately 1 km.

7  Example: vertical coaxial well with three 
different segments

This demonstration case is a 3000 km vertical well with 
3 segments of 1000 m. Table 3 lists the input param-
eters for each segment. It shows that the well radius is 
decreasing from 31.5 cm for the top segment to 21.5 cm 
for the base segment. The inner tube is the same for all 
segments, and it has a radius of r1 = 5 cm and a wall 
thickness of 1.5  cm. The well segments go through 
rocks with different heat conductivities. The heat con-
ductivity increases with depth. It is 1.5 W m−1 K−1 for 
the uppermost segment, 2 W m−1 K−1 for the middle 
segment, and 2.5  W m−1 K−1 for the base segment. 
The inner tube is a vacuum insulator with a heat con-
ductivity of �w = 0.01 W m−1 K−1 and it is the same 
for all segments (Damour and Johannson 2016). Leak-
age of circulation fluid into the surrounding rock is pre-
vented by sealing the well from the rock. The sealing is 
also the same for all segments, and it has a heat conduc-
tivity of �c = 3.5 W m−1 K−1.

Derived parameters for each well segment are 
listed in Table 4 for a mass flow rate of 2 kg s−1 . The 
Reynolds numbers show that the flow regime in the 
annulus is between laminar and turbulent, while it 
is turbulent in the inner tube. The reason is that the 
annulus has a larger cross-section than in the inner 
tube, so the velocity in the annulus is lower than in 
the inner tube. Therefore, the Nusselt number is low-
est in the annulus.

The low heat conductivity of the vacuum 
insulator dominates the overall heat trans-
fer coefficient for the insulating wall. Tables  3 
and  4 give that r1U1 = 58.5  W m−1 K−1 , 
�w∕ log(r2∕r1) = 0.038  W m−1 K−1 and 
r2U2 = 1.43  W m−1 K−1 in the middle segment for 
a mass flow rate of 2  kg s−1 . The �w-term control 

the denominator of the overall heat transfer coeffi-
cient  (4). Therefore, the energy leakage through the 
wall is only weakly dependent on the fluid velocities 
in this case.

The multi-segment solution gives the well tem-
perature down the annulus and up the inner tube at 
a given time assuming a constant flow rate. Fig-
ure 5 shows the well temperature at 1 day, 10 days, 
100  days and 1000  days for the 3 mass flow rates 
0.2  kg s−1 , 2  kg s−1 and 20  kg s−1 . The solu-
tions for 1 day may be at the limit of when Ramey’s 
approximation is good. The figure shows the three 
thermal regimes under which the geothermal well can 
operate. Figure 5a has a “low” flow rate, and the tem-
perature in the annulus is nearly in thermal equilib-
rium with the surrounding rock. The initial rock tem-
perature increases linearly from 10 ◦ C on the surface 
to 110 ◦ C at the base of the well. After 1000 days, the 
temperature in the annulus remains close to the ini-
tial rock temperature. The fluid loses temperature as 
it rises in the inner tubing because of the low circula-
tion rate, and the return temperature is roughly 20 ◦ C 
less than the initial rock temperature at the base of the 
well.

Figure 5c shows the opposite regime of a “large” 
circulation rate. The circulation temperature is large 
enough to cool the well to nearly the injection tem-
perature of 15 ◦ C. After 1000 days of operation, the 
base temperature of the annulus is barely 20 ◦ C. The 
circulation rate is sufficiently high for the fluid to 
avoid a noticeable temperature loss as it returns to the 
surface in the inner tube. Figure 5b shows an interme-
diate circulation rate where the temperature increase 
in the annulus is roughly halfway between the injec-
tion temperature and the initial rock temperature.

The semi-analytical solutions in Fig. 5 are verified 
by comparison with numerical finite difference solu-
tions of the Eqs. (1) and (2). The match between the 
solutions is excellent. Appendix E presents the details 
of the finite difference scheme used in the numerical 
computations.

The three regimes of Fig.  5 are seen in Fig.  6a, 
where the outlet temperature is plotted as a function 
of the circulation rate after 5  years of heat produc-
tion when the input temperature is 15 ◦ C. The maxi-
mum output temperature is nearly 70 ◦ C for the rate 
of 0.4 kg s−1 . For rates much less than 0.4 kg s−1 
the well output temperature is close to the initial rock 
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temperature. On the other hand, very high rates much 
larger than 0.4 kg s−1 give a return temperature close 
to the injection temperature.

Figure  6b shows that the power increases as a 
function of increasing flow rate. There is a small 
kink on the power curve at the rate 4 kg s−1 , which 
is due to the transition from laminar flow to turbu-
lent flow. At this point, the Nusselt number increases 
from 3.66 at laminar conditions as seen from Eq. (5). 
The power leakage from the inner tube to the annu-
lus also is shown. The leakage researches a maximum 
for almost the same flow rate as the maximum output 
temperature.

The power produced as a function of time is shown 
in Fig. 7. After a transition lasting a few months, the 
output power in the example above becomes stable 
at ≈ 250 kW for the mass flow rate of 2 kg s−1 . The 
power output is stable for more than 10 years. It can 
be shown that the output power remains stable for 
several decades.

8  Conclusion

A semi-analytical model is presented for a multi-
segment deep borehole heat exchanger. It builds on 
the known analytical solution of  (Kabir et al. 1996), 
and it makes use of Ramey’s approximate solution 
for the heat flow towards a well from the surrounding 
rock  (Ramey 1962). An alternative derivation of the 
solution is presented, which is based on eigenvalues 
and eigenvectors. This approach, which preserves the 

first order nature of the problem, introduces only two 
integration constants. The solution is demonstrated 
with cases showing the cooling of the fluid in the 
upper part of the annulus before the fluid is heated in 
the lower part. These examples also show the leak-
age of heat between the inner tube and the annulus. 
The analytical solution is discussed in terms of two 
dimensionless numbers, which are the casing-rock 
heat transfer coefficient ( Nr ) and the heat transfer 
coefficient between the inner tube and the annu-
lus ( Nw ). It is shown that the maximum temperature 
difference between the outlet and the inlet of the 
DCBHE takes place when Nr ≫ 1 and Nw ≪ 1 . The 
maximum power leakage from the inner tube to the 
annulus takes place under the same conditions. The 
closed-form temperature solution for one segment is 
extended to a semi-analytical multi-segment solution, 
where each segment has independent properties of 
the other segments, such as inner tube radius, annulus 
thickness, the insulator, casing and rock heat conduc-
tivities, and initial rock temperature. The segments 
are connected by requiring that the temperature is 
continuous across the segment interfaces. The multi-
segment solution is tested by taking a reference seg-
ment and dividing it into an arbitrary number of sub-
segments. It is demonstrated that the multi-segment 
temperature solution is the same as for the reference 
segment. An upstream finite-difference scheme is pre-
sented for the temperature solution of the equations 
of the coaxial borehole heat exchanger. The closed-
form solution and the semi-analytical multi-segment 
solutions are verified by comparing them with the 
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Fig. 5  The well temperature at 1 day, 10 days, 100 days and 1000 days for the 3 mass flow rates 0.2 kg s−1 , 2 kg s−1 and 20 kg s−1
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numerical finite difference solutions, and the match 
is excellent. These analytical and semi-analytical 
solutions are well suited for benchmarking numeri-
cal models of borehole heat exchanges, because 
they do not have discretization errors. They are also 

alternatives to numerical methods for the simulation 
of DCBHE based on Ramey’s approximation. An 
example of a multi-segment DCBHE made of three 
different segments is presented and discussed.

Fig. 6  a The output temperature as a function of the mass flow rate. b The output power and the power leakage as a function of the 
mass flow rate
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Fig. 7  Power as a function of time for mass flow rates 
0.2 kg s−1 , 2 kg s−1 and 20 kg s−1

Table 3  Input data

Segment number [-] 1 2 3

L (length) [m] 1.0 ⋅ 103 1.0 ⋅ 103 1.0 ⋅ 103

r1 (radius inner tube) [m] 5.0 ⋅ 10−2 5.0 ⋅ 10−2 5.0 ⋅ 10−2

dw (thickness wall) [m] 1.5 ⋅ 10−2 1.5 ⋅ 10−2 1.5 ⋅ 10−2

da (thickness annulus) [m] 0.15 1.0 ⋅ 10−1 5.0 ⋅ 10−2

dc (thickness casing) [m] 1.0 ⋅ 10−1 1.0 ⋅ 10−1 1.0 ⋅ 10−1

�w (wall heat cond) 
[ W m−1 K−1]

1.0 ⋅ 10−2 1.0 ⋅ 10−2 1.0 ⋅ 10−2

�c (casing heat cond) 
[ W m−1 K−1]

3.50 3.50 3.50

cr (rock heat cap) 
[ J kg−1 K−1]

1.0 ⋅ 103 1.0 ⋅ 103 1.0 ⋅ 103

�r (rock heat cond) 
[ W m−1 K−1]

1.50 2.00 2.50

�r (rock density) [ kg m−3] 2.25 ⋅ 103 2.25 ⋅ 103 2.25 ⋅ 103
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Appendix A: Derivation of equations and energy 
conservation

Conservation of energy gives a system of two Eqs. (1) 
and  (2) for the temperature in the coaxial borehole 
heat exchanger. Energy conservation in a small inter-
val of the annulus between z and z + Δz gives

where the z-axis is pointing downwards. The left-
hand side is the power flowing out of the interval at 
z + Δz . The right-hand side is the power that flows 

(15)

Cf ṁTd(z + Δz)

= Cf ṁTd(z) + Uw ΔAw(Tu − Td) + 2𝜋r3 ΔzUr(Tr − Td)

into the interval at z plus the power from thermal 
leakage of the inner tube added to the power from the 
surrounding rock. Similarly, the energy conservation 
in an interval of the inner tube between z + Δz and z 
is

where the left-hand side is the power that flows out 
of the interval at z. The right-hand side is the power 
that flows into the interval at z + Δx minus the power 
that leaks from the inner tube to the annulus. Recall 
that the flow directions are opposite in the inner tube 
and the annulus. The expressions for energy conser-
vations (15) and (16) lead to Eqs. (1) and (2), respec-
tively, in the limit Δz → 0.

The temperature Eqs. (2) and (1) for the borehole 
heat exchanger can be subtracted and then integrated 
from z = 0 to z = L , which gives the total power 
produced

when the temperature is the same at the base of the 
annulus and the inner tube, Tu(L) = Td(L) . In the 

(16)Cf ṁTu(z) = Cf ṁTu(z + Δz) − Uw ΔAw(Tu − Td)

(17)
Ptotal = Cf ṁ ⋅

(
Tu(0) − Td(0)

)

= 2𝜋r3Ur(t)∫
L

0

(
Tr(z) − Td(z)

)
dz

Table 4  CBHE properties 
for mass flow rate 2 kg s−1.

The heat transfer 
coefficients Ur(t) and Uf (t) 
are at t = 10 years

Segment number [–] 1 2 3

ṁ (mass flow rate) [ kg s−1] 2.00 2.00 2.00
Ad (area annulus) [ m2] 0.13 7.23 ⋅ 10−2 2.83 ⋅ 10−2

Au (area inner tube) [ m2] 7.85 ⋅ 10−3 7.85 ⋅ 10−3 7.85 ⋅ 10−3

vd (velocity annulus) [ m s−1] 1.52 ⋅ 10−2 2.77 ⋅ 10−2 7.07 ⋅ 10−2

vu (velocity inner tube) [ m s−1] 0.25 0.25 0.25
Red (annulus) [-] 4.55 ⋅ 103 5.54 ⋅ 103 7.07 ⋅ 103

Reu (inner tube) [-] 2.55 ⋅ 104 2.55 ⋅ 104 2.55 ⋅ 104

Nud (annulus) [-] 3.66 3.66 3.66
Nuu (inner tube) [-] 1.69 ⋅ 102 1.69 ⋅ 102 1.69 ⋅ 102

U1 (inner tube) [ W m−2 K−1] 1.01 ⋅ 103 1.01 ⋅ 103 1.01 ⋅ 103

U2 (annulus) [ W m−2 K−1] 7.32 1.1 ⋅ 101 2.2 ⋅ 101

U3 (annulus) [ W m−2 K−1] 7.32 1.1 ⋅ 101 2.2 ⋅ 101

UwdAw∕dz (overall for wall) [ W m−1 K−1] 0.22 0.23 0.23

Ur(t) (overall casing-rock) [ W m−2 K−1] 1.3 2.0 3.4

Uf (t) (cooling of rock) [ W m−2 K−1] 1.3 2.0 3.4

Kr (parameter) [ m−1] 2.2 ⋅ 10−4 2.6 ⋅ 10−4 3.1 ⋅ 10−4

Kw (parameter) [ m−1] 2.8 ⋅ 10−5 2.8 ⋅ 10−5 2.9 ⋅ 10−5
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same way, the temperature Eq. (2) for Tu can be inte-
grated from 0 to L, and it gives the power leaked from 
the inner pipe to the annulus as

The heat transfer coefficients do not depend on z and 
are taken outside the integration.

Appendix B: The temperature solution for one 
well segment

The coupled system of Eqs.  (1) and  (2) can be 
expressed as

where the vector T = [Td, Tu]
T , the matrix A is

and the vector b = [Kr(t)Tr(z), 0]T . Follow-
ing (Kreyszig 2020), the solution of Eq.  (19) can be 
written as

where the functions fi(z) are expressed as

The vectors v1 = [1, v0]
T and v2 = [v0, 1]

T are eigen-
vectors of A , and �1 and �2 are the corresponding 
eigenvalues, where

(18)
Pleak = Cf ṁ ⋅

(
Tu(L) − Tu(0)

)

= Uw

dAw

dz ∫
L

0

(
Tu(z) − Td(z)

)
dz.

(19)
d T

dz
+ A T = b

(20)A =

[ (
Kw + Kr(t)

)
−Kw

Kw −Kw

]

(21)
[
Td
Tu

]
= f1(z)

[
1

v0

]
+ f2(z)

[
v0
1

]
,

(22)fi(z) = ci

(
az −

a

�i

+ b

)
+ Di exp(−�iz).

(23)v0 =
1

Kw

�
Kw +

1

2
Kr +

1

2

√
KD

�

(24)�1,2 =
1

2

�
Kr ∓

√
KD

�
,

and where KD = K2
r
+ 4KwKr . The two constants D1 

and D2 are determined by the boundary conditions 
that Td(z=0) = T0 and Td(z=L) = Tu(z=L) , where L is 
the length of the well. The first condition is the given 
temperature at the inlet, and the second condition 
says that the temperature at the base of the well is the 
same in the annulus and the inner tube. The coeffi-
cients D

1
 and D

2
 become

where

The two coefficients c1 and c2 are

Appendix C: The Ramey solution

It is straightforward to show that the temperature 
solution (21) for the coaxial borehole heat exchanger 
becomes the Ramey solution (Ramey 1962) for the 
limit where the insulation goes to zero, which implies 
that Kw → 0 . In this limit, the eigenvalues approach 
�1 → −Kw and �

2
→ Kr . Furthermore, c1 → 0 and 

v0c2 → 1 , and the temperature in the annulus becomes

which is Ramey’s solution (Ramey 1962), where 
A = 1∕�2.

(25)D1 =
H1 exp(−�2L) + v0H2

v0 exp(−�1L) − exp(−�2L)

(26)D2 =
H1 exp(−�1L) − H2

v0 exp(−�1L) − exp(−�2L)
.

(27)H1 = T0 + c1

(
a

�1

− b

)
+ v0c2

(
a

�2

− b

)

(28)H2 = −c1

(
aL −

a

�1

+ b

)
+ c2

(
aL −

a

�2

+ b

)

(29)c1 =
Kr

(1 − v2
0
)�1

and c2 =
v0Kr

(1 − v2
0
)�2

.

(30)
Td(z) ≈ az − aA + b +

(
T0 + aA − b

)
exp(−z∕A)
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Appendix D: Multi‑segment solution

The temperature solution  (21) along segment k 
for a multi-segment solution can be written on the 
form (12) and (13) where

and where

The index k is the segment number and, for example, 
�k,1 and �k,2 are the two eigenvalues for segment k. 
The same applies for the parameter v0,k , the geother-
mal gradient ak and the temperature bk at z = 0 , which 
also are for segment k. The z-coordinate is now rela-
tive to the segment, where z = 0 is the top of the seg-
ment, z = Lk is the base of the segment, and Lk is the 
length of segment k.

Appendix E: A finite difference solution

The coupled system of two Eq.  (19) can be solved 
with an upstream finite difference method  (Smith 
1986). The well of length L is represented by N nodes 
separated by the same distance dz = L∕(N − 1) . The 
two Eqs. (19) are written with upstream finite differ-
ences for node i as

where Ti is the temperature in the annulus at node 
i and Ui is the temperature in the inner tube at 
node i. The coefficients are a = −dz ⋅ (Kw + Kr) , 

(31)ek(z) = exp(−�k,1z)

(32)fk(z) = v0,k exp(−�k,2z)

(33)gk(z) = v0,k exp(−�k,1z)

(34)hk(z) = exp(−�k,2z),

(35)

pk(z) = ck,1

(
akz −

ak

�k,1

+ bk

)
+ v0,kck,2

(
akz −

ak

�k,2

+ bk

)

(36)

qk(z) = v0,kck,1

(
akz −

ak

�k,1

+ bk

)
+ ck,2

(
akz −

ak

�k,2

+ bk

)
.

(37)Ti+1 − Ti + aTi − bUi + Tr(zi) = 0

(38)Ui+1 − Ui − bTi+1 + bUi+1 = 0

b = −dz ⋅ Kw and c = dz ⋅ Kr . The resulting linear 
equation system becomes M x = b , where

and where the unknown x is the vector 
xT = [U0, T1,U1,… , TN−1,UN−1] , and the right-hand 
side is bT = [(1 + a)T0 + cTr,0, 0, cTr,1, 0,… , cTr,N−1] . 
Notice that the number of unknowns is 2N − 1 
because the inlet temperature at node 0 is known, and 
it is therefore moved to the right-hand-side. The last 
line in the matrix M states that the temperature is the 
same at the base of the well in the inner tube and the 
annulus, TN−1 = UN−1 . The linear equation system is 
solved with a Gauss band solver since M is a band 
matrix with three bands. The numerical simulations 
used N = 200 nodes.
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