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Abstract

The interest in the use of upgraded biogas for the introduction of renewable hydrogen through reforming technologies is steadily
increasing. Renewable hydrogen as fuel for power production or transportation is one major application area. The novel sorption-
enhanced reforming (SER) technology including CO, capture has the potential to introduce renewable hydrogen to the marked
and at the same time provide bio-CO, that can be used to produce biomethane through the Sabatier process. This paper presents
the work carried out to design and build a small SER prototype using a dual bubbling fluidized bed reactor system. Reactor
modeling and advanced computational fluid dynamics have been used to dimension and evaluate the performance of the
installation. Preliminary laboratory tests have allowed validating the design and the system specifications. Finally, initial batch
tests run on the installation have proved the feasibility of operating the process. The next phase of this work will involve the
coupling of the solids circulation loop to operate the system continuously.
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1. Introduction

Hydrogen is widely considered as a sustainable CO,-free energy carrier for stationary and mobile applications,
such as decentralized power production, and for the transport sector. Its use as transportation fuel in Fuel Cell
Hydrogen Vehicles (FCHV) has been successfully demonstrated in several international projects both in Europe,
North America and Asia [1, 2], and several car manufacturers plan the introduction of FCHVs on the market by
2015-2017. For decentralized small and medium scale hydrogen production, two main routes have been developed:
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water electrolysis and reforming of gaseous carbonaceous fuels. However, to use hydrogen as a CO,-free energy
carrier, electrolysis is depending on green electricity supply and reforming requires either the use of a CO, capture
unit (with transport and storage facilities) and/or the use of biomethane produced from biogas or biomass.

There are three main routes to produce biogas: through anaerobic digestion, through gasification and
methanation, and through the reduction of bio-CO, with renewable hydrogen via the Sabatier process [3]. The latter
is seen as a third generation biofuel and is now considered as an interesting option to increase the production of
biofuels on the market. However, this production route requires the use of bio-CO,. Biogas produced in anaerobic
digesters from sewage sludge, food waste or animal manures is now widely available worldwide in different
amounts. It has so far mainly been used for power production and as transportation fuel after an upgrading step, but
has recently been considered as a viable alternative to introduce significant amounts of renewable hydrogen on the
market.

Conventional Steam Methane Reforming (SMR) is currently the preferred technology to produce hydrogen from
biogas via biomethane. At small and medium scale, this process involves three main steps: reforming, water-gas
shift and hydrogen purification where CO, is removed from the process along with methane, carbon monoxide and
nitrogen impurities. If CO, is to be separated in this production route to produce valuable bio-CO,, a costly extra
removal step has to be added.

Since the late nineties, hydrogen production using Sorption-Enhanced Reforming (SER) has been investigated by
several research groups and is now considered as an emerging promising reforming technology. This technology
involves only two main process steps and CO, capture as an integrated part of the process. Therefore, it has the
potential to both reduce the production cost of renewable hydrogen and to supply valuable bio-CO, for the
production of additional biomethane via the Sabatier process. Moreover, since CO, capture is an integrated part of
the process, the technology has the possibility to avoid the costly biogas upgrading step. Therefore, the novel SER
reforming technology can, on a medium term perspective, contribute to a more efficient and profitable production of
renewable hydrogen with integrated CO, capture.

1.1. Aim and scope of the study

In order to bring the SER technology forward to up-scaling and commercialisation, knowledge regarding stable
operation of a reactor system suited to the SER process in steady state continuous operating conditions is needed.
Production of reliable experimental data at small pilot level also represents an important step towards design of
medium to large scale SER demonstration plants running on biomethane.

This paper will present the work carried out to design and build a small scale SER prototype using a Dual
Bubbling Fluidized Bed (DBFB) reactor system installed at the HyNor Lillestrom renewable hydrogen technology
test centre, 25 km east of Oslo, Norway [4]. Results from preliminary laboratory tests and from the first tests run on
the prototype will also be presented in the paper.

2. Sorption-enhanced reforming (SER)

Sorption Enhanced Reforming (SER) is an emerging technology for hydrogen production with integrated CO,
capture which combines the reforming and water gas shift reactions with a calcium looping cycle for CO, capture
based on a high temperature carbonation-calcination cycle. The process involves the use of a high temperature CaO-
based CO, solid sorbent together with a reforming catalyst, usually nickel based [5]. In the process, reforming, water
gas shift (WGS) and CO, capture (carbonation) occur simultaneously. The process takes advantage of the Le
Chatelier principle which, due to the simultaneous in-situ CO, sorption in the sorbent, results in a shift of the
thermodynamic equilibrium towards production of hydrogen, thereby enhancing the hydrogen yield. The
combination of these three chemical reactions results also in an almost auto-thermal overall reaction, with a broad
operation temperature window. The process has to be regenerative, and to release the captured CO,, the SER
looping cycle requires a second reaction vessel where the CO, sorbent is regenerated in a calcination reaction by
increasing the temperature beyond the decomposition temperature of CaCO;. The chemical reactions (1) to (5)
involved in the process are as follows:
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CH(g)+H,0(g) = 3H,(g) + CO(g) (1
CO(g)+H,0(g) — Hy(g) +CO,(g) @
Ca0+CO,(g) — CaCO; 3)

CH ,(g)+2H,0(g) + CaO — 4H,(g) + CaCO,
(4)

CaCO; — CaO+CO,(g) 5)

The main advantages of the SER process compared to conventional SMR are that fewer reaction vessels are
required, that there is no need for shift catalysts and CO, solvents, that a higher hydrogen yield (95 to 99 mole%, dry
basis) can be reached in one single step, and that a general process simplification and intensification leads to higher
efficiency. In addition, near to pure CO, is obtained by regenerating the CO,-sorbent using high temperature heat.

Sorption-enhanced reforming has been successfully demonstrated at laboratory scale with natural CaO-based
sorbents (dolomite and calcite) both in a fixed bed system [6] and in a fluidized bed system [7]. However, these
natural sorbents show limitations of their multi-cycle ability as their sorption capacity and reaction kinetics decrease
with the number of cycles, mainly due to sintering and pore closure effects [8]. In recent years, several research
groups have therefore been working on the development of synthetic CaO-based solid sorbents showing better
performances then natural sorbents [9]. This research is now focused on maximizing sorption capacity and multi-
cycling ability as well as minimizing the production costs.

In order to model the SER process, kinetics models are required. Correlations for the reaction rates are available
in the literature considering a two-particle system (sorbent and catalyst). Such models have been used in numerical
analyses by Lindborg et al. [10]. Considering the particle models, the structural changes in the spherical grains due
to the product layer have been considered in various ways [11]. Three different approaches based on the random
pore model, the shrinking unreacted core model and the grain model are reported for carbonation reaction of CaO
with C02

Extensive work has also been carried out in the field of reactor and process modelling adapted to the SER process
for Hy-production [12, 13]. Several modelling concepts are available for modelling fluidized beds, but the two-fluid
model concepts are normally preferred due to the feasible computational efforts required. Wang et al. [14] have
simulated the performance of SER in fluidized bed reactors operated in different flow regimes.

The SER process can be operated in a batch mode using several fixed bed reactors operating in a sequence, or in
a continuous mode by circulating the solids between two reactors operating in steady state. The latter can be
accomplished by using two coupled fluidized bed reactors where different configurations are possible.

Contrary to the SER reaction, the sorbent regeneration step of the process requires heat. This heat can be supplied
directly using an oxy-fuel combustion system, or indirectly using an integrated high temperature heat exchanger in
the regenerator. Two examples of the reactor configurations that can be used in the process are illustrated in Fig. 1.

Running the process in a batch mode, the SER reaction can be pressurized up to pressures usually used in the
standard reforming process (15-20 bar) to reduce the size of the reformer reactor. On the other hand, increasing the
pressure of the regeneration step of the process will require a higher calcination temperature, increase the amount of
heat to be supplied, and is therefore not advantageous. Pressurization of the process up to a few bars (3 bar) is also
possible if the process is run continuously with coupled fluidized bed reactors, the limiting factor being the
calcination temperature.
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Fig. 1. Two examples of the reactor configurations that can be used for the SER process.
3. Design of the Dual Bubbling Fluidized Bed (DBFB) reactor system
3.1. Reactor configuration and specification of the SER prototype

The continuous nature of the SER process makes the use of a fluidized bed reactor technology with circulation of
solids a natural choice to run the process in an efficient manner. Fluidized bed reactors show also advantageous
properties for running the process, such as good temperature homogeneity, excellent heat transfer, and the
possibility to add or purge solids under operation. As shown in Fig. 1, two different reactor configurations are
possible. The Dual Bubbling Fluidized Bed configuration (DBFB) with a submerged heat exchanger in the
regenerator has been chosen for the prototype, mainly to avoid the oxidation-reduction cycle of the commercial
nickel based reforming catalyst which could alter its stability and performance. A hydrogen production capacity of
about 10 Nm’/h has been considered as a suitable scale for demonstration purpose. The DBFB prototype is operated
at near atmosphere pressure. The sorbent used in the DBFB reactor system is a calcined Arctic dolomite (CaOMgO)
and the catalyst is a commercial Ni/Mg,Al,O, reforming catalyst containing 12 to 15 wt.% Ni. Fig. 2 shows a sketch
of the SER DBFB prototype.

3.2. Reactor modeling of the DBFB system and dimensioning

A previously developed two-phase hydrodynamic fluidized bed reactor model for the circulating DBFB system
has been used as a tool to dimension the system and to evaluate its performance [12]. In this model, referred to as
the Orcutt model [15], the fluidized bed consists of two phases, a bubble and a dense phase called emulsion. Each
phase is described by separate equations, including a term describing interfacial mass transfer. The two-phase theory
states that all gas in excess of that necessary to fluidize the bed passes through the bed as bubbles. The gas flow in
the bubbles is modelled as plug flow and the gas in the dense phase is considered perfectly mixed. Mass transfer
between the two phases is represented by an interphase mass transfer coefficient. Reaction kinetics, thermodynamics
and heat and mass balances are taken into account in the model. The carbonation kinetics model uses a shrinking
unreacted-core model and is described by Johnsen [16]. The rate expressions for the catalytic SMR reaction are
those proposed by Xu and Froment [17] who used a Ni/MgAl,0, catalyst.
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Fig. 2. Sketch of the SER DBFB prototype.

The main inputs to the circulation reactor model are:

Hydrogen production capacity

Steam to carbon molar ratio

Reformer and regenerator inner diameters

Reformer and regenerator temperatures

Sorbent to catalyst mass ratio

Solids properties (particle size, density, heat capacity)
Sorbent conversion

The regenerator’s dimensions and performance have to take into account the submerged high temperature heat
exchanger, and they have been optimized separately. Section 3.4 describes this part.
Solids data are given in Table 1. The operating conditions and the main dimensions are given in Table 2 and 3.

3.3. Description of the DBFB system

The SER DBFB system is operated with an upgraded biogas following the Swedish standard for biogas as vehicle
fuel SS155438.

The upgraded biogas is first mixed with process steam, and the mixture is pre-heated to 200 °C before being fed
to the reformer. The reformer is operating at 600 °C, and additional heat is supplied by the solids returned from the
regenerator, which is operated at 850 °C. In the reformer, hydrogen is produced and the CO, is captured
simultaneously at high temperature. The product gas (reformate) from the reformer mainly consists of hydrogen and
steam, with only minor quantities of CO, CO,, N, and unconverted CH,4. The reformate passes through an external
cyclone to remove entrained solids from the reformer. The solids from the reformer are transported to the
regenerator in a transport riser (0.067 m inner diameter, 4.5 m high), using the reformate gas as transport medium.
Solids and reformate gas pass through a high efficiency cyclone to separate the solids and the transport gas. The
solids first fall in a hopper and are then introduced in the regenerator at an optimum circulation rate thanks to a slide
valve. The CO,-containing sorbent is heated in the regenerator and CO, is released. The heat required in the
regeneration step is supplied indirectly via a submerged U-tube high temperature heat exchanger in the regenerator.
This heat is supplied by the exhaust gas of a biogas-fired external catalytic burner. Steam with 2 vol% hydrogen is
used as fluidization medium and is supplied to the regenerator at about 800 °C. The CO, stream from the regenerator
passes through a cyclone to remove entrained particles before being heat exchanged with the regenerator feed and
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cooled. The reformate gas is further cleaned in a hot filtration unit operated at 350 °C before being heat exchanged
with the reformer steam feed and cooled. Non-mechanical valves, called loop-seals, are used to ensure that there is
no mixing of gases between the reactors and to allow smooth solids transfer. Pictures of the installation are shown in

Fig. 3.
Table 1. Solids data.
Average particle size of solids mixture 160.10° m
Calcined sorbent particle density 1600 kg/m®
Catalyst particle density 2200 kg/m*
Solids mixture mass heat capacity 1032 J/kg K
Sorbent CaO content (calcined) 59.8 wt.%
Table 2. General operating conditions of the DBFB system.
Steam to carbon molar ratio 4
Sorbent to catalyst mass ratio 2.8
Sorbent molar conversion 0.22
Solids circulation rate 76 kg/h
Required heat supply to regenerator 12.5kW
Table 3. Operating conditions and main reactor dimensions.
Reformer Regenerator
Reactor temperature 600 °C 850°C
Reactor bed diameter 0.2545 m 045 m
Fluidization velocity 0.29 m/s 0.10 m/s
Solids inventory (sorbent + catalyst) 21kg 78 kg
Expanded bed height 0.59m 0.73 m
Freeboard inner diameter 0.348 m 0.636 m
Freeboard height 1.20m 0.85m

To simplify the process, and although there is enough heat available, the process steam feeds of the two reactors
are produced by a 36 kW electrically heated steam generator delivering saturated steam at a pressure up to 3 bara.

Fig. 3. Pictures of the SER DBFB prototype.
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3.4. Design of the high temperature heat exchanger submerged in the regenerator

The chosen design of the high temperature heat exchanger (HT-HX) in the regenerator uses a vertical U-tubes
bundle. The tubes are bent in one single part and are welded on the inlet and outlet of the heat exchanger housing.
They can expand freely downwards but they apply a radial stress on both sides of the heat exchanger housing. Their
U-shape gives them flexibility. Two manifolds are welded on the inlet and outlet to first distribute and then collect
the hot heat exchange medium (hot exhaust gas from the burner). Inconel 601 is chosen as tube material due to its
good mechanical strength and its outstanding resistance to oxidation at high temperature. The heat exchanger
housing, where the tubes and the manifolds are welded on, is in Incoloy 800HT.

The regenerator is dimensioned to allow sufficient space for the insertion of the required heating surface for the
calcination reaction. The solids inventory and the fluidization velocity are adjusted so that the heat exchanger is
totally immersed in the expanded bed volume. The gap between adjacent surfaces must normally exceed 30 to 50
mean particle diameters in order to allow the particles to circulate freely through the open spaces between the fixed
surfaces. This distance has been chosen equal to 0.015 m. The geometry data of the heat exchanger, together with
the particle bed and the process conditions in the regenerator, are given in Table 4.

Table 4. Geometry data of the high temperature heat exchanger of the regenerator.

HT-HX housing inner diameter 0.45 m
Number of U-tubes 35

U-tube outer diameter 0.02134 m
U-tube wall thickness 0.00277 m
Total immersed U-tube length 46.8 m
Average single U-tube length 1.34m
Total immersed tube area 3.14 m?
HT-HX height 0.514 m
Expanded bed height 0.73 m

3.5. Heat transfer calculations and CFD analysis of the heat exchanger tubes

For dense bubbling beds, it is recognized that mechanisms contributing to heat transfer at submerged surfaces
include gaseous convection during times of bubble contact, particle conduction/convection during times of particle
contact, and radiation in the case of high temperature operation [18]. The effective heat transfer coefficient is often
represented by the sum of the convective term, 4., and the radiative term, 4,.

h=h,+h, (©6)

Several approaches have been proposed for the estimation of %.. All have their advantages and disadvantages, and
all involve some degree of empiricism. For this study, the convective heat transfer coefficient is estimated by using
the approach of Morelus et al. [19] which considers combined gaseous and particle convection for nearly spherical
particles. Radiative heat transfer needs to be taken into account at the high temperature employed in the regenerator
as the radiant contribution to overall heat transfer increases with temperature. At 800 °C, this contribution is
reported to be greater than 35% of the total heat flux in a bubbling bed [20]. The simplest approach to calculate #,, is
to use the Stefan-Boltzman equation for radiant exchange between opaque and grey bodies. The equations that
summarize the calculation of the convective and radiative heat transfer coefficients are shown in Appendix A.

Taking into account a solid circulation rate of 76 kg/h, a sorbent molar conversion of 0.22, and an overall
fluidization velocity of 0.10 m/s, a gas composition in the regenerator containing 77.4 vol% steam, 21 vol% CO,
and 1.6 vol% H, has been estimated. Gas density, viscosity and thermal conductivity for this composition have been
obtained from the Aspen HYSYS data base (Aspen Technology Inc.). Heat capacities of pure solid compounds have
been used to calculate the heat capacity of the sorbent-catalyst mixture in the regenerator.

To calculate the radiative heat transfer coefficient, emissivities of both the bed and the tubes are required. With
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reference to Ozkaynak et al. [20], an approximate bed emissivity of 0.9 has been chosen. A hemispherical emissivity
of 0.805 for the Inconel material has been selected (Special Metals; Technical Bulletin).
The key parameters for the calculation of the heat transfer coefficient of the HT-HX are summarized in Table 5.

Table 5. Key parameters for calculation of the heat transfer coefficient of the HT-HX.

Gas density

Gas viscosity

Gas thermal conductivity

Gas heat capacity

Sorbent-catalyst mixture density
Sorbent-catalyst mixture heat capacity
Bed voidage at minimum fluidization
Bed emissivity

Tube hemispherical emissivity

Total immersed tube area

Minimum required heat to be transferred

0.2521 kg/m®
3.7110° Pas
0.09168 W/m.K
1941 J/kg K
1724 kg/m®
1032 J/kg.K
0.5

0.9

0.805

3.14 m?

12.5 kW

The convective heat transfer coefficient 4 ;5050 between the heat exchanger tubes and the gas/particle bed is first
calculated for a gas/particle bed temperature of 850 °C and for the operating fluidization regime. Then the outer tube
temperature is calculated and adjusted to match the total immersed surface area of the heat exchanger through an

iterative calculation. The results are summarized in Table 6.

Table 6. Heat transfer coefficients of the HT-HX and outer tube temperature.

Convective heat transfer coefficient (tube-bed)
Radiative heat transfer coefficient (tube-bed)
Overall heat transfer coefficient (tube-bed)

Calculated required outer tube temperature

528 W/m*.K
239 W/m~K
767 W/m>K
855°C

The heat transfer coefficient from the burner hot exhaust gas and the pressure drop through the HT-HX are of
special interest to match the heat transfer requirement from the exhaust gas to the bed. Therefore, a Computational
Fluid Dynamics (CFD) study has been carried out to quantify these two parameters.

The simulations have been run for a burner exhaust gas temperature of 1050 °C and with compressible fluid.
Different inlet velocities are specified in the range of 10 to 50 m/s. The inlet gas flow has been simulated with
uniform temperature and uniform velocity. The heat transfer from the burner exhaust gas to the inner tube wall is the
limiting factor, thus the heat transfer through the tube wall has been neglected. An average tube length of 1.34 m has
been used and the tube is assumed to be fully submerged in the fluidized bed. The inner tube temperature has been
set to 857 °C and the inner tube wall is modelled as a heat sink with infinite size and constant temperature. The

simulation parameters are summarized in Table 7.

Table 7. Simulation parameters of the CFD analysis of the HT-HX.

Burner exhaust gas temperature (inlet gas)

Inner tube temperature
Outlet pressure

Inlet gas viscosity
Inlet gas heat capacity

Inlet gas thermal conductivity

1050 °C

857°C

1.12 bara

6.085 10° Pa.s
1225 J/kg K
0.08516 W/m.K
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A design margin has been taken into account in the simulation and the target required power to be transferred has
been set to 15 kW to compensate for heat losses. The heat transfer and the pressure drop for different inlet gas
velocities, as well as the outlet gas temperature profile through one tube, are shown in Fig. 4. The analysis shows
that an inlet velocity of at least 38 m/s and a heat exchange medium at 1050 °C are sufficient to transfer 15 kW to
the regenerator. This inlet velocity gives an acceptable pressure drop of about 900 Pa. The analysis gives a clear
indication that the heat demand in the regenerator can be met with the specified geometry and burner exhaust flow.
In the DBFB prototype, the solids enter the regenerator on the hottest side of the heat exchanger.
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Fig. 4. Heat transfer and pressure drop as a function of gas inlet velocity in the HT-HX tubes ; Outlet gas temperature profile at the symmetry
plane through one tube of the heat exchanger.

4. Experimental work
4.1. Preliminary laboratory tests

Prior to running the first tests on the DBFB prototype, separate experimental tests concerning the pre-treatment of
the dolomite sorbent and the protection of the reforming catalyst against oxidation have been run in a 0.2 m inner
diameter batch fluidized bed reactor (electrically heated).

Natural sorbents, such as dolomite, are widely available and cheap and are therefore often chosen at first.
However, their original mechanical stability is altered by the chemical carbonation-calcination cycling and by
attrition. The Arctic dolomite used in the SER process contains also traces of sulphur in the form of metal sulphates.
These sulphur compounds decompose during the SER reaction and poison the nickel catalyst by forming nickel
sulphide.

A thermal pre-treatment method has been developed and tested to remove the initial formation of fines during the
first calcination, to improve the mechanical properties of the sorbent, and to remove the sulphur naturally present in
the sorbent.

The raw dolomite has been calcined first in nitrogen at 850 °C with a bubbling fluidization velocity set to 0.1 m/s.
Secondly, a two-step method to remove sulphur as hydrogen sulphide gas has been applied. In the first step, a
reduction of the sulphate compounds to sulphide is achieved by fluidizing the calcined sorbent with a mixture of
hydrogen in nitrogen (50 vol%) at 850 °C. The second step involves the reaction of the sulphides formed with a
mixture of steam in nitrogen (50 vol%), also at 850 °C, to form the corresponding oxides and H,S gas, thus
removing the sulphur content of the material. These two steps were carried out in the same batch fluidized bed
reactor with a fluidisation velocity set to 0.1 m/s for a duration of 3 hours each. The corresponding equations are
shown below, where Me represents a metal.

MeSO, +4H,(g) > MeS +4H,0(g) @)
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MeS + H,0(g) — MeO+ H,S(g) (8)

The sorption capacity and the carbonation/regeneration cycling ability of the calcined sorbent after pre-treatment
have been tested in a tube oven set-up. An illustration of the set-up is shown in Fig. 5. The oven has three heating
zones of about 10 cm each. The third zone was heated to 850 °C for the regeneration, while the two other zones were
maintained at 600 °C for carbonation. The temperature profiles in the oven are quite sharp, so cooling and heating of
the samples when transferred between the zones is fast. About 300 mg of pre-treated sorbent were loaded on a
refractory crucible which was moved manually inside the tube oven flushed with a controlled gas atmosphere. The
sorbent was distributed in the crucible as a thin layer. To reach the sorbent conversion foreseen in the DBFB pilot,
the sample was carbonated for 1 minute and 15 seconds in 15 vol% CO,, 38 vol% steam balanced with nitrogen.
After carbonation, the sample was moved to the regeneration zone where it was calcined for 2 minutes at 850 °C in
28 vol% CO, and 72 vol% steam. After regeneration, the sample was moved to the carbonation zone and left to cool
down and equilibrate for 1 minute in nitrogen and steam before starting a new carbonation cycle. About 25 mg of
pre-treated dolomite were sampled at regular intervals (cycle number 2, 5, 15, 30) to measure the sorption capacity
and the sorption kinetics in a Thermo-Gravimetric Analyzer (TGA).

co2
Line 1 Line 2
Zonel Zone2 Zone3
—l 600°C | 600°C | 850°C
Steam
N/
L]
N2

Fig. 5. Tube oven set-up.

Further, two identical SER tests were run with upgraded biogas as fuel in the batch fluidized bed reactor, with a
regeneration step in between, where a small amount of hydrogen was added to the steam/nitrogen flow to protect the
reforming catalyst from oxidation. The SER tests were run at 600 °C with a steam to carbon ratio of 4 and a
fluidization velocity of 0.1 m/s. The sorbent to catalyst ratio was identical to the one used in the DBFB, i.e. 2.8 w/w.
The regeneration was run at 850 °C in steam/nitrogen where 2 vol% hydrogen were added, and at a fluidization
velocity of 0.1 m/s.

4.2. Reforming and regeneration tests on the SER DBFB prototype

The reformer reactor of the DBFB prototype has been filled with the pre-treated sorbent and reforming catalyst
(sorbent to catalyst ratio of 2.8 w/w) according to the calculated solids inventory of 21 kg. As part of the pre-
commissioning phase of the installation, a SER batch test with upgraded biogas as fuel has first been run in the
reformer reactor at 600 °C, with a steam to carbon ratio of 4 and a fluidization velocity of 0.29 m/s. The reformer
was electrically heated to maintain the operating temperature since both reactors were not coupled yet. Then, after
cooling, part of the solids from the reformer have been filled in the regenerator, and a solid inventory of 65 kg was
adjusted with pre-treated sorbent and catalyst in the right proportion. Further, a regeneration test has been run using
first electrical heating up to 750 °C before igniting the burner and using only the burner exhaust gas as heating
medium in the HT-HX. The regenerator was fluidized with nitrogen and steam with 2 vol% hydrogen added, and
with a fluidization velocity of 0.1 m/s.
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5. Results from the experimental work
5.1. Preliminary laboratory tests

The pre-treated dolomite sorbent has been analysed in an X-Ray diffractometer, sieved, and the particle
distribution has been measured. Fig. 6 shows a diffractogram of the material mixed with the reforming catalyst. No
sulphur compounds were detected. The average measured particle size of the pre-treated dolomite is 180 pm while
the one of the raw dolomite is 187 pum, showing that the material shrinks a little during pre-treatment. Looking at the
particle fractions for the two materials from Table 8, it can be noticed that the pre-treated sorbent contains a minor
quantity of fines. However, the majority of fines that have been produced during pre-treatment have been removed
by the entrainment of the fluidized bed and collected in the filter.
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Fig. 6. XRD diffractogram of the pre-treated calcined sorbent mixed with reforming catalyst.

Table 8. Particle fractions of the raw dolomite and pre-treated dolomite.

Particle fraction, pm Raw dolomite, wt.% Pre-treated dolomite wt.%
200-250 32.1 343
150-200 65.7 58.4
100-150 22 5.7
75-100 0 1.3
0-75 0 0.3

The reason for studying the sorption capacity of the sorbent in the tube oven set-up is mainly that the heating and
cooling times are significantly reduced compared to the cycling in a conventional Thermo-Gravimetric Analyser
(TGA), thus reducing the sintering of CaCO; during heating to the regeneration temperature and preventing
premature calcination. The multi-cycling in the tube oven is therefore expected to be more representative of the
thermal history the sorbent will experience during operation in the DBFB. The carbonation kinetics of the 2™, 5%,
15™ and 30™ cycles for cycling in the tube oven set-up are shown in Fig. 7.

The results show that from the 5™ cycle, the early carbonation kinetics (i.e. during the first minute) are quite
similar, indicating a stable initial uptake of CO, with increasing number of cycles. The sorption capacity stabilizes at
around 14 g CO,/100 g sorbent for the 30" cycle corresponding to a sorbent molar conversion of about 30%, which
is higher than the 22% used in the design of the DBFB. This 22% molar conversion, corresponding to about 10 g
CO,/100 g sorbent, is achieved after around 3 minutes which is much lower than the solids residence time in the
reformer, indicating that a high hydrogen yield and a high CO, capture rate should be achievable in the DBFB

prototype.
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Fig. 7. Carbonation kinetics of pre-treated dolomite for cycle 2, 5, 15 and 30 for cycling in the tube oven set-up.

The results from the SER tests run with upgraded biogas as fuel in the laboratory batch fluidized bed reactor are
shown in Fig. 8. A regeneration step with steam/nitrogen and 2 vol% hydrogen as fluidization gas has been run in
between the SER tests. Since the hydrogen yield in both runs is quite similar (around 98 vol%), it clearly shows that
no oxidation of the commercial nickel catalyst occurs during the regeneration. The use of 2 vol% hydrogen addition
in the steam feed is therefore efficient to protect the reforming catalyst from oxidation-reduction cycles and should
also help keeping its optimum performance in the process.
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Fig. 8. SER consecutive tests in fluidized bed reactor with upgraded biogas as fuel ; Regeneration in nitrogen/steam added 2 vol% hydrogen.
5.2. Initial reforming and regeneration tests on the SER DBFB prototype

The results from the batch SER test run with upgraded biogas as fuel in the reformer reactor of the DBFB
prototype are shown in Fig. 9. A stable high hydrogen production yield and a high CO, capture rate where also
confirmed in this test, validating the proper functioning of the reformer with the chosen operating conditions.
Temperatures at different levels of the bed were also quite homogeneous. Fluctuations of the steam flow are due to
minor technical problems with the regulation system and the steam flow meter. In most of the test, the steam to
carbon ratio was then between 3 and 4.

Results from the regeneration test following the SER test are shown in Fig. 10. The catalytic burner needs a
minimum inlet air temperature to ignite. After several attempts, a good ignition was obtained for an air inlet
temperature of 542 "C. Unfortunately, it was not possible to ignite the burner before this temperature was reached,
and the middle temperature of the bed had already reached 750 ‘C, explaining why the calcination had already
started. Nevertheless, after the electrical heating had been switched off and the burner took over, calcination
continued to completion and the sorbent was fully regenerated. Unfortunately, a stable operation of the burner was
obtained after the calcination was completed. However, it can be noticed that a linear and smooth temperature
increase in the bed was registered when the burner operated in a stable regime. In this initial test, the burner was
operated at 60% of its maximum power and it is expected that smoother operation should be achievable at 100%
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power. It can also be noticed that the temperature measurements of the inlet manifold are not reflecting the real
burner exhaust gas temperature. This is probably due to an unsuited positioning of the thermocouple which should
have been placed at the entrance of a selected tube.
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Fig. 9. SER batch test run with upgraded biogas as fuel in the DBFB reformer reactor.
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Fig. 10. Regeneration batch test using only the burner and the high temperature heat exchanger of the regenerator as heating source.

6. Conclusions and further work

In this paper, the design methodology and the technical specifications of a dual bubbling fluidized bed (DBFB)
reactor prototype for sorption-enhanced reforming of upgraded biogas for hydrogen production has been presented.
Reactor modelling and CFD calculations allowed detailed dimensioning of both the reactors and the high
temperature heat exchanger of the regenerator. In addition, solids inventories, solids circulation rate and minimum
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required heat transfer from the regenerator’s heat exchanger could be determined. Preliminary laboratory tests
validated the pre-treatment method of the CO, sorbent, its sorption capacity, and carbonation kinetics. The addition
of 2 vol% hydrogen in steam during the regeneration step proved an efficient protection of the nickel-based
reforming catalyst against damageable oxidation-reduction cycles. Two initial batch tests run in the DBFB prototype
proved the feasibility of operating the process. A high hydrogen concentration of 94 vol% and a high CO, capture
rate were obtained while testing the reformer reactor. Full regeneration of the sorbent in batch mode was achieved
using only the burner exhaust gas and the submerged heat exchanger as heating source, but further tests are required
in order to tune and optimized this process step. Finally, the next phase of the work will involve the coupling of the
solids loop between the reactors to test the process in a steady-state continuous mode.
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Appendix A. Calculation of the overall heat transfer coefficient of the high temperature heat exchanger
submerged in the regenerator

Equations that summarize the calculation of the convective and radiative heat transfer coefficients in the
regenerator (tube to bed heat transfer) are listed below:

1

h ! 0.125¢, - 1 3
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where £, is the thermal heat conductivity of the gas in the regenerator, &, ,,is the solids fraction in the bed at
minimum fluidization velocity, &,,is the bed voidage at minimum fluidization velocity, o, and p, the densities of
solids and gas in the regenerator respectively, Cp, is the gas mass heat capacity in the regenerator, Cp; is the solids
mass heat capacity, 4, is the gas viscosity in the regenerator, g is the gravitational acceleration, Pr, is the Prandtl
number, U, is the fluidization gas velocity in the regenerator, U, the excess gas velocity above the minimum
fluidization velocity U, o the Stefan-Boltzman constant, 7}, is the particle bed temperature in the regenerator, 7.
wbe 18 the outer tube temperature of the heat exchanger, 4, is the total immersed surface area of the heat exchanger,
O the minimum required heat to be transferred to the regenerator, and /,,..r.s the overall heat transfer coefficient.
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