
Citation: Rocha, F.G.; Misra, S.;

Soares, M.S. Guidelines for Future

Agile Methodologies and

Architecture Reconciliation for

Software-Intensive Systems.

Electronics 2023, 12, 1582. https://

doi.org/10.3390/electronics12071582

Academic Editor: Claus Pahl

Received: 14 February 2023

Revised: 14 March 2023

Accepted: 15 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Guidelines for Future Agile Methodologies and Architecture
Reconciliation for Software-Intensive Systems
Fábio Gomes Rocha 1 , Sanjay Misra 2 and Michel S. Soares 1,*

1 Department of Computing, Federal University of Sergipe, São Cristóvão 49100000, Brazil
2 Institute for Energy Technology, 1777 Halden, Norway
* Correspondence: michel@dcomp.ufs.br

Abstract: Background: Several methodologies have been proposed since the first days of software
development, from what is now named traditional/heavy methodologies, and later their counterpart,
the agile methodologies. The whole idea behind agile methodologies is to produce software at a
faster pace than what was considered with plan-based methodologies, which had a greater focus on
documenting all tasks and activities before starting the proper software development. Problem: One
issue here is that strict agilists are often against fully documenting the software architecture in the
first phases of a software process development. However, architectural documentation cannot be ne-
glected, given the well-known importance of software architecture to the success of a software project.
Proposed Solution: In this article, we describe the past and current situation of agile methodologies
and their relation to architecture description, as well as guidelines for future Agile Methodologies
and Architecture Reconciliation. Method: We propose a literature review to understand how agile
methodologies and architecture reconciliation can help in providing trends towards the success of a
software project and supporting software development at a faster pace. This work was grounded
in General Systems Theory as we describe the past, present, and future trends for rapid systems
development through the integration of organizations, stakeholders, processes, and systems for
software development. Summary of results: As extensively discussed in the literature, we found
that there is a false dichotomy between agility and software architecture, and then we describe
guidelines for future trends in agile methodologies and reconciliation of architecture to document
agile architectures with both architectural decisions and agile processes for any system, as well as
future trends to support organizations, stakeholders, processes, and systems.

Keywords: software architecture; agile development; software process

1. Introduction

Software development has been recognised by many researchers and practitioners as a
challenge for society in the past decades [1–3]. Software is used for controlling infrastructures
such as water, waste, and electricity distribution, as well as means of transport, telecommu-
nications, industry, entertainment, and so on, in such a way that software makes our daily
life easier and safer. However, there are also difficulties and concerns related to activities of
software development and evolution, such as balancing the necessary effort for activities of
Requirements Engineering and designing the Software Architecture.

Barry Boehm [4] shows his software experiences through the stages of the evolution
of Software Engineering practices in the 20th and 21st centuries, also, the strategies used
to evaluate and adapt software changes. Boehm used the philosopher Hegel’s hypothesis
divided into three stages: thesis (things happen the way they do), antithesis (the thesis fails
in some aspects, but there is a better explanation), and synthesis (rejection of the original
thesis with the antithesis, but there is a similar improved one). In this way, he pointed out
the evolution of Software Engineering from the 1950s to 2006, as well as a few topics for the
next decades.

Electronics 2023, 12, 1582. https://doi.org/10.3390/electronics12071582 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071582
https://doi.org/10.3390/electronics12071582
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3556-9331
https://orcid.org/0000-0002-0512-5406
https://orcid.org/0000-0002-7193-5087
https://doi.org/10.3390/electronics12071582
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071582?type=check_update&version=2

Electronics 2023, 12, 1582 2 of 13

As software is considered a crucial element of software-intensive systems [5] and
systems of systems, failures are studied by many researchers [3,6]. Failures in software
development and deployment may have consequences of loss of lives, may jeopardize
human life, and may have financial and even moral consequences. Given the many issues
involved with software development, including delays for product delivery [7], lack of
communication [8], low-quality [9], and delivery of a product that does not reflect the ne-
cessities of the organization [10], many methodologies have been proposed for establishing
some systematic order for activities and tasks of software development [11]. Therefore,
these methodologies have been proposed to organise the overall software development
process, trying to provide structure to the activities of software development.

Software development methodologies can be classified as heavy/traditional/plan
based [12] (heavy in the remainder of the article), or agile [12,13]. The first type relies
on specific strict rules, well-defined activities, and tasks to describe a systematic process
that can be repeated and followed by a development team. Heavy methodologies rely on
documenting each development step in such a way that the team can store and, in the
future, retrieve information at a higher level of abstraction than source code. The whole
idea behind agile methodologies is to produce software at a faster pace than what was
considered heavy by plan-based methodologies, which had a greater focus on documenting
all tasks and activities.

Agile architecture is the result of the transformation from traditional and agile approaches
to software development, e.g., the architecture uses agile techniques to integrate people,
processes, and technologies to ensure that the architecture is flexible, adaptable, and tolerant
to changing demands through the agile iterative–incremental development process.

The need for agile architecture happened through the emergence of modern software
platforms and frameworks, such as microservices, cloud services, IoT, mobile devices,
artificial intelligence, and smart machines, as well as the need for solutions with a high
response speed to changes and facilities. Therefore, documenting this kind of architecture
with both architectural decisions and agile processes for any system is a challenge [14].

This article is organized as follows. Section 2 describes a review of items related to
Software and Systems Architecture and Agile Development, including Architecture-Based
Development and Agile-Based Development. Section 3 describes two main phases that
the community of Software Engineering, both working in academia and in the software
industry, followed for architecture and agile reconciliation. Section 4 brings the Guidelines
for future Agile Methodologies and Architecture Reconciliation, provided in seven steps.
Section 5 is about the discussion of related works and threads for validity, and the article
ends with a section on the conclusion and future works.

2. A Review on Items about Architecture and Agile Development

Since the mid-1990s, new software development processes have been categorised
according to the principles that they embody, which can be heavy (or plan-driven) and
agile processes. While software process development based on the traditional paradigm
is recommended for risky and large-scale projects, agile processes are more suitable for
small and low-risk projects. Critical software projects may be negatively affected by the
lack of rigour and predictability of agile methods, while small and low-risk projects may be
jeopardised by the lack of simplicity and flexibility of heavy methodologies [15].

2.1. Agile Methods

By the end of the 1990s, the advent of the Internet as a platform for the execution
of all kinds of software and information systems became a reality. The idea of a more
agile way of software development in this highly changing environment seemed necessary.
Therefore, the Agile Manifesto was proposed, inspired by researchers and practitioners
who were leading this important field.

The agile manifesto demanded the use of iterative methods for product development
based on four principles:

Electronics 2023, 12, 1582 3 of 13

(i) individuals and interactions over processes and tools, (ii) working software with
comprehensive documentation, (iii) customer collaboration in contract negotiation, and (iv)
responding to changes following a plan.

Extreme Programming (XP), Scrum, Lean, Kanban, and other agile methodologies
were introduced in practice in the past two decades. These methodologies reduce the risks
related to both the uncertainties and the unforeseen aspects of projects more naturally and
rapidly, aiming at better communication among stakeholders and customer satisfaction.
In addition, these methodologies emphasize qualities and standards to make the relation-
ship between people, communications, software, and cooperation with the customer and
the reactions to changes more direct [16].

2.2. Software Architecture

The importance of Software architecture has been discussed by many researchers
and practitioners since the 1970s, when Djikstra [17] and Parnas [18] first mentioned the
importance of the field for software development. Their first attempts at defining software
architecture relied on organizing the structure of large-scale software systems at the time.
Their approach was centred on documenting the structure of software systems by using
then-well-known concepts such as separation of concerns, modularity and hierarchical
decomposition.

Then, in the 1990s, other conceptions and ideas on software architecture were intro-
duced by Royce [19]and Garlan and Schaw [20]. Many definitions for software architecture
were proposed as well. For Kruchten [21], software architecture deals with the design and
implementation of the high-level structure of the software, as it is the result of assembling
architectural elements to satisfy the main functionality and performance requirements of
the system, as well as some non-functional requirements. Clements et al. [22] assert that
the software architecture of a system is the structure or structures of the system, which
comprise the software components, the externally visible properties of these components,
and the relationships between them. According to the standard ISO/IEC/IEEE 42010:2011,
software architecture is the fundamental concept or properties of a system in its environ-
ment embodied in its elements, relationships, and the principles of its design and evolution.
More than 100 additional definitions for software architecture are presented on the Software
Engineering Institute website (SEI).

Modern definitions of Software architectures have a greater focus on (i) software
decisions to guide software composition (constraints and goals) and (ii) key components
(relationships, interactions, principles, and structures). Software architecture is considered
a crucial technical element that facilitates communication among stakeholders, determines
which change paths have the least risk, assesses the consequences of changes, and decides
both sequences and priorities for changes by looking at their relationships. Important
quality constraints such as performance, security, safety, modularity, and many others are
the direct consequence of a well-defined software architecture.

2.3. Architecture-Based Development

Architectural documentation cannot be neglected, given the well-known importance
of software architecture for the success of a software project [23,24]. A well-defined ar-
chitecture helps in new developments from existing processes and systems, as well as in
proposing trade-offs and analysing and making changes.

Examples of concerns related to software architecture include separation of interests,
coupling, cohesion, encapsulation, modularity, change implementation (learnability, insta-
bility, testability, and manageability), interoperability, compliance, and reusability, among
others. The software architecture is documented through the different scenarios related to
the properties and, consequently, by evaluating the impact throughout the organization.

Table 1 summarises a non-exhaustive list of seminal articles, models, books, methods
and standards related to software architecture from the first years of the 1990s up to 2020.

Electronics 2023, 12, 1582 4 of 13

Enterprise architecture models, such as Zachman and TOGAF, are not mentioned in the
table because our approach here is to include architecture elements for software/systems.

Table 1. Seminal works related to software architecture, from the first years of the 1990s up to 2020.

Name Year Type

Systems Architecting: Creating and Building Complex Systems [25] 1990 Book
Foundations for the Study of Software Architecture [26] 1992 Article
Architecture Modeling Language (ADLs) 1992–2005 Languages
The 4+1 View Model of Software Architecture [21] 1995 Model
Siemens’ 4 Views (S4V) [27] 1995 Model
Software architecture - perspectives on an emerging discipline. [20] 1996 Book
RM-ODP - ISO/IEC 10746 1998 Model
IEEE 1471 2000 Standard
Software architecture analysis method (SAAM) 1995 Method
Architecture Tradeoff Analysis Method (ATAM) 2000 Method
Model Driven Architecture (MDA) 2001 Method
ISO/IEC/IEEE 42010 2011 Standard
ISO/IEC/IEEE 42020 2019 Standard
ISO/IEC/IEEE 42030 2019 Standard
Architectural Decisions 2000 Model

2.4. Agile-Based Development

Scrum and XP are currently two of the most widely used agile methodologies [28].
The main concept of Scrum is the Sprint, a time-boxed iteration of two to four weeks.

The Scrum methodology has a special focus on management practices and consists of a set
of Scrum teams and their associated roles, artefacts, rules and time-boxed events such as
Release Planning Meetings, Sprint Planning Meetings, Sprint, Daily Scrum, Sprints, Sprint
Reviews and Sprint Retrospective.

Common practices in XP are Test-Driven Development (TDD), pair programming,
continuous integration, the planning game, metaphor, small release, open workspace, and
refactoring [29].

The first results with agile methodologies were linked to cost and return of investment
(ROI), productivity, response to change, client participation, and individuals and their daily
working tasks in an agile environment [30,31]. Most recently, the outcomes of agile method-
ologies were customer-focused, customer satisfaction, flexibility, productivity, collaboration,
multiple deliverables, product quality, and reduction of problems and failures [32,33].

In agile development, data, information, processes, requirements, and solutions evolve
through the participation and planning of teams and organizations. In this way, it promotes
adaptive planning, evolutionary development, early delivery, and continuous improve-
ment, and encourages a fast and flexible response to change [34].

Table 2 summarises a non-exhaustive list of seminal books, processes, practices, and guides
related to agile methods and agile architecture from the first years of the 1990s up to 2011.

Table 2. Seminal works related to agile methods, from the first years of the 1990s up to 2018.

Name Year Type

Dynamic systems development method (DSDM) 1994 Process
Rapid application development (RAD) 1994 Process
Scrum 1995 Process
User Story 1997 Practice
Feature-driven development (FDD) 1999 Process
XP 1999 Process
Test-driven development (TDD) 1999 Practice
Agile manifesto 2001 Manifesto
Agile unified process (AUP) 2001 Process
Behavior-driven development (BDD) 2003 Practice
KANBAN 2004 Process
Domain-driven design (DDD) 2004 Practice
Guide to Agile Practices 2011 Guide
The Lean Startup 2011 Book
Disciplined Agile Toolkit 2018 Process

Electronics 2023, 12, 1582 5 of 13

3. Attempts for Agile-Architecture Reconciliation

Considering the introduction of agile methodologies by the middle of the 1990s,
and the situation of architecture knowledge during the same period, we can divide the
reconciliation into two attempts.

3.1. First Attempts for Agile-Architecture Reconciliation

Starting from the first years of the 1990s up until around 2005, from the platform point of
view, client-server architectures were commonly deployed in the software industry. Internet
and web-based systems passed from infancy (simple websites, static Internet pages) to com-
plex e-commerce systems (business to consumer, business to business), to Intranet systems
coordinating many applications and enabling agility for a company’s business processes.

From 1992 to 2005, a variety of agile methods were proposed, including XP, Scrum,
FDD, DSDM, RAD, and others [35]. Initially, the research and industry work in this field
involved many aspects, including the efficiency of pair programming [36], final quality of
systems developed using agile methods [37], size of the team [38], and costs and schedule
of projects [39].

However, in the 1990s, the relationship between architecture and agility was hardly
mentioned. There is no surprise about this result, as research in these first years was mostly
about evaluating what agility could bring to the industry in terms of better quality, lower
costs, improvement in project management, and faster delivery of software products.

This period brought another “flame war” on agility versus heavy processes, and many
introduced the idea that a software architecture would emerge naturally [40,41], instead
of being a specific activity to be performed throughout the software life cycle. Therefore,
agilists were against the idea of establishing a software architecture before design and
implementation, which they called “Big Design Up-Front”. In their opinion, considering
that agile methods support the idea of embracing changes to requirements, defining a
whole big picture of software architecture would be a waste of time, as the requirements
were most certainly changing a few times during software development. Even design
diagrams were seen as not important or even counterproductive, as the teams did not have
time to spend designing diagrams considering the fast pace of software delivery.

A report from SEI [42] describes a method for capturing architectural information in a
manner consistent with agile philosophies. The report compares the Software Engineering
Institute’s Views and Beyond approach for documenting software architectures with the
documentation philosophy embodied in agile methods.

Later, another report from SEI [43] proposes two versions of a design of an ATM:
the first one from the eXtreme Programming perspective and then the second using an
Architecture Centric approach from SEI. As a result, the authors found that the architecture-
centric methods help to fill gaps in the XP design process, for instance, by eliciting and
documenting quality attribute requirements and also by understanding and predicting the
consequences of the design decisions in terms of risks and tradeoffs. In the end, there are
guidelines on how to integrate architecture-centric methods from SEI into the XP software
development process.

In 2000, Kent Beck, the proponent of XP, published the book Test-Driven Development:
By Example [44] presenting TDD as a way to teach developers to communicate and to adopt
constant feedback. Additionally, it promotes a continuous improvement of the source
code through refactoring. The TDD method was born inside XP as one of the practices
of that process. However, it was widely adopted by agile developers following other
agile methods. In 2009, Freeman and Pryce published the book “Growing object-oriented
software, guided by tests,” bringing a practical vision applied to projects, demonstrating
that TDD helps in the code quality, aiming for better integration of the components.

In 2002, with the expansion of the adoption of Agile, Ambler published the book Agile
Modeling: Effective Practices for eXtreme Programming and the Unified Process [45]. In this
book, the author presents a way to model software to better align with agile principles.
He presents a model with alignment between eXtreme Programming (XP) and the Unified

Electronics 2023, 12, 1582 6 of 13

Process (UP) methodologies. As a result, the author presents a lighter form of modelling
but with some values such as communication, simplicity, constant feedback, and courage.

The need for strategies and models that allow software architecture planning in an
agile process led Evans, in 2004, to publish the book Domain-driven design: tackling complexity
in the heart of the software, presenting DDD. This methodology proposes a domain-oriented
software design. A book regarding balancing agility and discipline brings six results in the
end, one concluding that in the future, we will need both agility and discipline [13].

One can see the evolution in Figure 1. This idea was not usual at the time, which is
why the authors would expect that in the near future. Thus, this balancing would be more
common in the next years, as described in the following section.

1992 1992/2005 2002/2005

Client/Server

XP, DSDM, Scrun, FDD, RAD, AUP,
Kanban, User Story

TDD, Agile Modeling, BDD, DDD

Figure 1. Agile-Architecture Reconciliation.

3.2. Maturity—Second Decade for Agile-Architecture Reconciliation

From the execution platforms point of view, the mid-2000s bring innovations and
evolution in platforms such as highly distributed systems, improved middleware and
publish–subscribe technologies, and high demand for business-to-business applications,
including e-commerce, e-government and so on.

From 2006 to 2016, agile methods reached a maturity level in the software industry.
Agile methods were commonly applied to a variety of domains and types of software,
including critical software such as railway signalling [46], embedded systems [47], and
medical device software [48]. Regarding the size of teams, although agile methods were
first mentioned as suitable only for small teams [49,50], as they present difficulties in scaling
and coordination of large teams [51], other results have applied agile methods to larger
teams. An example is a study that presents an agile project following the SCRUM method
involving 70 people (including 30 developers) [52].

The software industry suggested in the 2000s that agile methods presented many
challenges regarding the adoption of safety-critical systems. The most mentioned issues
include communication and scalability [53], difficulties in coordinating the team [54],
and too short a time for delivery of complex components [55]. In addition, one cannot
guarantee that practices used in an agile environment for developing an information system
for business activities can be successfully replicated for highly demanded flight control
systems. In another example [56], agile methods, and more specifically, the economics of
pair programming, was evaluated for NASA projects, and the result is that this practice
will only be demonstrably useful for a very small number of cases. Software development
approaches that do not precisely define the requirements are not indicated for NASA
projects with significant or hard risks. However, even for safety critical systems, there are
good examples of success [46,57,58].

Relationships with architecture in this decade also evolved. Instead of a flame war be-
tween agilists on one side and software architects on the other side, new ideas and research
were introduced on combining and reconciling the two worlds. One issue for agilists is
that they believe that software architecture is about creating “lots of documents” that are
not useful. On the other hand, software architects cannot agree on a software project in
which interfaces between components, important decisions, and styles are not documented

Electronics 2023, 12, 1582 7 of 13

in detail. Some researchers and practitioners believe that the truth is somewhere in the
middle [13,59–61]. Agile methods and software architecture can coexist and support each
other where appropriate.

In 2012, Robert C. Martin published an article on his website called “The Clean
Architecture” bringing essential points related to software architecture when adopting agile
methods. After that, in 2018, the author, together with other experts, published the book
Clean Architecture: A Craftsman’s Guide to Software Structure and Design [62] bringing debate
points about software architecture focused on the agile model.

Dan North, seeking to facilitate the adoption and explanation of TDD, presents the
Behaviour-Driven Development (BDD) [63], a way to guide the developer in the elaboration
of unit tests, being guided by the acceptance criteria. Along with the methodology, Dan
North created JBehave, a framework that allowed the automation and integration of user
stories and unit tests. Subsequently, the book The Cucumber Book: Behaviour-Driven Develop-
ment for Testers and Developers [64] presented Cucumber, a tool that became a standard in
the adoption of BDD to help testers and developers.

DDD had advanced in adoption, especially after 2013 with the publication of the book
Implementing Domain-Driven Design by Vernon [65]. In this book, the author brings a realistic
view of the adoption of DDD. In addition, works such as [66,67] point to Domain-driven
design as a form of architecture planning when adopting microservices.

In addition to DDD, two strategies for the discovery and documentation of the architec-
ture stand out. Event Storming, created by Alberto Brandolini [68], widely disseminated in the
DDD community, has been gaining space for allowing more visual and agile documentation
that involves the stakeholders in the process. Another model that aims to support the doc-
umentation based on DDD is Domain Storytelling, proposed by Stefan Hofer and Henning
Schewentner [69], which introduces a model based on languages with figures to model usage
scenarios, having events in a workshop format to integrate the stakeholders and to elaborate,
step by step, a visual model of the domain. Both techniques are complementary ways to DDD,
working as a way to create a model that can guide the development.

4. Guidelines for Future Agile Methodologies and Architecture Reconciliation

The relationship between Architecture and Agility was also studied in [70], in which
the authors argue that instead of another debate on more agility in architecture, or more
architecture in agility, the correct would be rephrasing the question in more general terms,
by addressing the relationship between architecture and processes in general.

We describe guidelines for future trends in agile methodologies and reconciliation of
architecture to document agile architectures with both architectural decisions and agile
processes for any system, as well as future trends to support organizations, stakeholders,
processes, and systems.

Considering the new platforms, including IoT and Cloud Computing, and the high
complexity of current software systems, with novelties such as Self-healing systems, we
propose guidelines for future agile methodologies and architecture reconciliation.

Our assumption is that architecture and agile methods are compatible, and it is not at all
impossible to consider them together for software development. To define a good architecture
in agile systems, it is necessary to design for important factors such as agility and quality and
maintain the balance between stability, flexibility, and business changes [71].

Therefore, instead of discussing agility or architecture, the solution would be to discuss
how much architecture is good enough after considering important aspects of the problem
and the proposed solution, such as system complexity, number of modules and their
interactions, and quality characteristics that are mandatory for the solution.

Architecture reconciliation ensures the identification of requirements, the integrity
between system functionalities, and the control of information for the documentation
process through the use of agile methods. It identifies and corrects architectural deviations
in the implementation of the systems to monitor quality [72]. Thus, methods like BDD [63],
and DDD [73] bring architectural planning and documentation into the agile world in a

Electronics 2023, 12, 1582 8 of 13

lightweight way that enriches teams with information. However, this is not enough, and
we need to move forward.

It is essential to perform (i) a plan to define the architectural directions and structure
the business needs. All stakeholders (and here one has to understand that all really means
developers, users, managers, and architects, i.e., the group of stakeholders related to
the problem and solution to be developed and deployed) should bring their necessities,
constraints, beliefs and ideas for the system.

After understanding the context in which the stakeholders are involved, then (ii) divide
the architectural project into small teams to identify architectural concerns to balance
business priorities. For instance, it makes no sense at all to spend 15 months defining all
aspects of a software architecture for an e-commerce solution to sell laptops and mobile
phones, as the time to market is an issue here. New improved products are introduced by
these industries in less than 12 months.

Once the ecosystem that includes business requirements and architectural constraints
is well-understood, then the stakeholders can (iii) establish time intervals for building
functionality, which includes defining release dates, time to market, and the main func-
tionalities of products to be developed, followed by (iv) measuring the value and state
of the architecture, including quality concerns such as maintainability, scalability, and
extensibility, and (v) outline the structures to be designed and developed by other teams.
This fifth step is facilitated by understanding the proposed architecture in such a way that
it is clear what is expected by each part of the architecture, as well as the interfaces between
the architectural elements and the environment.

To support the first five items of the guide, it is still worth highlighting that it is
necessary to (vi) analyze the organization’s culture transition process so that they can
adapt and adopt more transparent and updated work models, i.e., agile models and agile
architectures, as well as (vii) identify and analyze the stakeholders’ behaviours, feelings,
and difficulties during the transition process between traditional and agile methods (see
Figure 2). These two activities must occur in parallel with the other five, as they are useful
as a support and control of the main five activities.

Figure 2. Architecture Guide.

5. Discussion

Software Engineering is a recent discipline of great importance in modern life. One has
to understand that there are many types of Software Engineering (embedded or iterative,
large-scale or small, mission-critical or casual use) [4], and it is unlikely that a one-size-fits-
all software process will ever exist. Thus, Software Development processes and methodolo-

Electronics 2023, 12, 1582 9 of 13

gies have been introduced, studied, applied, and evaluated since the first days of modern
software development in the 1950s.

In the first decades of software development, hardware to execute the software developed
was expensive and not easily available. Computer Time-sharing was crucial, as large comput-
ers were rented by the hour of actual execution. Therefore, this hardware orientation led to
the idea that Software Engineering was like Hardware Engineering [4]. Fortunately, hardware
evolution brought cheaper machines in the following decades, and Software Engineering
emerged as an important discipline with its own processes and methodologies.

First, these Software Engineering methodologies followed step-by-step planning.
Then, iterative and incremental processes emerged as a number of so-called agile method-
ologies. Nowadays, there are supporters for both approaches.

Those that prefer planned-based methodologies, have arguments that include the
importance of documenting all steps at a higher level of abstraction than source code.
As software will inevitably be part of a future software maintenance and evolution process,
understanding a number of documents is easier than reading source code written by others
who may even not be part of the development team anymore. Then, reading well-described
software architecture documents will enable improved software evolution. Those who
support agile methods have their arguments as well. For instance, as the software will
be changed in the future, then spending too much time creating documents that will be
different from the actual source code is a waste of time.

However, what if these heavy methodologies and agile methodologies could be com-
bined? An example of this approach is described in [74], which proposes a new software
development methodology called a waterative model, with the purpose of integrating the
waterfall and iterative development paradigms. In this waterative model, the iterative
model is embedded into the waterfall model to use the advantages of both models as an
integrated one.

Another example is provided in [75], whose objective is to investigate the evolution
of hybrid software development methods. According to the authors, modern software
development is neither pure linear phase progression nor agile. A challenge arises with
regard to selecting the appropriate combination of approaches that serve to reach goals and
assure value creation for organizations.

Strict agilists are often against documenting the software architecture [40]. They argue
that it is better to spend time on a computer keyboard using a text editor to write source
code than creating high-level models. In addition, they mention the well-known difficulty
of synchronising source code and design models [76].

Considering the software life cycle, activities related to Requirements Engineering (for
instance, Requirements Elicitation, Prioritization, and Documentation) are often considered
too heavy-weight by agile practitioners. Agilists often consider that requirements volatility
(constant modifications to requirements) is a major issue in software development, causing
problems such as higher defect density, project delays, and cost overruns [77]. Given the
strict relation between Software Requirements and Software Architecture, this requirements
volatility will certainly result in significant changes in the software architecture.

However, “a healthy focus on architecture is not antithetic” to agility [78], and late
discovery of quality requirements may lead to the wrong architecture being implemented
and, consequently, the need for costly refactoring. Concerns about the long-term deterio-
ration of quality in large-scale agile projects have renewed the agile community’s interest
in software architecture [79]. One known challenge in the software industry in the past
two decades is to find a suitable balance between up-front software design and emergent
software architecture [40].

Due to Software Architecture’s importance, the ISO/IEC/IEEE 42010:2011 standard
was published in 2011 with the purpose of establishing a coherent practice for developing
architecture descriptions, architecture frameworks, and architecture description languages
within the context of a software life cycle and its processes. However, parts of the standard
are still not considered in practice.

Electronics 2023, 12, 1582 10 of 13

Industry and academia can benefit from learning and improving the use of ISO/IEC/IEEE
42010:2011 [80], even for agile methods, as a sound software architecture is crucial for software
evolution (as the XP book’s subtitle notes: “Embrace Change” [81]).

Given the aspects mentioned above, it can be seen that the union between architecture
and agile methodology is not only possible but a good and reliable idea. Agility and
architecture are compatible, and architecture is not at all an impediment to agility. A proper
reconciliation between architecture and agility improves both the speed of development
and the final quality of the software during the entire life cycle.

The validity of this study may be threatened due to some limitations. The threads in this
review may be related to the primary study selection process and data extraction process.

During the study selection process, the relevance in relation to the research topic and
theme was analysed. We cannot completely guarantee that we found all studies related to
agile and software architecture.

Regarding the data extraction process, there may be imprecision, and this may be
another threat to the validity of this research. There may be two reasons that cause this
inaccuracy: the data is not extracted systematically, and its classification may be invalid. To
reduce inaccurate data, we focus only on the data collected from the selected articles and
books.

6. Conclusions and Future Work

The correct use of agility and the introduction of software architecture into agile
environments can control complexity, eliminate long requirements specifications, speed up
decision-making, and improve communication and problem-solving. In addition, one can
expect to improve development and, consequently, the quality of the code and models, and
as a consequence, reinforcement of best practices, providing consistency and uniformity,
reducing risks, and allowing for higher levels of reuse and improved maintenance.

Therefore, there is a false dichotomy between agility and software architecture, as
discussed in this article. Actually, software architecture is an enabler for agility, not an
impediment, as agile methods rely on embracing change. A well-defined software archi-
tecture describes, for instance, the stakeholders and their concerns, as well as the most
important components, their relationships (interfaces, APIs, and so on), and a variety of
views and models. In addition, the software architecture documents important decisions
and defines the general structure of source code using layers, modules, libraries, header
files and configuration files.

Activities such as embracing changes to the software project, including inserting and
deleting requirements and scenarios, from the agile point of view, become natural when
the important elements of the software are defined, as well as when their relationships are
described at a high level of abstraction. All these elements are described in documents
of software architecture. Therefore, the software architecture helps the stakeholders to
identify items and elements to be changed, which facilitates software maintenance.

Future research will focus on creating a software tool to help the software architect
with heuristics about how much architecture is good enough after considering important
aspects of the problem and the proposed solution, such as system complexity, number of
modules and their interactions, and quality constraints that are mandatory for the solution.
Then, the software tool will be applied to describe the software architecture in a software
development process of a software-intensive system.

Author Contributions: Conceptualization, M.S.S.; methodology, M.S.S. and F.G.R.; validation, M.S.S.
and F.G.R. and S.M.; investigation, M.S.S. and F.G.R.; data curation, M.S.S. and F.G.R. and S.M.;
writing—original draft preparation, M.S.S. and F.G.R.; writing—review and editing, M.S.S.; visualiza-
tion, M.S.S., F.G.R. and S.M.; supervision, M.S.S.; project administration, M.S.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 1582 11 of 13

References
1. Chapman, W.L.; Rozenblit, J.; Bahill, A.T. System Design is an NP-Complete Problem. Syst. Eng. 2001, 4, 222–228. [CrossRef]
2. Berry, D.M. The Inevitable Pain of Software Development: Why There Is No Silver Bullet. In Proceedings of the Radical

Innovations of Software and Systems Engineering in the Future, 9th International Workshop, RISSEF 2002, Venice, Italy, 7–
11 October 2002; Revised Papers; Lecture Notes in Computer Science; Wirsing, M., Knapp, A., Balsamo, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2002; Volume 2941, pp. 50–74.

3. Charette, R.N. IT’s Fatal Amnesia. Computer 2017, 50, 86–91. [CrossRef]
4. Boehm, B. A View of 20th and 21st Century Software Engineering. In Proceedings of the 28th International Conference on

Software Engineering, ICSE ’06, Shanghai, China, 20–28 May 2006; Association for Computing Machinery: New York, NY, USA,
2006; pp. 12–29.

5. Soares, M.S.; Vrancken, J.; Verbraeck, A. User Requirements Modeling and Analysis of Software-Intensive Systems. J. Syst. Softw.
2011, 84, 328–339. [CrossRef]

6. Hanagal, D.D.; Bhalerao, N.N. Introduction to Software Reliability Models. In Software Reliability Growth Models; Springer:
Singapore, 2021; pp. 1–12.

7. Quiña-Mera, A.; Chamorro Andrade, L.; Montaluisa Yugla, J.; Chicaiza Angamarca, D.; Guevara-Vega, C.P. Improving Software
Project Management by Applying Agile Methodologies: A Case Study. In Proceedings of the Applied Technologies; Botto-Tobar, M.,
Montes León, S., Camacho, O., Chávez, D., Torres-Carrión, P., Zambrano Vizuete, M., Eds.; Springer International Publishing:
Cham, Switzerland, 2021; pp. 672–685.

8. Niazi, M.; Mahmood, S.; Alshayeb, M.; Riaz, M.R.; Faisal, K.; Cerpa, N. Challenges of Project Management in Global Software Development:
Initial Results. In Proceedings of the 2013 Science and Information Conference, London, UK, 7–9 October 2013; pp. 202–206.

9. Stamelos, I. Software Project Management Anti-Patterns. J. Syst. Softw. 2010, 83, 52–59. [CrossRef]
10. Ruk, S.A.; Khan, M.F.; Khan, S.G.; Zia, S.M. A survey on Adopting Agile Software Development: Issues amp; Its impact on

Software Quality. In Proceedings of the 2019 IEEE 6th International Conference on Engineering Technologies and Applied
Sciences (ICETAS), Kuala Lumpur, Malaysia, 20–21 December 2019; pp. 1–5. [CrossRef]

11. Sharon, I.; Soares, M.S.; Barjis, J.; van den Berg, J.; Vrancken, J. A Decision Framework for Selecting a Suitable Software Development
Process. In Proceedings of the ICEIS 2010—Proceedings of the 12th International Conference on Enterprise Information Systems,
Volume 3, ISAS, Funchal, Madeira, Portugal, 8–12 June 2010; Filipe, J., Cordeiro, J., Eds.; SciTePress: Vienna, Austria, 2010; pp. 34–43.

12. Gheorghe, A.M.; Gheorghe, I.D.; Iatan, I.L. Agile Software Development. Inform. Econ. 2020, 24. [CrossRef]
13. Boehm, B.; Turner, R. Balancing Agility and Discipline: A Guide for the Perplexed; Addison-Wesley Longman Publishing Co., Inc.:

Boston, MA, USA, 2003.
14. Maric, M.; Matkovic, P.; Tumbas, P.; Pavlicevic, V. Documenting Agile Architecture: Practices and Recommendations. In Proceed-

ings of the EuroSymposium on Systems Analysis and Design, Gdansk, Poland, 29 September 2016; pp. 56–71.
15. Carvalho, W.C.d.S.; Rosa, P.F.; Soares, M.S.S.; Cunha, M.A.T.d., Jr.; Buiatte, L.C. A Comparative Analysis of the Agile and

Traditional Software Development Processes Productivity. In Proceedings of the 2011 30th International Conference of the
Chilean Computer Science Society, Washington, DC, USA, 9–11 November 2011; pp. 74–82. [CrossRef]

16. Saleh, S.M.; Huq, S.M.; Rahman, M.A. Comparative Study within Scrum, Kanban, XP Focused on Their Practices. In Proceedings
of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh,
7–9 February 2019; pp. 1–6.

17. Dijkstra, E.W. The Structure of “THE”-Multiprogramming System. Commun. ACM 1968, 11, 341–346. [CrossRef]
18. Parnas, D.L. On the Criteria To Be Used in Decomposing Systems into Modules. Commun. ACM 1972, 15, 1053–1058. [CrossRef]
19. Royce, W.E.; Royce, W. Software Architecture: Integrating Process and Technology. Quest 1991, 14, 2–15.
20. Shaw, M.; Garlan, D. Software Architecture: Perspectives on an Emerging Discipline; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1996.
21. Kruchten, P. The 4+1 View Model of Architecture. IEEE Softw. 1995, 12, 42–50. [CrossRef]
22. Clements, P.C. Coming Attractions in Software Architecture. In Proceedings of the 5th International Workshop on Parallel and

Distributed Real-Time Systems and 3rd Workshop on Object-Oriented Real-Time Systems, Geneva, Switzerland, 3 April 1997;
pp. 2–9.

23. Kouroshfar, E.; Mirakhorli, M.; Bagheri, H.; Xiao, L.; Malek, S.; Cai, Y. A Study on the Role of Software Architecture in the
Evolution and Quality of Software. In Proceedings of the 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, Florence, Italy, 16–17 May 2015; pp. 246–257. [CrossRef]

24. Whiting, E.; Andrews, S. Drift and Erosion in Software Architecture: Summary and Prevention Strategies. In Proceedings of the
2020 the 4th International Conference on Information System and Data Mining, ICISDM 2020, Hawaii, HI, USA, 15–17 May 2020;
Association for Computing Machinery: New York, NY, USA, 2020; pp. 132–138.

25. Rechtin, E. Systems Architecting: Creating and Building Complex Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1990.
26. Perry, D.E.; Wolf, A.L. Foundations for the Study of Software Architecture. ACM SIGSOFT Softw. Eng. Notes 1992, 17, 40–52.

[CrossRef]
27. Soni, D.; Nord, R.L.; Hofmeister, C. Software Architecture in Industrial Applications. In Proceedings of the 17th International

Conference on Software Engineering, Seattle, WA, USA, 23–30 April 1995; pp. 196–207.

http://doi.org/10.1002/sys.1018
http://dx.doi.org/10.1109/MC.2017.32
http://dx.doi.org/10.1016/j.jss.2010.10.020
http://dx.doi.org/10.1016/j.jss.2009.09.016
http://dx.doi.org/10.1109/ICETAS48360.2019.9117324
http://dx.doi.org/10.24818/issn14531305/24.2.2020.08
http://dx.doi.org/10.1109/SCCC.2011.11
http://dx.doi.org/10.1145/363095.363143
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1109/MSR.2015.30
http://dx.doi.org/10.1145/141874.141884

Electronics 2023, 12, 1582 12 of 13

28. Herdika, H.R.; Budiardjo, E.K. Variability and Commonality Requirement Specification on Agile Software Development: Scrum,
XP, Lean, and Kanban. In Proceedings of the 2020 3rd International Conference on Computer and Informatics Engineering
(IC2IE), Yogyakarta, Indonesia, 15–16 September 2020; pp. 323–329.

29. Beck, K. Extreme Programming Explained: Embrace Change; Addison-Wesley Professional: Boston, MA, USA, 2000.
30. Abrahamsson. Extreme Programming: First Results from a Controlled Case Study. In Proceedings of the 2003 Proceedings 29th

Euromicro Conference, Antalya, Turkey, 1–6 September 2003; pp. 259–266. [CrossRef]
31. Kahkonen, T. Agile Methods for Large Organizations—Building Communities of Practice. In Proceedings of the Agile

Development Conference, Salt Lake City, UT, USA, 22–26 June 2004; pp. 2–10. [CrossRef]
32. Jorgensen, M. Relationships Between Project Size, Agile Practices, and Successful Software Development: Results and Analysis.

IEEE Softw. 2019, 36, 39–43. [CrossRef]
33. Vithana, V.N.; Asirvatham, D.; Johar, M. An Empirical Study on Using Agile Methods in Global Software Development.

In Proceedings of the 2018 18th International Conference on Advances in ICT for Emerging Regions (ICTer), Colombo, Sri Lanka,
26–29 September 2018; pp. 150–156. [CrossRef]

34. Pang, C.Y. An Agile Architecture for a Legacy Enterprise IT System. Int. J. Organ. Collect. Intell. 2016, 6, 65–97. [CrossRef]
35. Kumar, R.; Maheshwary, P.; Malche, T. Inside agile family software development methodologies. Int. J. Comput. Sci. Eng. 2019, 7, 650–660.

[CrossRef]
36. Canfora, G.; Cimitile, A.; Visaggio, C.A. Empirical Study on the Productivity of the Pair Programming. In Proceedings of the

Extreme Programming and Agile Processes in Software Engineering, Sheffield, UK, 18–23 June 2005; Baumeister, H., Marchesi,
M., Holcombe, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 92–99.

37. Huo, M.; Verner, J.; Zhu, L.; Babar, M. Software Quality and Agile Methods. In Proceedings of the Proceedings of the 28th Annual
International Computer Software and Applications Conference, 2004 COMPSAC 2004, Hong Kong, China, 28–30 September 2004;
Volume 1, pp. 520–525.

38. Reifer, D.; Maurer, F.; Erdogmus, H. Scaling Agile Methods. IEEE Softw. 2003, 20, 12–14. [CrossRef]
39. Coram, M.; Bohner, S. The Impact of Agile Methods on Software Project Management. In Proceedings of the 12th IEEE

International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05), Greenbelt, MD, USA,
4–7 April 2005; pp. 363–370.

40. Booch, G. The Economics of Architecture-First. IEEE Softw. 2007, 24, 18–20. [CrossRef]
41. Garlan, D. Software Architecture: A Travelogue. In Proceedings of the Future of Software Engineering Proceedings, FOSE 2014,

Hyderabad, India, 31 May–7 June 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 29–39.
42. Clements, P.C.; Ivers, J.; Little, R.; Nord, R.; Stafford, J.A. Documenting Software Architectures in an Agile World; Technical Note

CMU/SEI-2003-TN-023; Software Engineering Institute: Pittsburgh, PA, USA, 2003.
43. Nord, R.L.; Tomayko, J.E.; Wojcik, R. Integrating Software-Architecture-Centric Methods into Extreme Programming (XP); Technical

Note ADA431084; Software Engineering Institute: Pittsburgh, PA, USA, 2004.
44. Beck, K. Test-Driven Development: By Example; Addison-Wesley Professional: Boston, MA, USA, 2000.
45. Ambler, S. Agile Modeling: Effective Practices for Extreme Programming and the Unified Process; John Wiley & Sons: Hoboken, NJ, USA, 2002.
46. Jonsson, H.; Larsson, S.; Punnekkat, S. Agile Practices in Regulated Railway Software Development. In Proceedings of the 2012

IEEE 23rd International Symposium on Software Reliability Engineering Workshops, Washington, DC, USA, 27–30 November
2012; pp. 355–360. [CrossRef]

47. Kaisti, M.; Rantala, V.; Mujunen, T.; Hyrynsalmi, S.; Könnölä, K.; Mäkilä, T.; Lehtonen, T. Agile Methods for Embedded Systems
Development—A Literature Review and a Mapping Study. EURASIP J. Embed. Syst. 2013, 2013, 15. [CrossRef]

48. McHugh, M.; McCaffery, F.; Casey, V. Adopting Agile Practices when Developing Software for Use in the Medical Domain. J.
Softw. Evol. Process. 2014, 26, 504–512. [CrossRef]

49. Lindvall, M.; Basili, V.; Boehm, B.; Costa, P.; Dangle, K.; Shull, F.; Tesoriero, R.; Williams, L.; Zelkowitz, M. Empirical Findings in
Agile Methods. In Proceedings of the Extreme Programming and Agile Methods — XP/Agile Universe 2002, Chicago, IL, USA,
4–7 August 2002; Wells, D., Williams, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 197–207.

50. Papatheocharous, E.; Andreou, A.S. Evidence of Agile Adoption in Software Organizations: An Empirical Survey. In
Proceedings of the Systems, Software and Services Process Improvement; McCaffery, F., O’Connor, R.V., Messnarz, R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 237–246.

51. Turk, D.; France, R.B.; Rumpe, B. Limitations of Agile Software Processes. CoRR 2014, abs/1409.6600.
52. Tessem, B.; Maurer, F. Job Satisfaction and Motivation in a Large Agile Team. In Proceedings of the Agile Processes in Software Engineering and

Extreme Programming; Concas, G., Damiani, E., Scotto, M., Succi, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 54–61.
53. Paige, R.F.; Charalambous, R.; Ge, X.; Brooke, P.J. Towards Agile Engineering of High-Integrity Systems. In Proceedings of the

Computer Safety, Reliability, and Security; Harrison, M.D., Sujan, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 30–43.
54. Rohunen, A.; Rodriguez, P.; Kuvaja, P.; Krzanik, L.; Markkula, J. Approaches to Agile Adoption in Large Settings: A Comparison

of the Results from a Literature Analysis and an Industrial Inventory. In Proceedings of the Product-Focused Software Process
Improvement; Ali Babar, M., Vierimaa, M., Oivo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 77–91.

55. Ge, X.; Paige, R.F.; McDermid, J.A. An Iterative Approach for Development of Safety-Critical Software and Safety Arguments.
In Proceedings of the 2010 Agile Conference, Nashville, TN, USA, 9–13 August 2010; pp. 35–43. [CrossRef]

56. Smith, J.; Menzies, T. Should NASA Embrace Agile Processes; Technical Report; NASA: Washington, DC, USA, 2002.

http://dx.doi.org/10.1109/EURMIC.2003.1231599
http://dx.doi.org/10.1109/ADEVC.2004.4
http://dx.doi.org/10.1109/MS.2018.2884863
http://dx.doi.org/10.1109/ICTER.2018.8615505
http://dx.doi.org/10.4018/IJOCI.2016100104
http://dx.doi.org/10.26438/ijcse/v7i6.650660
http://dx.doi.org/10.1109/MS.2003.1207448
http://dx.doi.org/10.1109/MS.2007.146
http://dx.doi.org/10.1109/ISSREW.2012.80
http://dx.doi.org/10.1186/1687-3963-2013-15
http://dx.doi.org/10.1002/smr.1608
http://dx.doi.org/10.1109/AGILE.2010.10

Electronics 2023, 12, 1582 13 of 13

57. Gary, K.; Enquobahrie, A.; Ibáñez, L.; Cheng, P.; Yaniv, Z.; Cleary, K.; Kokoori, S.; Muffih, B.; Heidenreich, J. Agile Methods for
Open Source Safety-Critical Software. Softw. Pract. Exp. 2011, 41, 945–962. [CrossRef]

58. Mishra, D.; Mishra, A. Complex Software Project Development: Agile Methods Adoption. J. Softw. Maintenance Res. Pract. 2011,
23, 549–564. [CrossRef]

59. Boehm, B.; Lane, J.A.; Koolmanojwong, S.; Turner, R. Architected Agile Solutions for Software-Reliant Systems. In Agile
Software Development—Current Research and Future Directions; Dingsøyr, T.; Dybå, T.; Moe, N.B., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 165–184.

60. Kruchten, P. Software Architecture and Agile Software Development: a Clash of Two Cultures? In Proceedings of the 2010 32nd
International Conference on Software Engineering (ICSE); IEEE Computer Society: Los Alamitos, CA, USA, 2010; Volume 2, pp. 497–498.

61. Nord, R.L.; Ozkaya, I.; Kruchten, P. Agile in Distress: Architecture to the Rescue. In Proceedings of the Agile Methods. Large-Scale
Development, Refactoring, Testing, and Estimation - XP 2014 International Workshops, Rome, Italy, 26–30 May 2014, Revised
Selected Papers; Lecture Notes in Business Information Processing; Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, Ç.,
Petersen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 199, pp. 43–57.

62. Martin, R.C.; Grenning, J.; Brown, S.; Henney, K.; Gorman, J. Clean Architecture: A Craftsman’s Guide to Software Structure and
Design; Number s 31; Prentice Hall: Hoboken, NJ, USA, 2018.

63. North, D. Introducing bdd. Better Softw. 2006, 12.
64. Wynne, M.; Hellesoy, A.; Tooke, S. The Cucumber Book: Behaviour-Driven Development for Testers and Developers; Pragmatic Bookshelf:

Raleigh, NC, USA, 2017.
65. Vernon, V. Implementing Domain-Driven Design; Addison-Wesley: Boston, MA, USA, 2013.
66. Balalaie, A.; Heydarnoori, A.; Jamshidi, P. Microservices architecture enables devops: Migration to a cloud-native architecture.

IEEE Softw. 2016, 33, 42–52. [CrossRef]
67. Cerny, T.; Donahoo, M.J.; Trnka, M. Contextual understanding of microservice architecture: current and future directions. ACM

SIGAPP Appl. Comput. Rev. 2018, 17, 29–45. [CrossRef]
68. Brandolini, A. Introducing EventStorming: An act of Deliberate Collective Learning; Leanpub: Victoria, BC, Canada, 2018.
69. Hofer, S.; Schwentner, H. Domain Storytelling: A Collaborative, Visual, and Agile Way to Build Domain-Driven Software; Addison-

Wesley: Boston, MA, USA, 2022.
70. Buschmann, F.; Henney, K. Architecture and Agility: Married, Divorced, or Just Good Friends? IEEE Softw. 2013, 30, 80–82.

[CrossRef]
71. Lankhorst, M.M.; Proper, H.A. Agile architecture. In Agile Service Development; Springer: Berlin/Heidelberg, Germany, 2012; pp. 41–57.
72. Maier, M.W. System and Software Architecture Reconciliation. Syst. Eng. 2006, 9, 146–159. [CrossRef]
73. Evans, E.; Evans, E.J. Domain-Driven Design: Tackling Complexity in the Heart of Software; Addison-Wesley: Boston, MA, USA, 2004.
74. Gharajeh, M. Waterative Model: An Integration of the Waterfall and Iterative Software Development Paradigms. Database Syst. J.

2019, 10, 75–81.
75. Kirpitsas, I.; Pachidis, T. Evolution towards Hybrid Software Development Methods and Information Systems Audit Challenges.

Software 2022, 1, 316–363. [CrossRef]
76. Badreddin, O.; Khandoker, R.; Forward, A.; Masmali, O.; Lethbridge, T.C. A Decade of Software Design and Modeling: A Survey

to Uncover Trends of the Practice. In Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, MODELS ’18; Association for Computing Machinery: New York, NY, USA, 2018; pp. 245–255. [CrossRef]

77. Dasanayake, S.; Aaramaa, S.; Markkula, J.; Oivo, M. Impact of Requirements Volatility on Software Architecture: How do
Software Teams Keep Up with Ever-Changing Requirements? CoRR 2019, abs/1904.08164. [CrossRef]

78. Mohagheghi, P.; Aparicio, M.E. An Industry Experience Report on Managing Product Quality Requirements in a Large
Organization. Inf. Softw. Technol. 2017, 88, 96–109. [CrossRef]

79. Bellomo, S.; Gorton, I.; Kazman, R. Toward Agile Architecture: Insights from 15 Years of ATAM Data. IEEE Softw. 2015, 32, 38–45.
[CrossRef]

80. da Costa Junior, A.A.; Misra, S.; Soares, M.S. A Systematic Mapping Study on Software Architectures Description Based on
ISO/IEC/IEEE 42010: 2011. In Proceedings of the Computational Science and Its Applications—ICCSA 2019—19th International
Conference, Saint Petersburg, Russia, 1–4 July 2019, Proceedings, Part V; Lecture Notes in Computer Science; Misra, S., Gervasi,
O., Murgante, B., Stankova, E.N., Korkhov, V., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Eds.;
Springer: Berlin/Heidelberg, Germany, 2019; Volume 11623, pp. 17–30.

81. Beck, K.; Andres, C. Extreme Programming Explained: Embrace Change, 2nd ed.; Addison-Wesley: Boston, MA, USA, 2004.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/spe.1075
http://dx.doi.org/10.1002/smr.528
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1145/3183628.3183631
http://dx.doi.org/10.1109/MS.2013.25
http://dx.doi.org/10.1002/sys.20050
http://dx.doi.org/10.3390/software1030015
http://dx.doi.org/10.1145/3239372.3239389
http://dx.doi.org/10.1002/smr.2160
http://dx.doi.org/10.1016/j.infsof.2017.04.002
http://dx.doi.org/10.1109/MS.2015.35

	Introduction
	A Review on Items about Architecture and Agile Development
	Agile Methods
	Software Architecture
	Architecture-Based Development
	Agile-Based Development

	Attempts for Agile-Architecture Reconciliation
	First Attempts for Agile-Architecture Reconciliation
	Maturity—Second Decade for Agile-Architecture Reconciliation

	Guidelines for Future Agile Methodologies and Architecture Reconciliation
	Discussion
	Conclusions and Future Work
	References

