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Abstract. Low alloyed carbon steel is the only viable material of construction for long pipelines 
transporting unprocessed gas-condensate. The water that condenses is highly corrosive because 
it contains dissolved acid gases, i.e., CO2, H2S and organic acids like acetic and formic acid. The 
high velocity gas also contains droplets of water and condensate, and these will deposit if they 
hit the steel surface. Monoethylene glycol (MEG) injected to prevent ice and hydrates must be 
considered when predicting the composition and corrosivity of the aqueous phases in the 
pipeline. The liquids gathering at the bottom of the pipe have a higher heat capacity than the gas, 
and the temperature at the top of the pipe will be slightly lower than at the bottom. As the 
produced fluids cool during the transport from the hot wells to the process plant, water will 
condense on the cold pipe surface and more at the top than at the bottom. The literature on Top-
of-line corrosion (ToLC) has grown steadily since the first reported case in 1960. There are also 
several prediction models for ToLC. This review is an overview of the main factors that cause 
ToLC and how these are modelled. Mass transfer from the aqueous phase at the bottom to the 
top contribute to the condensation. Despite the low MEG to water ratio in the gas due to the 
difference in vapour pressure, the fraction of MEG in the condensing water may be considerable. 
The concentration of MEG in the aqueous phase at the top depends on the mass transfer from 
bottom. The same is the case for organic acids. Liquid droplets entrained in the gas may deposit 
top of line and contribute to the chemistry of the aqueous phase. Models for ToLC must thus not 
only predict the composition of the condensing phases but also the mass transfer to be able to 
estimate the corrosion rate. 

1.  Introduction 
There are ca. 8 800 km pipelines on the Norwegian continental shelf [1]. Although the major part is 
made in carbon steel, few encounter corrosion at the inside. The reason is that most of them carry dry 
gas or condensate. Corrosion on the hydrocarbon side is an issue for multiphase pipelines which 
transport unprocessed well fluids or water saturated fluids. These are not only infield pipelines, but also 
long-distance flowlines, as the Troll pipeline to Kollsnes, the Ormen Lange pipeline to Nyhamna and 
the Snøhvit pipeline to Melkøya. The Troll pipeline was a major step for the Norwegian oil and gas 
industry as one of the first long distance pipelines transporting water saturated natural gas. The later 
multiphase pipelines Ormen Lange and Snøhvit are carrying unprocessed well fluids from subsea 
templates to onshore terminals.  

The water that condenses from unprocessed gas is corrosive to carbon steel as the gas contains CO2 
that dissolves in the water. Other components in the gas that contribute to the corrosion are H2S and 
organic acids. The fluids are normally cooled to seabed temperature within a few kilometres from the 
pipeline inlet. The cooling rate depends on the insulation and exposure to seawater. Water will condense 
on the pipeline wall if the gas is not dried to a sufficiently low dew point.  
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The water condenses on the whole circumference of the pipe, but if the fluid flow is stratified, the 
aqueous phase that condenses at the upper part of the pipe can differ considerably in composition 
compared to the aqueous phase flowing at the bottom. If the heat transfer at the top of the pipe is higher 
than at the bottom, the major condensation will take place at the upper part. Mass transfer from the 
aqueous phase bottom of line to the gas and from the gas to the liquid top of line plays a role, too. The 
effect becomes apparent when the bulk liquid is not water only but contains glycol or other cosolvents. 

Corrosion takes place both at the bottom (BoL) and top of line (ToL), but the characteristics are 
different [2]. The ability of the water to take up (dissolve) corrosion products is a key parameter. At the 
bottom it is controlled by the temperature and the composition of the aqueous phase in contact with the 
steel. At the top, the water condensation rate is the factor that determines the corrosion rate. A recent 
review lists the following processes that controls top of line corrosion (ToLC) [3]: 

- Fluid mechanics – The ToLC risk is largest for stratified flow  
- Heat and mass transfer – condensation on cold wall and transport of corrosive species to the 

condensed liquid  
- Chemistry (electrochemistry) – the composition of the aqueous phase determines the rate of 

the corrosion reactions 
The ToLC rate is controlled by the build-up of Fe2+ in the condensing aqueous phase. Some models 

are based on a Fe2+ flux balance which consider the precipitation of FeCO3 (iron carbonate) as well as 
Fe2+ transportation in the water film such as in [4]. Other older models base the ToLC rate on the FeCO3 
solubility and supersaturation factor that must be exceeded to form protective FeCO3 [5, 6]. 

When thermodynamic hydrate inhibitors as MEG are employed, it will have large effects on the 
condensation rate and the corrosion mechanism. MEG at the BoL dilutes the water and reduces the water 
vapour pressure, but at the same time, MEG will evaporate and be present in the gas phase. It has a 
lower vapour pressure than water, and while the MEG:water ratio in the aqueous phase at BoL is about 
1:1, it is typically 1:50 in the gas phase. If the condensation rate calculation is based on condensing the 
water and MEG in the gas phase without resupply, the condensing phase will be water with a few percent 
MEG. If chemical equilibrium is maintained, the MEG concentration in the condensing aqueous phase 
will be nearly the same as at the BoL [7]. 

Another key parameter for ToLC is presence of volatile fatty acids (VFAs) sometimes denoted 
organic acids. The most common is acetic, formic and propanoic acid. As they are volatile, they will be 
produced with the gas when they are present in the formation water. Hence even if there is no formation 
water break through, there may be VFAs in the produced fluids. Another source of VFAs is back 
production of salts used as completion fluids. Although the concentration of VFAs in the gas is low, in 
the ppb level, they can reach ppm levels in the condensing aqueous phase and have major impact on the 
ToLC [8]. The chemistry of the BoL aqueous phase and the mass transfer to the gas are the main factors 
that determine the dissolution rate of VFAs and thereby the corrosion rate ToL. In fields using MEG, it 
is important to consider that VFAs can be recycled to the pipelines via the recycled MEG.  

Another known factor for ToLC that has been little implemented in models so far is droplet transport. 
Both droplets precipitating in the gas phase and teared off from the liquids BoL can be transported to 
the top. The aqueous phase BoL normally contains corrosion inhibitor, and it may also have a relatively 
high alkalinity. So, even a small number of droplets from the BoL aqueous phase will have large impact 
on the volume and chemistry of the ToL aqueous phase. Hydrocarbon liquid on the pipe wall may 
prevent water wetting and thereby reduce the corrosion rate considerably. Hence, oil droplets carried 
with the gas that hit and adhere to the wall at the upper part will limit the corrosion.    

This article presents a summary of the principles that ToLC prediction models build on, and with 
particular focus on the kinetics of the mass transfer. The objective for improving the prediction models 
is to avoid over conservatism that may lead to costly facilities like cooling spools, CRA cladded sections 
and/or insulation with low U-values.  
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2.  Modelling ToLC 
Recent literature reviews of ToLC give overview of the development of models for ToLC over the years 
and discuss the main equations and algorithms they included [4, 9]. For water condensation Singer 
distinguishes between “Water dropout approach” and “Local water condensation approach” [9]. The 
difference is that the first approach uses the reduction in water vapour pressure along the pipeline to 
calculate the condensation rate while the second approach links it to dropwise condensation and has the 
heat flux as basis for calculating the condensation rate. The second method is more accurate as it 
considers evaporation from the aqueous phase at the bottom and gives a better prediction of local water 
condensation at the top of the pipe. The worst case of ToLC is cold spot corrosion [10]. Evaporation 
from the bulk aqueous phase at the bottom becomes even more important when species as MEG and 
VFAs with relatively low vapour pressure take part in the condensation and corrosion reactions. 

2.1.  Co-condensation of MEG/water  
The net condensation in a pipeline can easily be calculated based on the temperature and pressure profile 
along the pipeline as illustrated in Figure 1. It is the same as the “Water dropout approach”.  
 

 

 
Figure 1. Calculation of net water condensation rate (WCR) between two points with temperature 

T1 and T2 and pressure P1 and P1. WRGH2O is the mass rate of water in the gas phase, and A is the 
pipeline surface area between the points.  

 
When MEG is a major constituent in the aqueous phase BoL, it has a major effect on the aqueous 

condensation. It lowers the activity of water in the aqueous phase BoL and thereby reduces the partial 
pressure of water in the gas. Unless the temperature at the top is lower than the water dew point, there 
will only be condensation if both water and MEG deposit at the top. If the temperature difference 
between ToL and the bulk gas is small and the gas phase is in thermodynamic equilibrium with the 
aqueous phase, it implies that the MEG concentration in the condensing phase must be nearly the same 
as in the aqueous phase BoL. The example in Figure 2 shows the dew temperature as function of the 
MEG concentration in the condensing aqueous phase. It illustrates that the mass transfer from the 
aqueous phase BoL to the gas must be considerable to maintain the condensation if the temperature 
difference between the bulk gas and wall surface is small.  

The local condensation rate will be considerably higher than the net condensation rate between two 
points if mass transfer can be maintained, and the temperature difference between the bulk gas and the 
upper wall is small. Figure 3 gives the net condensation (cond.) rate and the actual condensation rate for 
two different scenarios in a pipeline with MEG. The calculation is for a pipeline where the temperature 
at the inlet is 90 °C. The thermodynamic equilibrium (Thermodynamic equation) curve is calculated 
assuming that the mass transfer of MEG from bottom to gas is sufficiently high to maintain 
thermodynamic equilibrium. The No communication curve is calculated based in thermodynamic 
equilibrium at the pipeline inlet and then no mass transfer of MEG from the bottom to the gas. That 
situation can occur in a gas-condensate pipeline if the condensate layer covers the rich MEG at the 
bottom and prevents evaporation of MEG from that layer. The difference is considerable. The actual 

T1, P1
→ WRGH2O1

T2, P2
→ WRGH2O2

WCR=ΔWRGH2O/A
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condensation rate is more than the double of the net condensation near the inlet if thermodynamic 
equilibrium is achieved while the net condensation cannot be obtained for a distance downstream of the 
inlet if there is no mass transfer from the rich MEG to the gas phase. The difference in corrosion rate 
will be the same as most ToLC models set the corrosion rate proportional to the condensation rate.   

 

 
Figure 2. Dew temperature as function of MEG concentration in a condensing aqueous phase. The 

bulk gas is saturated at 70 °C in contact with an aqueous phase with 60 wt% MEG. Software used for 
the calculation: MultiScale 8.1.  

 

 
Figure 3. Condensation rate along a pipeline. Net condensation rate is calculated as illustrated in 

Figure 1. The two scenarios, thermodynamic equilibrium (Thermod. eq.) and no communication are 
discussed in the text. Calculation for pipeline with inlet temperature and pressure 90 °C and 100 bar 

and outlet temperature and pressure 10 °C and 70 bar. The gas (pure CH4) is water saturated at 200 bar 
and 110 °C and 90 wt% MEG is injected at a rate that gives 40 wt% MEG at the outlet. The gas rate is 

20 MSm3/d.  
 

60

62

64

66

68

70

72

0102030405060

Te
m

pe
ra

tu
re

 T
oL

 [°
C

]

MEG conc [wt%]

0

10

20

30

40

50

60

70

80

020406080

C
on

de
ns

at
io

n 
ra

te
 [g

/s
/K

]

Temperature [°C]

Condensation rates 

Net cond. rate

Thermod. eq.

No communication



COTech & OGTech 2021
IOP Conf. Series: Materials Science and Engineering 1201  (2021) 012082

IOP Publishing
doi:10.1088/1757-899X/1201/1/012082

5

 
 
 
 
 
 

There are experimental studies of co-condensation of water and MEG, but the parameter range that 
has been covered is limited. Islam et al. performed experiments in a glass cell with condensation on a 
cold finger [11]. They found that the MEG concentration in the condensing phase was much lower than 
in the bulk aqueous phase, especially when the MEG concentration in the bulk was more than 50 wt%. 
The experimental conditions in that study gave a relative high temperature difference, 10 – 25 °C, 
between the cold surface and the bulk gas. The article does not state the gas flow rate, but the set-up 
implies that it was low. It is noted that the high temperature difference between the bulk gas and the 
surface with condensation implies that the MEG concentration will be low in the condensing aqueous 
phase according to Figure 2. 

Guo et al. studied MEG/water co-condensation in a flow loop with controlled gas flow rate [12]. The 
condensation took place in a cooled section of the loop and there was no condensation upstream of the 
cooled part. The gas velocity was 1 and 3 m/s, the gas temperature was 42 to 67 °C and the pipe wall 
temperature was 32 to 65 °C. They also found that the MEG concentration in the condensing MEG/water 
was much lower than the MEG content in the bulk liquid in the tank where the gas was saturated with 
MEG and water. The conditions in the tests were close to the “No communication” case in Figure 3.  
The results confirm that the MEG concentration in the condensing MEG/water was much lower than in 
the aqueous phase the gas was equilibrated with.  

2.2.  Mass transfer of volatile species to ToL aqueous phase 
Volatile VFAs and corrosion inhibitor components can be transferred to the ToL aqueous phase and 
affect the corrosion rate are. Only VFAs will be discussed here, but similar mechanisms apply for other 
components that speciate between gas and aqueous phase. Formation water may contain VFAs that 
partly speciate to the produced gas. They are thus produced even though there is no formation water 
break through. The most common acid is acetic acid, but formic, propionic, butyric, and heavier acids 
can also be present. Another source of VFAs can be completion fluids used to stabilise the wells before 
production start-up. Formate salts are highly soluble and have been used as high-density brines for this 
purpose. VFAs is always a concern, but especially in pipelines which use recycled MEG. Depending on 
the MEG regeneration process considerable amounts of VFAs can be injected with the MEG. In such 
cases, completion brine that is back produced for a short time may reside in the MEG loop for years if 
the salt removal capacity of the MEG regeneration system is low.  

Dugstad studied the impact of formic and acetic acid in the gas phase on ToLC [8]. By an indirect 
method he showed that a corroding surface could consume all acid that was supplied. Results from loop 
experiments with formic acid showed that mass transfer of acid increased with flow velocity and the 
presence of MEG seemed to increase the uptake of acid. Furthermore, the experiments indicated that 
acids were consumed until the aqueous phase was saturated with iron carbonate. That implies that the 
formic acid can be more corrosive than acetic acid as its dissociation constant is 10 times higher. 

Singer et al. made a parametric study of ToLC in presence of acetic acid [13]. They found that high 
concentration of acetic acid led to high localised corrosion rates even at low water condensation rates. 
Svenningsen et al. reported that ToLC rate increased strongly with amount of acetic acid in the 
condensed water [14]. They concluded that the amount of iron that can dissolve in the condensed water 
limits the corrosion rate and acetic acid increases the solubility of iron in the condensing water. It also 
plays a role that the corrosion reactions with formic and acetic acid are much faster than the reactions 
with CO2 and carbonic acid [15]. 

Even though the term volatile is used for these acids, their vapour pressures are relatively low, and 
there is a linear relationship between the concentration of acid in the gas and an aqueous phase (Henry’s 
law). As shown in Figure 4, the partial pressure of acetic acid in a gas phase in equilibrium with an 
aqueous phase with 40 to 70 wt% MEG that contains 120 mg/kg acetic acid typically is in the range 
0.002 to 0.03 mbar at 30 to 90 °C. It implies that the volume fraction in a gas phase at 100 bar is less 
than 1 ppmv when the concentration in the aqueous phase at the BoL is around 100 ppmw. It can thus 
be anticipated that the gas can become depleted in organic acids when they dissolve in the aqueous phase 
ToL unless the mass transfer of acids from the BoL to the gas is fast.        
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Figure 4. Acetic acid (CH3COOH) vapour pressure as function of temperature and MEG 

concentration when the concentration in the aqueous phase is 120 mg/kg.  
 

The VFAs will be partially dissociated in the aqueous phase, and as it is acid that is volatile, it is 
possible to control the partial pressure of acid in the gas by adding an alkali e.g., NaOH or an organic 
base to the MEG before injection. To keep a constant low concentration of acid, the alkalinity in the 
recycled MEG must increase if the total concentration of acid and carboxylate, e.g., acetic acid and 
acetate, increases. According to the dissociation reaction (acetic acid as an example):  

 
 𝐶𝐶𝐻𝐻3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⇋ 𝐶𝐶𝐻𝐻3𝐶𝐶𝐶𝐶𝑂𝑂− + 𝐻𝐻+ (1) 

 
The equilibrium concentrations are given by   
 
 [𝐶𝐶𝐻𝐻3𝐶𝐶𝐶𝐶𝑂𝑂−]∙[𝐻𝐻+]

[𝐶𝐶𝐻𝐻3𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] = 𝐾𝐾𝑎𝑎 (2) 
 
where the [] denotes concentration of the bracketed specie and 𝐾𝐾𝑎𝑎 is the dissociation constant. 
 
The dissociation of VFAs decreases with increasing MEG concentration, and this must be taken into 

account in order to estimate the amount of VFAs that may dissolve in the aqueous phase and take part 
in the corrosion ToL. There is software available which can do that. The mass transfer coefficient is 
connected to the flow conditions in the pipeline and can be estimated from Sherwood, Schmidt and 
Reynolds numbers.  

2.3.  The effect of droplets  
It is largely agreed that ToLC only occurs if the flow is stratified. However, there may be droplets of the 
liquid phases carried in the gas, and they can impact the ToLC considerably. From the discussion above, 
it follows that mass transfer of MEG and VFAs to the gas may control the condensation rate and 
concentration of corrosive species in the aqueous phase ToL. Droplets of the BoL phase in the gas can 
increase the area for mass transfer considerably and thus maintain the concentration of MEG and VFAs 
in the gas phase during deposition / dissolution ToL.  

Droplets that are carried to the ToL and deposited will increase the actual condensation rate. The 
aqueous droplets will carry dissolved salts and chemicals and thus the chemistry of the phase ToL may 
change considerably. It is envisaged that increased alkalinity and transfer of corrosion inhibitor may 
decrease the ToLC rate despite the increase in aqueous volume.  
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3.  Conclusions 
There is an extensive number of publications that describe experiments and models for ToLC in 
pipelines carrying unprocessed or partly processed gas and condensate. The emphasis has been on 
corrosion mechanisms, and it is unclear how the models consider mass transfer of species that are 
important for the condensation rate and corrosivity of the aqueous phase that deposits ToL.  

The net condensation calculated from thermodynamic flash calculation at points along a pipeline 
does not give the actual condensation rate. When MEG is applied as a hydrate inhibitor, it will affect 
the condensation. The condensation rate can considerably higher than the net condensation if the mass 
transfer of MEG from the aqueous phase at the bottom is fast. On the other hand, the net condensation 
rate cannot be reached if the mass transfer of MEG is slow, if it, e.g., is hindered by layer of hydrocarbon 
condensate.   

The mass transfer to the gas phase is also the key factor to maintain the concentration when of non-
dissociated VFAs dissolve in the aqueous phase ToL. These dependencies imply that to take ToLC 
prediction a step further one must include flow models which make it possible to calculate mass transfer 
between liquid and gas phases.   
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