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REVIEW ARTICLE

Ergonomics

Measuring cognitive workload in the nuclear control room: a review

Per Øivind Braarud 

Institute for Energy Technology/OECD, NEA Halden Human Technology-Organisation (HTO) Project, Halden, Norway

ABSTRACT
Despite the substantial literature and human factors guidance, evaluators report challenges in 
selecting cognitive workload measures for the evaluation of complex human–technology systems. 
A review of 32 articles found that self-report measures and secondary tasks were systematically 
sensitive to human–system interface conditions and correlated with physiological measures. 
Therefore, including a self-report measure of cognitive workload is recommended when evaluating 
human–system interfaces. Physiological measures were mainly used in method studies, and future 
research must demonstrate the utility of these measures for human–system evaluation in complex 
work settings. However, indexes of physiological measures showed promise for cognitive workload 
assessment. The review revealed a limited focus on the measurement of excessive cognitive 
workload, although this is a key topic in nuclear process control. To support human–system 
evaluation of adequate cognitive workload, future research on behavioural measures may be useful 
in the identification and analysis of underload and overload.

PRACTITIONER SUMMARY
This review provides background for the selection of cognitive workload measures for the 
evaluation of complex human–technology systems and identifies future research needs for applied 
cognitive workload assessment.

1.  Introduction

The nuclear industry provides roughly 10% of the 
global electricity generation (World Nuclear Association 
2022). The control room team plays a vital role in 
maintaining production, preventing abnormalities, and 
mitigating potential accidents. High workload is a cen-
tral topic given the operators’ task of interpreting a 
substantial amount of complex information and, if 
required, performing critical time-pressured decisions 
(Woods 1988; Vicente 1999; Ha et  al. 2006; Kim, Kim, 
and Jung 2014; Chen, Yan, and Tran 2019). However, 
despite the available guidance (O’Hara et  al. 2012; 
Reinerman-Jones et  al. 2015; ISO 2016) and substantial 
research over the last decades (Moray 1988; Young 
et  al. 2015; Charles and Nixon 2019), practitioners of 
human factors engineering report challenges in select-
ing cognitive workload measures and interpreting the 
results of these measures (Pickup, Wilson, and Lowe 
2010; Young et  al. 2015; OECD NEA 2017; Braarud and 
Pignoni 2022).

Nuclear control room operators supervise a large 
industrial system characterised by interactive complex-
ity and tight coupling (Perrow 1984). A wide array of 
displays and panels are commonly used to oversee and 
control the process. Given the requirement for reliable 
and safe production, control room work is guided by 
operating procedures, communication guidelines, and 
teamwork guidelines. Concurrent with applying operat-
ing procedures, operators monitor the state of the sys-
tem and anticipate upcoming challenges (Jimmieson 
and Terry 1999). Consequently, operators may have 
several simultaneous technical tasks and teamwork 
activities. Task management activities such as task 
switching, shedding, and prioritisation are frequently 
needed (Wickens et  al. 2012; Neerincx 2003; Megaw 
2005). The choice of operational strategy may create 
additional or reduced task loads depending on how 
well the strategy fits the situation (Braarud and 
Johansson 2010). Investing effort in plant management 
and the anticipation of challenges may lead to actions 
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that reduce the future task load, whereas misplaced 
actions may add problems, causing additional task 
load. Although the overall workload is within operator 
limits, peak workload during certain phases of work 
may exceed the operator’s capacity and negatively 
impact performance (Xie and Salvendy 2000; Gao et  al. 
2013; Hancock 2017). Given extensive simulator train-
ing, the cognitive processing of many generic tasks is 
substantially automated (Shiffrin and Schneider 1977; 
Ackerman 1987). Furthermore, operator training 
includes the management of high task loads. 
Consequently, control room teams can frequently 
maintain a given performance level even in highly 
demanding situations (Bittner 1992; Hockey 1997).

Reducing cognitive workload and maintaining spare 
capacity in emergencies or stressful situations are the 
common goals of system design (Vidulich 2000; Wickens 
2000; Vidulich and Tsang 2015). Human–system interface 
(HSI) topics that are frequently related to cognitive work-
load include the design of alarm systems (Brown, O’Hara, 
and Higgins 2000; Huang et  al. 2006), computer displays 
(Hwang et  al. 2009; Hsieh, Chiu, and Hwang 2014), com-
puterised procedures, and automation (Xu et  al. 2008; 
Lin, Yenn, and Yang 2010). Human Factors validation 
requires evidence that control room design supports 
adequate task management and operators safely operate 
the plant within an acceptable workload envelope 
(O’Hara et  al. 2012; ISO 2017; Simonsen and Osvalder 
2018). Validation commonly requires utilising highly 
demanding scenarios that are performed in control room 
simulators. Furthermore, cognitive workload is assessed 
to understand the human performance challenges of the 
design to gain insights beyond the information provided 
by the primary task outcome (Parasuraman, Sheridan, 
and Wickens 2008; Vidulich and Tsang 2015) and evalu-
ate whether the performance observed during testing 
can be generalised to actual plant operation (De Waard 
and Evans 2014).

1.1.  Workload measures

Cognitive workload measures are commonly classified 
as self-reported, task performance, or physiological 
(O’Donnell and Eggemeier 1986; Lysaght et  al. 1989; 
Young et  al. 2015; Longo et  al. 2022). One can also 
add the class behavioural measures (Parasuraman 
2003; Chen et al. 2012; Durantin et al. 2014). Self-report 
measures require participants to quantify their experi-
ence of workload (Tsang and Vidulich 2006). This type 
of measure is popular given its ease of use and the 
limited resources needed for implementation (Reid 
and Nygren 1988). The most popular self-report mea-
sure by far is the NASA Task Load Index (NASA-TLX; 

Hart and Staveland 1988; Hart 2006; Grier 2015). 
Self-report measures are frequently collected post- 
session, i.e. after the scenario or tasks are completed, 
but can also be applied during task performance 
(Jordan 1992; Endsley et  al. 1998; Carswell et  al. 2010). 
A proposed advantage of self-report techniques is that 
the operator is aware of the increased cognitive effort 
that does not necessarily manifest itself in observable 
performance (Muckler and Seven 1992; Annett 2002). 
Self-report measures are believed to reflect the num-
ber of concurrent tasks and the conscious effort 
invested by the operators (Gopher and Donchin 1986; 
O’Donnell and Eggemeier 1986; Yeh and Wickens 1988; 
Tsang and Vidulich 2006; Cain 2007).

Primary task methods use operator performance as 
a cognitive workload measure (Tsang and Vidulich 
2006). As task demand increases, primary task perfor-
mance is expected to deteriorate given limited cogni-
tive resources (Yeh and Wickens 1988). However, in 
complex settings, factors other than cognitive work-
load may strongly influence primary task performance 
(Gopher and Donchin 1986; Hancock and Matthews 
2019). Secondary tasks measure the remaining opera-
tor capacity while primary tasks are performed (Mulder, 
1979; Tsang and Vidulich 2006). Commonly used sec-
ondary tasks are choice reaction time, time estimation, 
or memory-search tasks (Wickens et  al. 2012).

Physiological approaches measure cognitive work-
load processes through their effect on the body’s state 
and physiological processes. Electroencephalogram 
(EEG) techniques measure the electrical activity of the 
brain through sensors placed on the scalp. Measures 
focus on the frequency domain and are commonly 
decomposed into bandwidths (Farmer and Brownson 
2003; Charles and Nixon 2019). Electrocardiography 
(ECG) techniques measure the heart’s electrical activity 
using sensors attached to the chest and limbs. 
Measurements include the number of heartbeats (per 
unit of time), the inter-beat interval, heartbeat variabil-
ity, and frequency-based measures. A head-mounted or 
remote eye tracker is most often used to measure eye 
behaviour. Measures include pupil diameter, blink rate, 
blink duration, and aspects of fixation and saccadic 
behaviour (Charles and Nixon 2019). An advantage of 
eye tracker data is that the camera provides the opera-
tor’s focus area or ‘area of interest’. Other physiological 
measures include respiration rate (Veltman and Gaillard 
1998), skin conductance (Or and Duffy 2007; Miyake 
et  al. 2009), and haemodynamic methods that focus on 
the oxygenation and deoxygenation of the brain’s 
bloodstream (Causse et al. 2017; McKendrick et al. 2019). 
A main advantage of physiological measures is their 
ability to generate continuous data (Cain 2007).
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Behavioural measures utilise features of operator 
behaviour. The literature includes broad use of the term. 
The behavioural basis might range from cursor move-
ments and interface navigation to primary task perfor-
mance such as response time, accuracy, and task errors 
(Annett 2002; Parasuraman 2003; Durantin et  al. 2014). 
For the purpose of this review, we will use the term 
somewhat less broadly than many authors by excluding 
primary and secondary task measures (Khawaja, Chen, 
and Marcus 2012; Chen et al. 2012; Braarud and Pignoni 
2023). A premise for behavioural measures is that 
observable overt behaviour may indicate cognitive 
effort to handle task demand, and that operators adapt 
their behaviour to manage cognitive workload (Hockey 
1997;  Hancock and Warm, 1989; De Waard and Evans 
2014; Hancock and Matthews 2019). For example, the 
increased cognitive effort to maintain task performance 
may be manifested as coping strategies, patterns of 
interface navigation, information gathering, alarm man-
agement, and patterns of team communication and 
cooperation (Hockey 1997; Hancock and Matthews 
2019; Braarud and Pignoni 2023).

Sensitivity, a fundamental measurement criterion, 
refers to whether the measure discriminates between 
distinct levels of cognitive workload (O’Donnell and 
Eggemeier 1986; Wickens et  al. 2012). An additional 
important criterion for complex dynamic work is reso-
lution or granularity (Muckler and Seven 1992; Chen 
et  al. 2012; Chuang et  al. 2016). Depending on the 
purpose of the evaluation, the measurement should 
be able to provide granularity with regard to work 
phases or task steps.

1.2.  Review purpose

Despite human factors guidance and the substantial 
literature on cognitive workload assessment, research-
ers, and evaluators of human–technology systems 
report challenges in selecting and specifying measures. 
This review supports the specifications of cognitive 
workload measurement by reviewing the sensitivity of 
measures to HSI conditions. Furthermore, the review 
provides an overview of nuclear domain research on 
cognitive workload methods, evaluates the utility of 
these methods in the evaluation of HSIs and control 
room work, and identifies future research needs.

2.  Method

The review is based on the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses guidelines (Moher 
et  al. 2009). Figure 1 illustrates the steps that were 
involved in the identification and selection of records. 

The search terms (‘mental workload’ OR ‘cognitive work-
load’) AND (‘nuclear’) AND (‘control room’ OR ‘operator’) 
were applied to a full-text search of the Science Direct, 
PubMed Central, IEEE, and Web of Science repositories. 
Articles were included if they were published in 
peer-reviewed journals in English between 1990 and 
2020. No ethical approval was needed since this review 
utilised published peer-reviewed articles only. The search 
identified 481 records. In total, 404 records were initially 
excluded because, for example, the empirical work 
reported on domains other than nuclear or the empirical 
work reported did not include cognitive workload, e.g. 
articles that mentioned operator cognitive workload and 
the nuclear domain only in the Introduction or Discussion. 
Following this selection, 77 articles were reviewed in full, 
and 45 were excluded because the full review did not 
identify a workload measure that was applied, simulation 
occurred without the involvement of human participants, 
or the work was purely analytical. Thus, 32 articles were 
ultimately included for analysis.

The analysis of the 32 articles included recording 
the cognitive workload measure(s) applied, the pur-
pose of the study, the category of participants, the 
type of simulation involved, the type of tasks and/or 
scenarios, and the performance measure(s) applied. 
The study’s purpose was classified as either the evalu-
ation of human–machine interface conditions or the 
investigation of cognitive workload methods.

The performance measures applied varied substan-
tially across the studies. For example, performance mea-
sures that were related to cognitive workload included 
choosing the wrong object or selecting the wrong com-
mand of the procedure step (Choi et  al. 2018), the ratio 
of procedure steps that failed to be finished (Jou et  al. 
2009; Gao et  al. 2013), the alarm detection rate (Lin 
et  al. 2017), and the time needed for judgement (Wu 
et  al. 2016). Although each article’s measures may have 
been useful for their purposes, the variety of perfor-
mance measures made it difficult to evaluate workload 
measures based on their relationship with performance 
across the articles. Consequently, the review was limited 
to mainly investigating the sensitivity of the workload 
measures to the factors (e.g. independent variables) 
that were examined by the given article. In addition, 
correlations between measures were noted if they were 
reported in the article.

3.  Results and discussion

3.1.  Overview of reviewed papers

The articles covered a total of 11 types of workload 
measures. The study settings ranged from individual 
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students performing procedure steps in simplified 
compact simulations to licenced teams of operators 
performing demanding accident scenarios in full-scope 
training simulators. Table 1 provides an overview of 
the types of measures applied in the articles. A 
self-report measure alone was the most frequently 
applied measure (seven articles), followed by a combi-
nation of self-report and secondary task measures (five 
articles). Only four studies did not include a self-report 
measure. Nine studies included a measure of heart-
beats (ECG), eight studies included a secondary task, 
seven studies utilised operator behaviour, six studies 
utilised eye behaviour, four studies included measure-
ments of brain wave frequency (EEG), and two studies 
included primary task performance as measures of 
workload. Finally, four studies included measurements 
of haemodynamic processes, speech, skin temperature, 
or respiration.

Eighteen of the 32 articles addressed the develop-
ment and empirical evaluation of workload measures. 
The remaining 14 articles utilised workload measures in 
the evaluation of HSIs. Table 2 provides an overview of 
the topics of the articles that were related to cognitive 
workload measurement. Alarm systems were the most 
frequently studied HSI topic.

Ten articles used teams of licenced nuclear control 
room operators in full-scale simulators (Braarud 2020; 
Braarud et  al. 2020; Chuang et  al. 2016; Chung, Yoon, 
and Min 2009; Gan et  al. 2020; Kim, Kim, and Jung 
2014; Lau et  al. 2008; Lin et  al. 2017; Park et  al. 2017; 
Park, Jung, and Kim 2020). The majority (22) of the 
articles used student participants in compact simula-
tors. In four of these studies, the participating stu-
dents were organised in teams consisting of control 
room roles (Hwang et  al. 2009; Lin, Hsieh, and Lin 
2013; Reinerman-Jones, Matthews, and Mercado 
2016; Yang et  al. 2012). The remaining 18 articles 
described individual students (Al Harbi et  al. 2013; 
Chen, Yan, and Tran 2019; Choi et  al. 2018; Gao et  al. 
2013; Ha et  al. 2006; Hsieh et  al. 2012; Hsieh, Chiu, 
and Hwang 2014; Hsieh, Chiu, and Hwang 2015; 
Huang et  al. 2006; Hwang, Lin, et  al. 2008; Hwang, 
Yau, et  al. 2008; Jou et  al. 2009; Lin, Yenn, and Yang 
2010; Reinerman et  al. 2020; Wu et  al. 2016; Wu et  al. 
2020; Xu et  al. 2008; Yan et  al. 2017). In most cases, 
the students were engineering students; some of 
these students were nuclear engineering students. 
Whereas studies that described operators utilised 
scenarios, studies of students commonly investigated 
the performance of a given operating procedure. The 

Figure 1. S teps of the literature review.
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studies of students included training on the simula-
tion and information on the specific operating pro-
cedures under investigation.

3.2.  Self-report workload measures

Twenty-four of the 28 articles that addressed self-report 
measures applied the NASA-TLX (Hart and Staveland 
1988). In one of these articles, Ha et  al. (2006) applied 
the Modified Cooper Harper (MCH) scale (Wierwille 
and Casali 1983) and the NASA-TLX. Braarud et  al. 
(2020) applied an additional self-report measure devel-
oped specifically for the study. Two additional articles 
used the MCH scale (Park et  al. 2017; Park, Jung, and 
Kim2020) and Lau et  al. (2008) used the Halden Task 
Complexity Questionnaire (Braarud 2000). Reinerman 
et al. (2020) applied the Multiple Resource Questionnaire 
(Boles and Adair 2001) and the Instantaneous 
Self-Assessment of Workload technique (Jordan 1992). 
Regarding HSI studies, Hsieh et  al. (2012) reported sig-
nificantly lower NASA-TLX when an alarm procedure 
support system was available compared with no sup-
port. NASA-TLX ratings were also significantly lower 
with pre-alarm support compared with no pre-alarm 
support (Hwang, Lin, et  al. 2008; Lin et  al. 2017). These 
results corresponded with the reported significant sen-
sitivity of a secondary task. However, Wu et  al. (2016) 
found no significant effect on the NASA-TLX of bar 

versus tile alarm presentation, and Huang et  al. (2006) 
reported no significant effect of manual versus auto-
matic alarm reset. Yang et  al. (2012) observed that 
supervisors rated the NASA-TLX workload significantly 
lower when they used computerised procedures com-
pared with paper-based procedures. A similar signifi-
cant effect was found for a secondary task. By 
evaluating display design, Hsieh, Chiu, and Hwang 
(2015) found a significant effect of the quantity of dis-
play information on the NASA-TLX. A similar significant 
effect was found for a secondary task. Yan et  al. (2017) 
reported lower NASA-TLX scores for displays based on 
human factors engineering principles compared with 
the original design. However, two studies that com-
pared displays based on ecological design principles 
with traditional displays did not find significant main 
effects on self-reported workload (Hsieh, Chiu, and 
Hwang 2014; Lau et  al. 2008). A hypothetical explana-
tion of this finding is that studies that manipulated 
the presentation format did not affect participants’ 
deliberate cognitive effort to the same extent as those 
that manipulated task content. Several studies reported 
significantly lower self-reported workloads for higher 
levels of automation than for lower levels of automa-
tion (Hsieh, Chiu, and Hwang 2014; Jou et  al. 2009; 
Lin, Yenn, and Yang 2010). Lin, Yenn, and Yang (2010) 
reported corresponding effects on a secondary task, 
whereas Jou et  al. (2009) reported no significant effect 

Table 1.  Type of cognitive workload measure applied by the articles.

Self-report
Primary 

task
Secondary 

Task Behavioural EEG Eye ECG Skin Speech Respiration
Hemo 

dynamic Reference Number

 Braarud 2020; Hsieh et  al. 2012; Hsieh, 
Chiu, and Hwang 2014; Huang 
et  al. 2006; Lau et  al. 2008; X. Wu 
et  al. 2016; Xu et  al. 2008

7

  Hsieh, Chiu, and Hwang 2015; Hwang, 
Lin, et  al. 2008; Lin, Yenn, and Yang 
2010;  Lin, Hsieh, and Lin 2013; 
Yang et  al. 2012

5

  Ha et  al. 2006; Wu et  al. 2020; Yan 
et  al. 2017

3

  Chuang et  al. 2016; Park et  al. 2017; 
Park, Jung, and Kim 2020;

3

 Chung, Yoon, and Min 2009; Kim, Kim, 
and Jung 2014

2

   Chen, Yan, and Tran 2019 1
   Gao et  al. 2013 1
    Hwang, Yau, et  al. 2008 1

   Gan et  al. 2020 1
  Hwang et  al. 2009 1
    Jou et  al. 2009 1
   Lin et  al. 2017 1
    Reinerman-Jones, Matthews, and 

Mercado 2016
1

   Reinerman et  al. 2020 1
   Braarud et  al. 2020 1
  Choi et  al. 2018 1

   Al Harbi et  al. 2013 1
28 2 8 7 4 6 9 1 1 1 1 Number of articles 32
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of the automation level on a secondary task. Braarud 
(2020) provided an example of the cognitive workload 
evaluation of an integrated control room; by compar-
ing the operator’s workload rating of the modernised 
control room to the rating of the old control room, the 
author reported a significant and relatively large effect 
on NASA-TLX mental demand.

Studies that assessed competence and experience 
levels found that self-reported workload was signifi-
cantly lower for experienced participants compared 
with less experienced participants (Park et  al. 2017; 
Park, Jung, and Kim 2020; Wu et  al. 2020). Xu et  al. 
(2008) reported that participants rated NASA-TLX sig-
nificantly lower after 15 trials with an operating pro-
cedure than after the first five trials. Regarding staffing, 
Lin, Hsieh, and Lin (2013) found that the cognitive 
workload of a one-person team was significantly 
higher than that of a two-person team. A similar 
effect was observed for a secondary task. Yang et  al. 
(2012) found that people in different positions within 
a team, i.e. supervisor, reactor operator, and assistant 
reactor operator, rated NASA-TLX significantly differ-
ently, whereas Hwang, Lin, et  al. (2008) observed no 
significant effect of the operator role on a two-person 
team. However, both studies reported a significant 
effect of position on a secondary task. The sensitivity 
of self-report measures to team position has been 
supported by other studies (Hill et  al. 1989; 
Braarud  2021).

Five HSI studies analysed the effect of tasks or sce-
narios. Four studies reported significant effects (Hwang, 
Lin, et al. 2008; Lau et al. 2008; Hsieh, Chiu, and Hwang 
2015; Lin et  al. 2017), whereas one study (Hsieh, Chiu, 

and Hwang 2014) reported that the NASA-TLX was not 
significantly sensitive. Most method studies investi-
gated the effect of task or scenario complexity and 
found that self-reported workload measures were sen-
sitive to levels of task or scenario complexity (Ha et  al. 
2006; Gao et  al. 2013; Chuang et  al.2016; 
Reinerman-Jones, Matthews, and Mercado 2016; 
Braarud 2020). For example, Ha et  al. (2006) utilised 
eight accident diagnosis tasks of substantially varying 
demand and reported correlations of r = .89 and r = 
.91 between the task demand and NASA-TLX and 
MCH, respectively. Braarud (2020) reported that sce-
narios that ranged from procedure-guided operation 
to challenging knowledge-based tasks explained 26.3% 
of the variance in operator TLX mental demand. In the 
method studies, the reported effects on self-reported 
cognitive workload frequently co-occurred with the 
same direction effects on other types of workload 
measures. For example, Choi et  al. (2018) reported a 
correlation of .84 for the NASA-TLX and an EEG-based 
index, Chent et al.  (2019) reported a correlation of .46 
between pupil size and TLX, and Ha et  al. (2006) 
reported significant correlations between TLX or MCH 
and several ocular measures that ranged from .66 to 
.93. The reported sensitivity to task and scenario com-
plexity corresponds with a recent review of the 
NASA-TLX (Hertzum 2021) and studies in aviation 
(Vidulich and Tsang, 1986; Battiste and Bortolussi 1988; 
Corwin et  al. 1989).

The results reported for the frequently applied 
NASA-TLX plausibly extend to other self-report mea-
sures. For example, Ha et  al. (2006) reported a signifi-
cant correlation of .89 between NASA-TLX and MCH. 
Braarud et  al. (2020) reported a significant correlation 
of .55 between the NASA-TLX and a study-specific 
self-report measure for control room work. 
Correspondingly, studies in other domains report high 
correspondence between self-report measures such as 
NASA-TLX, MCH, and SWAT (Vidulich and Tsang 1986; 
Hill et  al. 1992; Rubio et  al. 2004).

3.3.  Task measures

3.3.1.  Primary task measures
Whereas most articles included measurements of pri-
mary task performance, two articles utilised primary task 
performance as a workload measure. In their method 
study, Chen, Yan, and Tran (2019) reported that time 
spent on a task correlated negatively with the blink rate 
(r = −.54) and that the error rate correlated positively 
with the fixation rate (r = .45). Jou et  al. (2009) reported 
that for the task of rector shutdown, participants were in 

Table 2. O verview of the articles’ topic.
Topic Reference Number

Alarms, attention 
support

Hsieh et  al. 2012; Huang et  al. 2006; 
Hwang, Lin, et  al. 2008; Lin et  al. 
2017; Wu et  al. 2016

5

Computerised 
procedures

Hsieh, Chiu, and Hwang 2015; Xu et  al. 
2008; Yang et  al. 2012

3

Displays/System 
control

Hsieh, Chiu, and Hwang 2014; Lau 
et  al. 2008; Yan et  al. 2017

3

Automation Jou et  al. 2009; C.J. Lin, Yenn, and Yang 
2010

2

Soft controls Al Harbi et  al. 2013 1
Cognitive workload 

method
Braarud 2020; Braarud et  al. 2020; 

Chen, Yan, and Tran 2019; Choi et  al. 
2018; Chuang et  al. 2016; Chung, 
Yoon, and Min 2009; Gan et  al. 
2020; Gao et  al. 2013; Ha et  al. 
2006; Hwang, Yau, et  al. 2008; 
Hwang et  al. 2009; Kim, Kim, and 
Jung 2014; Lin, Hsieh, and Lin 2013; 
Park et  al. 2017; Park, Jung, and Kim 
2020; Reinerman-Jones, Matthews, 
and Mercado 2016; Reinerman et  al. 
2020; Wu et  al. 2020

18
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the low automation condition for a significantly longer 
time compared with the high automation condition. 
Although extensively used in highly controlled settings 
(O’Donnell and Eggemeier 1986), the limited application 
of primary task workload measures may reflect that in 
process control, many factors in addition to cognitive 
workload influence primary task performance (O’Hara 
et  al. 2012; Wu and Li 2013). Furthermore, the definition 
of primary tasks, i.e. time spent on an operating proce-
dure step or an error in such as step, may not be con-
sidered primary task performance according to the 
functional goals of supervising and controlling a nuclear 
power plant (O’Hara et  al. 2012).

3.3.2.  Secondary task measures
Secondary measures were mainly applied for HSI eval-
uation and were not investigated by method studies. 
The majority of studies that investigated secondary 
tasks utilised randomly presented visual choice reac-
tion time tasks (Lysaght et  al. 1989) such as deciding 
between single versus double dots or on a dot colour, 
or comparing integers (Hsieh, Chiu, and Hwang 2015; 
Lin, Yenn, and Yang 2010; Lin, Hsieh, and Lin 2013; 
Hwang, Lin, et  al. 2008; Lin et  al. 2017). The recorded 
performance included ratios of hits, misses false alarms, 
correct rejections, and response time. Two articles 
investigated mental arithmetic tasks (Yang et  al. 2012; 
Hwang, Yau, et  al. 2008).

All of the articles that applied secondary measures 
also applied a self-report measure. Therefore, the main 
portion of the results is included in the section above 
that addresses self-report measures (Hwang, Lin, et  al. 
2008; Lin et  al. 2017; Yang et  al. 2012; Hsieh, Chiu, and 
Hwang 2015; Lin, Yenn, and Yang 2010) and is not 
repeated here. In summary, secondary tasks were sensi-
tive to similar HSI conditions as described for the 
self-report measures, including alarm system design 
(Hwang, Lin, et  al. 2008; Lin et  al. 2017), computerised 
procedures (Yang et  al. 2012), display design related to 
information quantity and design principles (Hsieh, Chiu, 
and Hwang 2015; Yan et  al. 2017), level of automation 
(Hsieh, Chiu, and Hwang 2014; Jou et  al. 2009; Lin, Yenn, 
and Yang 2010), and staffing and team composition (Lin, 
Hsieh, and Lin 2013; Yang et  al. 2012; Hwang, Lin, et  al. 
2008). The results correspond with findings on automa-
tion levels, equipment design, and operator support 
within aviation and air-traffic management (Slocum, 
Williges, and Roscoe 1971; Perry, Segall, and Kaber 2005; 
Helmke et  al. 2016), and scenarios (Bortolussi, Kantowitz, 
and Hart 1986; Bortolussi, Hart, and Shively 1987). 
However, the results for secondary tasks may also depend 
on the performance characteristics used. For example, 

Lin, Yenn, and Yang (2010) found no significant effect of 
the level of automation on the correctness of the sec-
ondary task response; however, the secondary task 
response time was significantly affected.

3.4.  Behavioural measures

Seven methodological articles investigated cognitive 
workload measures that can be labelled ‘behavioural’. 
Park et  al. (2017) reported a significantly higher number 
of team interface management tasks in complex acci-
dent scenarios than in less complex scenarios, and Park, 
Jung, and Kim (2020) reported a significant correlation 
between self-reported workload (i.e. using the MCH) 
and the number of interface management tasks in acci-
dent scenarios. Braarud et  al. (2020) observed that inter-
face management tasks predicted the operators’ 
cognitive workload for two-minute segments of scenar-
ios with an accuracy of .61. The operator’s acknowl-
edgement of alarms was an important feature for 
predicting the operator’s cognitive workload. Kim, Kim, 
and Jung (2014) reported descriptive results that sup-
ported a substantial difference in the frequency of 
interface management tasks between control room 
positions. These results correspond with research in 
other domains that reports correlations between cogni-
tive workload and interface management activities 
(Chen et  al. 2012; Arshad, Wang, and Chen 2013; Lin, 
Hsieh, and Lin 2013; Tobaruela et  al. 2014; Pimenta 
et  al. 2016). However, behavioural methods extend 
beyond the classification of interface activity. In addi-
tion to reporting on interface management, Kim, Kim, 
and Jung (2014) observed that the frequencies of cog-
nitive and communicative activities were higher for 
supervisors than for those in other control room posi-
tions. Chung, Yoon, and Min (2009) recorded the fre-
quency of teams’ communication threads and proposed 
that the number of simultaneous threads, type of mes-
sage, and timing, e.g. delayed response, could be work-
load indicators. Chuang et  al. (2016) related approach 
classified operator behaviour according to Rasmussen’s 
(1986) skill-, rule-, and knowledge-based categories. The 
author found that the two ratios that involved rule- and 
knowledge-based behaviour over total behaviour were 
correlated with the NASA-TLX (r = .51 and r = .56, 
respectively). Finally, Gan et  al. (2020) estimated work-
load scores for operator activities (McCracken and 
Aldrich 1984) based on video recordings of operator 
performance. The authors reported significant correla-
tions between behavioural-based estimates and heart 
rate variability (rho = −.42) and breathing wave ampli-
tude (rho = −.46).
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3.5.  Physiological measures

3.5.1.  Electroencephalogram
Four studies utilised EEG measures. Three of these were 
method studies, whereas one article evaluated soft 
controls. Al Harbi et  al. (2013) reported that the beta 
power ratio was higher when soft versus hard controls 
were used; however, the difference was not statistically 
significant. The increased beta power ratio was assumed 
to represent increased alertness. Reinerman-Jones, 
Matthews, and Mercado (2016) observed that theta, 
beta, and gamma were sensitive to the type of task, 
suggesting a higher cognitive workload for checking 
and response implementation tasks than for detection 
tasks. However, participants’ NASA-TLX rating was sig-
nificantly higher for detection tasks than for checking 
and response implementation, suggesting some uncer-
tainty about the interpretation of the sensitivity of EEG 
measures. A decrease in alpha band power and an 
increase in frontal theta have generally been related to 
increased task demand, and several EEG measures have 
been reported to be sensitive to different tasks 
(Borghini et  al. 2014; Charles and Nixon 2019). A plau-
sible interpretation is that the HSI controls and types of 
tasks studied did not represent sufficient variation in 
task demand to elicit the expected effects on the EEG 
measures applied. Studies have also found patterns in 
EEG results in the repetition of tasks. Reinerman et  al. 
(2020) reported examples of individual participants’ lin-
ear, quadratic, and cubic effects across 27 sessions for 
alpha, beta, and theta waves. Finally, Choi et  al. (2018) 
utilised alpha, beta, theta, and gamma powers in their 
development of an EEG-based workload index and 
reported a correlation of .84 between the index and 
the NASA-TLX. This article is further described in Section 
3.6 on indexes.

3.5.2.  Ocular measures
Six studies utilised ocular measures. Five of these were 
method studies, whereas one article evaluated system 
displays (Yan et  al. 2017). Yan et  al. (2017) reported a 
significantly lower blink rate, higher fixation duration, 
and higher fixation rate for an original design com-
pared with a human factors-designed interface. Pupil 
dilation did not differ significantly. Furthermore, 
NASA-TLX scores were significantly higher for the orig-
inal interface compared with the redesigned interface 
– a workload indication corresponding with the ocular 
measures. The methodological studies found that the 
blink rate decreased with increased self-reported work-
load (Ha et  al. 2006; Chen, Yan, and Tran 2019; Wu 
et  al. 2020). Wu et  al. observed that non-experts 
showed a significantly lower blink rate than experts, 

providing additional evidence that a lower blink rate 
indicates a higher cognitive workload. The results cor-
respond with the literature, which reports a decreased 
blink rate due to increased visual demand (Charles and 
Nixon 2019). However, Gao et  al. (2013) reported 
opposing results, in which a higher blink rate was 
related to an increased task load. Ha et  al. (2006) 
observed that an increased task load was strongly 
associated with an increased number of fixations and 
an increased fixation. The authors further reported sig-
nificant positive correlations between the number of 
fixations and self-reported workload and between fix-
ation duration and self-reported workload. In contrast, 
fixation duration in aviation has been reported to 
decrease with increasing task load during flights (De 
Rivecourt et  al. 2008). These conflicting findings illus-
trate the challenges of interpreting fixation results 
across tasks and domains. The increased fixation dura-
tion of the nuclear control room tasks may indicate 
increasing difficulty in interpreting the information 
presented, whereas the decreased fixation duration of 
an increased task load in flights may indicate that 
more information must be addressed more frequently, 
thereby leading to a decreased fixation duration. 
Furthermore, Wu et  al. (2020) reported a significant 
positive correlation between fixation rate and 
self-reported workload for experts, and Chen, Yan, and 
Tran (2019) found that neither fixation duration nor 
fixation rate correlated significantly with self-reported 
workload. Chen, Yan, and Tran (2019) and Wu et  al. 
(2020) reported a non-significant increase in pupil size 
was related to increased self-reported workload. In 
addition, Gao et  al. (2013) reported a trend of larger 
pupil size for high scenario complexity compared with 
low scenario complexity. Pupil dilation appears to be a 
stable physiological feature; this corresponds with the 
literature (Charles and Nixon 2019); however, the inter-
pretation fixations may depend on the task context. 
One study (Hwang, Yau, et  al. 2008) included ocular 
measures in its development of performance models 
but did not specifically report results for each ocular 
measure. The model results are included in Section 3.6 
on workload indexes.

3.5.3.  Electrocardiographic activity
Nine studies utilised various ECG measures for the 
assessment of cognitive workload. Six of the nine arti-
cles addressed workload method development, 
whereas three articles reported studies of HSI. Al Harbi 
et  al. (2013) reported that high-frequency parasympa-
thetic activity was lower for soft controls (indicating a 
higher workload) than for hard controls, although the 
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result was not statistically significant. The remaining 
two studies that evaluated human–system factors 
observed no significant effects on the average heart 
rate of scenarios, level of automation (Jou et  al. 2009), 
or pre-alarm support (Lin et  al. 2017). As suggested in 
the literature, the lack of sensitivity may result from 
the fact that differences in task demand between HSI 
conditions must be high to be reflected in cardiac 
activity, especially for heart rate variability (HRV; 
Mulder et  al. 2000; Charles and Nixon 2019). However, 
the conditions studied by Jou et  al. (2009) and Lin 
et  al. (2017) differed sufficiently to reveal an effect on 
the operators’ NASA-TLX rating.

In the articles that addressed workload method, 
the studies revealed significant effects on heart rate 
and HRV from task step demand (Gan et  al. 2020), 
scenario complexity (Gao et  al. 2013), and type of 
task (Reinerman-Jones, Matthews, and Mercado 2016). 
Gan et  al. (2020) showed that heart rate and HRV 
were related to analytically estimated task demand 
(McCracken and Aldrich 1984) across an accident sce-
nario of 120 task steps divided among four team 
members (rho = .40 and rho = −0.42, respectively). 
Gao et  al. (2013) reported higher HRV for a complex 
scenario than for a non-complex scenario; this 
co-occurred with an increased blink rate. The finding 
of increased HRV is contrary to the general finding of 
decreasing HRV when cognitive demand increases 
and may be associated with the longer duration of 
the high-complexity scenario compared with the 
low-complexity scenario (Mulder and Mulder 1981; 
Charles and Nixon 2019). Two studies that examined 
task repetition showed mixed results. Reinerman-Jones, 
Matthews, and Mercado (2016) reported that the 
mean HRV increased across four repetitions of detec-
tion steps; no such effect was observed for heart 
rate. However, in their detailed investigation of three 
participants, Reinerman et  al. (2020) reported no sta-
tistically significant trends in HRV across 27 sessions 
and three task types. However, a significant cubic 
effect on heart rate was identified in one of the three 
participants for one of the three tasks. Significant 
effects on HRV were identified for two of the three 
participants for one of the three task types. Hwang, 
Yau, et  al. (2008) Hwang et  al. (2009) developed mod-
els for predicting performance. Hwang, Yau, et  al. 
(2008) reported that HRV, heart rate, and systolic 
pressure were significant indicators of performance, 
whereas the low frequency/high frequency ratio or 
diastolic pressure was not an indicator. Finally, Hwang 
et  al. (2009) classified the team’s performance with 
full accuracy by using a model of eight ECG indica-
tors. However, the model was validated with data 

from only three teams (a total of three classifications; 
see Section 3.6 on indexes).

3.5.4.  Skin temperature, speech features, 
respiration, and hemodynamic indicators
One study utilised skin temperature, speech features, 
respiration, or hemodynamic indicators for the mea-
surement of cognitive workload. In their study of HSI, 
Al Harbi et  al. (2013) observed a higher number of 
participants who showed a drop in skin temperature 
– an indicator of stress – when using soft controls 
compared with those who used hard controls. No sig-
nificance test was presented for this finding, but the 
results corresponded with poorer workload indicators 
from ECG and EEG for the soft-control condition, and 
the skin temperature correlated highly with the proce-
dural error rate (R2 = .88). Braarud et al. (2020) observed 
that speech features that were extracted from control 
room team communication predicted operator cogni-
tive workload for two-minute segments of the scenario 
with an accuracy of .63. The most important speech 
variables were the fundamental frequency (pitch), 
articulation rate, and amplitude. Gan et  al. (2020) 
found that respiration rate and analytically estimated 
task demand were correlated (rho = .27). Moreover, 
breathing wave amplitude was correlated with the 
estimated workload (rho = −.46). A noteworthy aspect 
of this study was that the respiration rate was col-
lected from operators in a four-person team that oper-
ated in a full-scale simulator. Reinerman-Jones, 
Matthews, and Mercado (2016) utilised hemodynamic 
measurements. The authors reported that right hemi-
sphere cerebral blood flow velocity was sensitive to 
the task type and that left and right hemisphere oxy-
gen saturation based on functional near-infrared spec-
troscopy measurements were sensitive to the task type.

3.6.  Indexes of workload measures

Seven articles focused on the development of a work-
load index based on several measures. All of these arti-
cles reported methodological studies. Where reported 
by the authors, the sensitivity of individual measures 
used in these studies is presented in the respective sec-
tions above. The review first examined articles that 
reported an index from one type of measure. Choi et  al. 
(2018) used the EEG measures theta, alpha, beta, and 
gamma. The developed index was validated against the 
NASA-TLX that was collected post-session. The authors 
reported a .84 correlation between the index and 
NASA-TLX and a correlation of .83 between the index 
and procedure errors. Wu et  al. (2020) reported that an 
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index developed from ocular measures (pupil diameter, 
blink rate, fixation rate, and saccadic rate) predicted the 
NASA-TLX score with an accuracy of R = .98. The 
NASA-TLX ratings were collected post-session. Hwang 
et  al. (2009) utilised several ECG measures (heart rate, 
HRV, and HRV frequencies) to develop an algorithm to 
predict a performance index based on correct response 
and response time for procedure steps. The perfor-
mance used in the prediction was aggregated to one 
score per participant. Algorithm evaluation using data 
from three teams (three predictions performed) showed 
that the algorithm classified the correct performance 
class out of three classes, which provided an accuracy 
of 1. Gao et  al. (2013) constructed a model from ocular 
(pupil size, blink rate, and blink duration) and ECG (HRV 
and HRV frequency) measures. The model was evalu-
ated with data from two participants and predicted 
post-session NASA-TLX with an accuracy of R2 = .77. No 
individual measures correlated significantly with the 
NASA-TLX; therefore, the index results suggested an 
improvement over the individual measures. Hwang, Yau, 
et  al. (2008) developed a model using ocular (blink rate 
and blink duration), ECG (heart rate, HRV, and HRV fre-
quency), and blood pressure (systolic and diastolic) 
measures. The model was evaluated by predicting the 
error rate on a secondary task for two participants, 
resulting in R2 = .84. Chen, Yan, and Tran (2019) devel-
oped an index from a broad set of data that consisted 
of the NASA-TLX, performance indicators, and ocular 
measures (pupil dilation, blink rate, fixation duration, 
and fixation rate). The index was significantly sensitive 
to the interface type. Braarud et  al. (2020) developed a 
model from operator speech features and human–sys-
tem interaction activities. A model trained on team 
member data predicted operator workload for 
two-minute segments of the scenario with a classifica-
tion accuracy of .72. Corresponding with the index 
results, relatively high accuracy of workload indexes in 
the prediction and classification of cognitive workload 
has been reported in other settings (Wilson and Russell 
2003; Chen et  al. 2012; Solovey et  al. 2014; Borghini 
et  al. 2014). However, examples of workload indexes 
that provide only moderate accuracy in other settings 
are also available (Charfuelan and Kruijff 2013; McDonald, 
Ferris, and Wiener 2020).

4.  Considerations for the evaluation of control 
room HSI

A remarkable characteristic of the articles was the fre-
quent use of self-report measures for the evaluation of 
HSI and their frequent use as a criterion for the inves-
tigation of physiological measures. Self-report 

measures were sensitive to alarm procedure selection, 
pre-alarm design, computerised procedures, the level 
of automation, and display information quantity. 
Self-report measures also correlated with secondary 
tasks and physiological measures. Self-reported work-
load measures were sensitive to conditions that 
affected operator task content and conditions that 
explicitly involved resources specific to expertise and 
staffing. This suggests that self-report measures are 
suitable for evaluating HSI, task design, and the organ-
isation of work – especially if the work involves delib-
erate effort, judgement, and decision-making (Gopher 
and Donchin 1986; O’Donnell and Eggemeier 1986; 
Yeh and Wickens 1988; Tsang and Vidulich 2006; Cain 
2007). Consequently, a self-reported cognitive work-
load measure should be included in the evaluation of 
control room work and HSI. However, the granularity 
that is required for measurement should be consid-
ered (Muckler and Seven 1992; Chen et  al. 2012; 
Chuang et  al. 2016). Plausibly, a post-scenario assess-
ment may be sufficient for short performance episodes 
such as a section of an operating procedure or a few 
procedure steps. For longer performance episodes 
including realistic event and accident scenarios, utilis-
ing the online rating of a single item measure such as 
the Instantaneous Self-Assessment of Workload (Jordan 
1992) technique or the Rating Scale of Mental Effort 
(Zijlstra 1993) may be considered. Alternatively, the 
NASA-TLX item demand or the item effort may be 
used given that these items closely resemble the aver-
age of all six NASA-TLX items (Hertzum 2021), particu-
larly for cognitive control room work (Braarud 2020).

Primary task measure has limited utility in complex 
settings (Wu and Li 2013; Hancock and Matthews 
2019); two articles utilised only such measures. 
However, the results suggest that secondary tasks pro-
vide sensitivity to HSI evaluation similar to self-report 
measures. The extent to which secondary tasks reflect 
spare resources for the primary task or resources that 
are involved in task management has been discussed 
(Lysaght et  al. 1989). However, task management is an 
essential aspect of complex settings.

No study of HSI utilised behavioural measures for 
cognitive workload evaluation. However, this approach 
has been used in other domains (Chen et  al. 2012; 
Pimenta et al. 2016; McDonald, Ferris, and Wiener 2020) 
and may require further development for HSI evalua-
tion in the nuclear domain (Braarud and Pignoni 2023).

Few articles reported the use of physiological work-
load measures for HSI evaluation. One study that uti-
lised EEG reported non-significant sensitivity, whereas 
one study that used ocular measures reported signifi-
cant sensitivity. None of the three studies that utilised 
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ECG measures reported significant sensitivity, and one 
study that used skin temperature reported significant 
sensitivity. One study each of skin temperature, speech 
features, respiration, and haemodynamic indicators 
provided promising results, but these measures require 
further investigation regarding control room HSI eval-
uation. Method study results regarding EEG, ocular, 
and ECG measures were mixed. In summary, evidence 
from the reviewed articles was insufficient to support 
a clear recommendation of physiological measures for 
the evaluation of HSI. A similar conclusion has been 
previously proposed by Farmer and Brownson (2003) 
for air-traffic management and for general use by Cain 
(2007). Furthermore, a recent review of physiological 
workload measures concluded the current absence of 
a basis for recommending any single physiological 
measure for the assessment of cognitive workload 
(Charles and Nixon 2019). However, ocular workload 
measures based on eye tracker data have a notable 
advantage for the evaluation of work that involves 
visual information-gathering across several surfaces. 
Measuring areas of interest or utilising the scene cam-
era directly provides information particularly useful for 
the analysis of factors that impact the operator’s cog-
nitive workload. Furthermore, the reviewed method 
studies indicated that blink rate decreased with 
increased task load (Ha et  al. 2006;  Chen, Yan, and 
Tran 2019; Wu et  al. 2020) and pupil size increased 
with increased workload (Chen, Yan, and Tran 2019; 
Wu et al. 2020). These findings correspond with reports 
in the literature (Charles and Nixon 2019).

However, the review showed positive evidence for 
physiological index measures. In summary, the articles 
that addressed workload indexes reported a high cor-
relation with the NASA-TLX (Gao et  al. 2013; Choi et  al. 
2018; Wu et  al. 2020), a high correlation with a sec-
ondary task measure (Hwang et  al. 2009), perfect accu-
racy in predicting operator workload (Hwang et  al. 
2009), and moderate accuracy in classifying operator 
workload (Braarud et  al. 2020). In addition, one study 
showed that the index was sensitive to the interface 
type (Chen, Yan, and Tran 2019). However, these 
indexes are associated with higher cost and complex-
ity compared with self-report measures (Farmer and 
Brownson 2003; Chuang et  al. 2016).

The evaluation of an acceptable or optimal cogni-
tive workload is an important and challenging topic 
for control room work. This challenge relates to the 
interpretation of measurement results. Rating scales 
have the advantage of having a standardised scale 
bound by endpoints that apply across participants and 
situations. The labelling of the scale facilitates the 
interpretation of the scores. Although the actual 

understanding of the labels may vary between people, 
the labelling supports the interpretation of the ratings. 
The definition of the scale and its labelling may also 
explicitly address the acceptability of the workload 
(Jordan 1992; Colle and Reid 2005; Braarud 2020). 
Secondary tasks are sensitive to high and excessive 
task demands (Lysaght et  al. 1989) and may be suit-
able for the development of test scores that indicate 
the level of cognitive workload. Secondary tasks have 
the advantage of providing a common metric that can 
be used for comparison across tasks and settings 
(Wickens et  al. 2012). In this respect, a challenge for 
physiological measures is that the measurement value 
itself is difficult to interpret for an adequate level of 
cognitive workload. As such, this is an important addi-
tional reason against recommending current physio-
logical measures for the evaluation of nuclear control 
room HSI.

In most complex work settings, measurement, e.g. 
self-reported cognitive workload or physiological indi-
cators, is usually insufficient for understanding how 
HSI or work organisation affects operator cognitive 
workload. Performing debriefs after a scenario is there-
fore recommended for the further investigation of 
cognitive workload in the context of specific task 
demands and HSIs (Lysaght et  al. 1989; Braarud and 
Pignoni 2022).

5.  Future research needs

Based on the positive evidence for self-report measures 
collected post-session, a similar quality of continuous or 
periodic self-report during work can be suggested. 
However, adequate methods and the validity of contin-
uous self-reporting of cognitive workload should be 
investigated. In addition, research on physiological mea-
sures can benefit from improved self-report measures.

The reviewed articles investigated different second-
ary tasks. A standardised secondary task can provide a 
common metric that can be used to compare work-
load across tasks and settings (Wickens et  al. 2012). 
Future research can investigate one or a few adequate 
and general secondary tasks that apply to nuclear con-
trol room evaluation. Furthermore, Lysaght et al. (1989) 
concluded that embedded secondary tasks which are 
unique for each human–machine setting are useful for 
complex system evaluation. No article explored embed-
ded secondary task performance. Future research 
could investigate embedded secondary tasks for cog-
nitive workload measurement related to operator utili-
sation of the control room HSI.

The method studies on behavioural measures 
reported counts and classifications of operator activity 
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that were related to self-reported workload (Chuang 
et  al. 2016; Park, Jung, and Kim 2020; Braarud et  al. 
2020) and were sensitive to scenario complexity (Park 
et  al. 2017) and control room position (Kim, Kim, and 
Jung 2014). Behavioural measures may be especially 
useful for detecting high cognitive workload based on 
the assumption that operators who experience a high 
cognitive workload exhibit observable behaviour 
related to the adaptation to and management of the 
workload (Hockey 1997; Chen et  al. 2012; Braarud and 
Pignoni 2023). Similar to embedded secondary tasks, 
the activity measures are nonintrusive and thus do not 
affect operator tasks and can easily be applied to 
nuclear control room work. Furthermore, behavioural 
measures can be applied without resource-demanding 
dedicated data registration equipment (Chen et  al. 
2012). However, the reviewed approaches require fur-
ther development. For example, the extent to which 
the behavioural indicators and activity classifications 
truly indicate cognitive workload (Kim, Kim, and Jung 
2014) and the extent to which the measures indicate 
the proportion of cognitive capacity expended can be 
investigated.

The review provided examples of promising meth-
odological studies on physiological cognitive workload 
measures for complex work settings. Charles and Nixon 
(2019) identified a growing empirical basis that can 
inform future studies about physiological workload 
measures. However, for the evaluation of HSI in com-
plex work settings, future research must investigate 
the utility and validity of physiological measures rela-
tive to the utility and validity of self-report and sec-
ondary task methods. Beyond providing continuous 
measurement, physiological measures have a role in 
evaluating cognitive workload that is not accessible to 
operator self-reporting and is not captured by second-
ary task approaches.

The results reported indicate the potential for 
index-derived workload measures. To date, the litera-
ture includes relatively few studies within the area of 
process control compared with studies in domains 
such as aviation and driving (Borghini et  al. 2014). 
However, the results of the accuracy and utility of the 
indexes were insufficient in detail because the studies 
frequently compared aggregated index results with 
post-session self-reports. Future research must demon-
strate the utility of the indexes in HSI evaluation.

Several articles motivate research on cognitive 
workload by describing the negative consequences of 
high workload on operator performance. The ultimate 
concern of cognitive workload measures for human–
system evaluation is the adequacy of the interpreta-
tions and decisions regarding HSI, operator competence, 

and operator performance that can be based on the 
measurement (Messick 1990). However, the focus on 
the measurement of excessive cognitive workload is 
limited. Theory suggests the qualitatively different 
zones of workload (O’Donnell and Eggemeier 1986; 
Rasmussen 1986; Young et  al. 2015) and measures that 
can support the classification of underload or overload 
can be useful in human–system design and evaluation. 
Future research that supports the analysis and classifi-
cation of cognitive workload by behavioural indicators 
may improve the utility of cognitive workload mea-
surement for human–system design and evaluation.

Finally, several authors have called for the future 
investigation of cognitive workload utilising realistic 
control room simulation and control room tasks, and 
teams of experienced operators (Xu et  al. 2008; Hsieh 
et  al. 2012; Wu et  al. 2016; Lin et  al. 2017; Yan 
et  al. 2017).

6.  Limitations

The articles that were eligible for the review provided 
an unbalanced representation of measurement types. 
For example, self-report measures were highly overrep-
resented. However, the overall interpretations and con-
clusions about cognitive workload measures for HSI 
evaluation do not conflict with the literature on the 
less frequently applied measures addressed in the 
reviewed papers. The studies reviewed varied substan-
tially in the performance measures, tasks, and scenar-
ios investigated – a phenomenon that is not 
uncommon in complex domains. Therefore, evaluating 
workload measures across the articles based on their 
correspondence with performance results was not 
meaningful. Consequently, the review was limited to 
investigating the sensitivity of workload measures. If 
reported in articles, correlations between cognitive 
measures were included. Therefore, the literature 
should be consulted regarding aspects of validity not 
covered by this review. No grey literature or confer-
ence papers were included in the review. The inclusion 
of only peer-reviewed journal articles assured the qual-
ity of the included articles. However, important find-
ings and proposals for new methods may be available 
only in the grey literature. Future reviews could include 
a broader range of literature types.

7.  Conclusion

Self-report measures and secondary task measures 
were systematically sensitive to human–machine con-
ditions in the nuclear control room and correlated 
with physiological measures. This finding presumably 
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extends to similar complex work settings. Including a 
self-report measure of cognitive workload or second-
ary task measures in the evaluation of HSIs is therefore 
recommended. Physiological measures may have the 
potential to capture cognitive workload that is not 
accessible for self-reporting and can thereby provide 
dynamic measurement. However, research must 
demonstrate the utility of physiological measures in 
process control settings and human–system evalua-
tion. Furthermore, future research must address the 
classification of cognitive workload, including the mea-
surement of excessive workload. In this respect, 
behavioural measures and embedded secondary tasks 
should be investigated. Finally, the literature is limited 
in its evaluation of the cognitive workload of the 
human–technology interfaces of systems, and more 
evidence is needed from studies that utilise realistic 
full-scale control room simulation, with the participa-
tion of professional control room operators.
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