

Available online at www.sciencedirect.com

Procedia

Energy Procedia 63 (2014) 2557 - 2569

GHGT-12

Corrosion and bulk phase reactions in CO₂ transport pipelines with impurities: review of recent published studies

Malgorzata Halseid, Arne Dugstad*, Bjørn Morland

Institute for Energy Technology, P.O.Box 40, NO-2027 Kjeller, Norway

Abstract

A limited number of papers report experimental corrosion data in the presence of flue gas impurities like SO_x , NO_x and O_2 . When SO_2 , water and O_2 are present, sulphurous and/or sulphuric acid (H_2SO_3 and H_2SO_4) might form. The minimum water concentration required for acid formation is not known, but the presence of FeSO₃ and/or FeSO₄ on the corroded surface in some experiments indicate that the reactions occur at water concentrations far below the water solubility in pure CO₂-water systems.

The corrosiveness increases considerably when NO_x is present. NO_2 is highly soluble in water and reacts with water to produce nitric acid and NO under atmospheric conditions. The same type of reaction probably occurs in the dense phase CO_2 system. Experimental results indicate that the rust-like dusty products formed does not efficiently reduce the corrosion rate.

There is limited number of papers presenting data and discussing the effect of combined impurities on corrosion. When both, NO_2 and SO_2 are present, NO_2 catalyzes the oxidation of SO_2 to form sulphuric acid. In addition, in the presence of H_2S , elemental sulphur can form.

Such interactions between impurities are especially dangerous when network pipeline systems are considered and CO_2 streams from different sources and with different impurities are mixed. As a result two non-corrosive streams can become very corrosive if highly corrosive acids are formed as a result of the reaction between added impurities.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Peer-review under responsibility of the Organizing Committee of GHGT-12

Keywords: CO2 transport, impurities, CCS, pipeline corrosion, CO2 specification

* Corresponding author. Tel.: +47 918 11 110 *E-mail address:* arne.dugstad@ife.no

1. Introduction

More than 5000 km of dense phase CO_2 pipelines have been or are in operation, mostly in the USA. No serious corrosion problems have been reported in the part of the system that has been exposed to reasonably dry and pure CO_2 . Based on more than 40 years of experience, CO_2 transport is perceived to be a well-known technology and little attention has been paid to transport of CO_2 captured from fossil-fuelled power plants and other industrial sources that might give dense phase CO_2 containing impurities that have not been transported before.

The captured CO₂ stream might contain, depending on the type of capture technology (pre-combustion, oxy-fuel, or post-combustion), a number of flue gas impurities like SOx, NOx, O₂, CO, H₂S and H₂O.^{1,2} There is limited knowledge about possible corrosion and bulk phase reactions when the CO₂ contains these impurities.^{3,4} A fundamental understanding of which reactions are thermodynamically possible and kinetically favourable is necessary in order to define the safe operation window for CO₂ transport and the knowledge is required before new CO₂ pipelines are constructed or existing gas pipelines converted. A too conservative purity requirement will increase the costs associated with the CO₂ capture whereas too liberal may result in transport and storage problems.

The current understanding is that the majority of the pipelines will be constructed from carbon steel, typically X65 or X70 grades for high pressure service. Pure CO_2 is essentially non-corrosive to carbon steel, but carbonic acid will form if a free water phase is present. The reported carbon steel corrosion rates measured in the water phase are very high, 1-40 mm/year,^{5,6,32,33} and even higher in the presence of impurities like O_2 , SOx or NOx.^{40,41}

Combination of impurities at levels that can lead to corrosion in the CO_2 pipeline has to be avoided. The target for CO_2 transport must be to avoid any free aqueous phase formation as well as solid formation. In the CCS value chain, CO_2 transport pipeline integrity has to be considered together with CO_2 storage demands.

The aim of this review is to compare existing literature on corrosion and bulk phase reaction data in dense phase CO_2 and to evaluate whether $CCS CO_2$ pipelines can be safely operated within the impurity limits recommended in the literature. Experimental challenges will also be addressed.

2. Present specifications of maximum impurity limit in CO₂ transport

The impurity content in a CO₂ stream will vary depending on capture technology, flue gas quality and optimization cases and it has been issued a number of different tentative CO₂ specifications.¹ The EDGAR (Energy Delta Gas Research) CO₂ purity project published recently a survey of the expected CO₂ purity for post-combustion, pre-combustion and oxyfuel, see Table 1.⁷ New technologies that will be developed in the future can give other types and other levels of impurities. It is seen in Table 1 that the concentration of corrosive gasses (H₂S, NOx, SOx, O₂, H₂O) varies a lot depending on the capture process. This has to be taken into account in multi-source transport systems where different CO₂ streams have to be compatible.

There is not much published work on CO_2 transport with the various types of impurities expected from the different capture technologies. The widely accepted recommendation given by the Dynamis project^{8,9} (Table 2) and the recent recommendation given by NETL (National Energy Technology Laboratory)^{10,11} do not take fully into account the cross-reactions between impurities. The only cross-effects described in the Dynamis project are the H₂S and CH₄ impacts on water solubility. Interactions between impurities such as e.g. H₂O and NO₂ or SO₂ were not considered although suggested for follow-up work.⁹ The justification for the given NOx and SOx concentrations was only based on health and safety risk in a release scenario.

Gas	Post- combustion		Pre-comb	ustion		Oxyfuel
component	Amine Scrubbing	Selexol IGGC	Rectisol IGCC	Amine scrubbing	Sour SEWGS	Oxyfuel + double flashing
CO2	99.8-99.9	98.1-99.7	95-98.5	>97.2	> 99	97
H ₂	-	1.5%	20ppm	<1%	<1%	-
0,	150-300 ppm	-	-	-		1.2%
N ₂	450-900 ppm (incl. Ar)	195 ppm	< 1% (stripping)	<1%	<1%	1.6% 150ppm NOx
Ar	See N2	178ppm	150 ppm	<1%	<1%	0.4%
Sulphur Comp.	10-20 ppm (SO ₂ mostly)	2 <h<sub>2S<1700 ppm</h<sub>	0.2-20 ppm	H2S<200 ppm For 2-stage plant	<5000ppm to ppm level with H ₂ S stage	35 ppm SO₂
со	10-20 ppm	100 <co<1300 ppm</co<1300 	400 ppm	<1%	<1%	-
CH4	-	112ppm	100 ppm	<1%	<1%	-
MeOH	-		20-200ppm			
H ₂ O	100-600 ppm	376ppm	0.1-10 ppm	1.8	500 ppm	-

Table 1. CO₂ purity table – EDGAR CO₂ purity project⁷

Table 2. Dynamis⁸ and NETL^{10,11} CO₂ purity recommendation

Component	Dynai	mis	NETL	
component	Concentration	Limitation	Concentration	Literature*
H ₂ O	500 ppmv	Technical	350/500 ppmv	20-650
H ₂ S	200 ppmv	Health&Safety	100 ppmv	20-13000
со	2000 ppmv	Health&Safety	35 ppmv	10-5000
0,2	Aquifer < 4 vol%, EOR 100 – 1000 ppmv	Technical	40000/10 ppmv	100-400000
SOx	100 ppmv	Health&Safety	100 ppmv	10-50000
NOx	100 ppmv	Health&Safety	100 ppmv	20-2500
CH4	Aquifer: <4 vol% EOR: <2 vol%	ENCAP proposed limit	4 vol%	0.01-4
N2	< 4 vol%	ENCAP proposed limit	4 vol%	0.01-7
Ar	< 4 vol%	ENCAP proposed limit	4 vol%	0.01-4
H2	< 4 vol%	To be minimized	4 vol%	0.01-4

* Various literature data reported by NETL

When impurity effects are discussed in the literature, the main focus has been on changes of physical properties of CO_2 mixture such as the critical pressure, density, viscosity and compressibility.^{1,12-14} There is not much awareness of impurity interactions in the CO_2 streams (such as NOx, SOx, O_2 , H₂S and H₂O) although potential interactions of H₂S and SO₂ which might undergo the catalyzed Claus reaction forming elemental sulphur were already suggested in an IEA report¹⁵ in 2004. The formation of elemental sulphur can cause equipment blockages or plug reservoirs. Disproportionation reactions leading to the formation of nitric and sulphuric acid are also to be considered.

When the acceptable water content is discussed the concentration is usually related to the solubility of water in pure CO_2 (Figure 1). The water solubility in dense phase CO_2 varies with temperature, pressure and the presence of other components as described in the Dynamis project.⁸ A limited number of publications with solubility data^{6,16-20} have been issued and a number of models for the pure water- CO_2 system²¹⁻²⁶ and systems contaminated with hydrocarbons^{17,18,19, 24,27} have been developed based on these data.

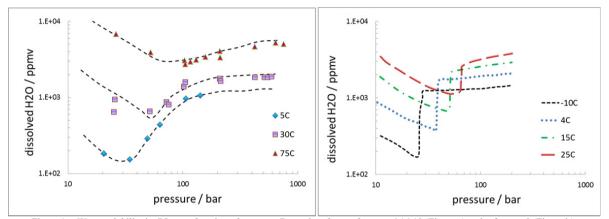


Figure 1. Water solubility in CO₂ as a function of pressure. Data taken from references 6,16,18 (Figure a) and reference 8 (Figure b).

Precipitation of a water containing phase that will give corrosion is not expected in the pure CO_2 -H₂O system as long as the water concentration is well below the reported solubility. The water solubility in the pure CO_2 -system is higher than 1000 ppmv in the temperature range relevant for CO_2 transport (4-50 °C). It is expected that water can precipitate at much lower water content when impurities like amines, salt, glycol, SO_x and NO_x are present. These impurities can interact with water and form a mixed aqueous phase (e.g.H₂SO₄ or HNO₃) at a much lower water concentration than the solubility limits reported for pure CO_2 .

3. Effect of impurities on corrosion in dense phase CO2

3.1. $CO_2 - H_2O$ system

Water content below saturation

Based on experience from the USA, no corrosion problems have been reported in the part of the system that has been exposed to dry CO_2 only. The corrosion rate is insignificant when the water content is well below the solubility limit for the pure CO_2 -H₂O system. Both field experiences²⁸⁻³⁰ and most lab experiments³¹⁻³⁹ indicate this. The high corrosion rates measured by Thodla et al.⁴⁰ in CO_2 with 100 ppm water are questioned as the corrosion rate was measured electrochemically with a water droplet present on the electrode surface (challenges of experimental approach will be further discussed in chapter 4).

Chevron did some experimental work^{37,38} in the 1970's and concluded: "*No evidence of pitting or general corrosion attack. Corrosion rates were less than 0.02 MPY (0.0005 mm/year).*" The water content in these experiments was 1000 ppmv, the H₂S concentration 800 ppmv and the temperature about 3 and 23 °C.

Corrosion has been reported in process systems where free water was present. Accumulation of water due to

insufficient drying and a leak at a low point due to water build up are reported from the start-up of the SACROC CO_2 injection project.⁴²

Presence of free-water

Seiersten⁶ measured the corrosion rates of X65 steel exposed 150 to 300 hours at 40°C in water equilibrated with CO_2 at different pressures. As seen in Figure 2, the corrosion rate decreases with CO_2 pressure. It was pointed out by Seiersten that the corrosion rates are high, 1-6 mm/year, but much lower than expected from models based on low- CO_2 partial pressure (<20bar) experiments. It was further reported by Seiersten and Kongshaug that 20 ppm CO_2 corrosion inhibitor can lower the corrosion rate to less than 0.1 mm/y at temperatures up to 30°C and CO_2 pressures up to 72 bar.^{43,44} Continuous injection of corrosion inhibitors under normal operation with dry CO_2 is not likely. Inhibition, however, might be applied for corrosion mitigation during upset periods.

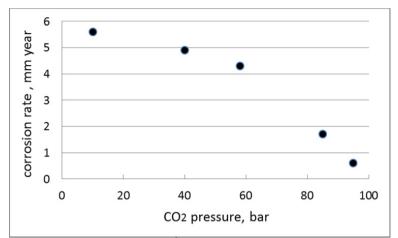
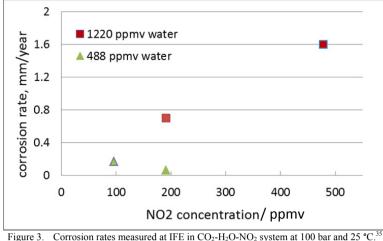


Figure 2. The average corrosion rate measured by Seiersten⁶ during 150-300 hours exposure at 40°C in water equilibrated with CO₂


The risk of forming aqueous phases during pipeline decompression should also be considered. Below the critical temperature, depressurizing the CO₂ to less than the critical pressure results in a two phase gas/liquid system and impurities will partition between the two phases. The concentration of many impurities (H₂O, SO₂, NO₂) will increase in the remaining liquid CO₂ phase. If the water concentration in the liquid CO₂ phase exceeds the solubility, water will form a separate corrosive phase together with the other impurities.⁷⁶⁻⁷⁸ As the corrosion rate in free water can be very high, a strategy for handling accidental water ingress is required.^{36,78}

3.2. CO_2 - H_2O - NO_2 system

A limited number of papers report experimental data in the presence of flue gas impurities like SOx, NOx and O_2 . The corrosiveness of the CO_2 -H₂O system increases considerably when NO_2 is present. NO_2 is highly soluble in water and reacts with water to produce nitric acid and NO under atmospheric conditions. The same type of reaction probably occurs in the dense phase CO_2 system:

$$3 NO_{2(g)} + H_2O_{(l)} = 2 HNO_{3(aq)} + NO_{(g)}$$
(1)

As shown in Figure 3, a corrosion rate of 1.6 mm/year was measured in an IFE experiment performed with 1222 ppmv H₂O and 478 ppmv NO₂ and 0.7 mm/year in the experiments with 1222 ppmv H₂O and 190 ppmv NO₂.³⁵ The figure also shows results from experiments carried out with 488 ppmv water and the higher corrosion rate in the experiment with 96 ppmv NO₂ compared to the experiment with 191 ppmv NO₂ was attributed to the much shorter exposure time, 20 vs. 3 days. It was pointed out in this work that the measured corrosion rates probably would have been much higher if water and NO₂ were replenished at the same rate as they were consumed.^{45,46}

In dense phase CO₂ containing 1000 ppmv H₂O, 4.7 vol% O₂ and 100 ppmv NO Paschke et al⁴⁷ observed changes of the color of the specimen with longer exposure time, from uniform yellowish to brownish. Both Dugstad et a^{35} and Paschke et a^{47} suggested that nitric acid oxidizes Fe^{2+} and give a rust-like dusty product without protective properties.

Very high corrosion rate, 11.6 mm/year was reported by Ayello et al^{40,41} in dense phase CO₂ containing 2440 ppmv water and 96 ppmv NO₂. This high corrosion rate cannot be explained only by the higher water content. The corrosion rate was measured with electrochemical technique where water was added directly on the electrode surface and it should be confirmed whether the water dissolved quickly enough not to give significant corrosion attack before equilibrium was achieved.

When mobility and reactivity of acids in supercritical CO₂ (60 °C, 120 bar) were investigated by Ruhl et al⁴⁸ it was found that nitric acid was very mobile and corrosive towards the carbon steel. Thickness measurements showed localized material losses on carbon steel specimens exposed in dense phase CO2 in an autoclave where a few droplets of nitric acid was positioned in the bottom.

Sim et al.⁴⁹⁻⁵¹ performed corrosion experiments in supercritical CO₂ (76 bar, 50 °C) with varying concentrations of salts (NaCl, NaNO₃, Na₂SO₄), acid impurities (pH 4, HNO₃) and 10g/L water. The pit depth rate was the highest after exposure to HNO₃, 1-3 mm/y vs. 0.1-0.2 mm/y for salts. It was confirmed in other studies⁵⁰ that NO₃⁻ impurities show the highest impact on corrosion rates compared to H₂SO₄, Cl⁻ and SO₄²⁻ and that HNO₃ is approximately twice as corrosive when compared to H₂SO₄ and HCl.⁵¹

Cole et al.⁵² studied the effect of contaminants like HCl, HNO₃ and SO_x on the pH of aqueous phases. In order to model the state and the chemistry of the two phase system (liquid CO_2 and water) with different contaminants, the software package OLI Stream Analyzer was employed. It was stated that contaminants such us HCl, HNO₃ and SO₃ will have dramatic effect on the pH of the aqueous phase even in small concentrations while the impact of SO₂ will be moderate.

Depressurization of the pipeline will increase the concentration of NO₂ in the remaining liquid phase and this will steadily increase the corrosivity of the system. Dugstad et $al^{77,78}$ performed corrosion experiments during depressurization of an autoclave filled with dense phase CO₂ containing 190 ppmv NO₂ and 490 ppmv H₂O. A carbon steel foil got a rusty layer of corrosion product and the corrosion rate was ~1mm/year.

3.3. $CO_2 - H_2O - SO_2$ system

In the presence of water, SO₂ and O₂ sulphurous and/or sulphuric acid (H₂SO₃ and H₂SO₄) might form.^{53,54} The minimum water concentration required for acid formation is not known, but the presence of $FeSO_3$ and/or $FeSO_4$ on the corroded surface in some experiments indicate that the reactions occur at water concentrations far below the water solubility in the pure CO_2 -water systems.^{45,46,55,56} It is still not clear if SOx reacts with water in the bulk and forms acid or a thin layer of water is formed on the pipeline surface first and then reacts with SOx.

A survey of experiments performed with low amount of water, SO_2 and O_2 are shown in Table 3. Low corrosion rates were reported by Dugstad et al^{45,57} when experiments were performed at low water content and low SO_2 concentration. Mostly spot type attacks were observed. Since the attacks were localised covering less than 10% of the surface, it was reasonable to assume that the local corrosion can be at least 5-10 times higher than the average rate.

Higher corrosion rates, up to 1.5 mm/year, were measured by Xiang^{54,58-60} and this can be attributed to higher water (saturated solution in most of the experiments) and SO₂ concentration. Xiang studied the influence of temperature, time, SO₂ and H₂O concentration. Very low corrosion rate was observed when the water content was lower than 50% of the relative humidity in the pure H₂O-CO₂ system. The corrosion rate was decreasing with time indicating the formation of a protective layer or depletion of impurities with time.

Corrosion rates as high as 3-4 mm/y were reported when 1% SO₂ was present in supercritical CO₂ with 650 ppmv water.^{61,63} The corrosion rate decreased to 0.03 mm/y at a SO₂ level of 0.1%.⁵⁵ It was stated that a concentration of SO₂ less than 0.1% did not lead to significant corrosion of carbon steel. However, in high pressure liquid CO₂ conditions with 650 ppmv of water and 0.05% SO₂, localized attacks were seen with a rate of about 2.4 mm/y.⁵⁵ The corrosion rate obtained by Choi et al ^{61,63} is much higher than that reported by Xiang et al ^{54,58-60} and can be explained by different exposure time, 1 vs. 12 days.

H ₂ O ppmv	SO ₂ ppmv	O ₂ ppmv	T °C	P bar	Time days	CR mm/y	Reference
488	344	-	25	100	14	<0.005 (spots)	Dugstad ^{45, 46,56}
1220	344	-	25	100	14	0.02 (spots)	Dugstad ^{45, 46,56}
488	1000	100	25	100	7	0.01	Dugstad ^{45, 46,56}
488	200	100	25	100	7	<0.01	Dugstad ^{45, 46,56}
650	1%	-	50	80	1	3.48	Choi ⁶³
650	1%	4%	50	80	1	3.7	Choi ⁶³
650	0.1%	-	50	80	1	0.03	Farelas ^{55,}
650	0.05%	-	50	80	1	0.05	Farelas ⁵⁵
650	0.1%	-	25	80	1	6.8 (localized CR)	Farelas ⁶²
3310 (sat)	1%	-	50	80	1	5.6	Choi ⁶³
3310 (sat)	1%	4%	50	80	1	7	Choi ⁶³
Saturated	1.4%	0.1%	50	100	12	0.8	Xiang ⁵⁸
Saturated	0.2%	0.1%	50	100	12	0.15	Xiang ⁵⁸
saturated	2%	0.01%	50	100	5	1.5	Xiang ^{54,58-60}
RH 50%	2%	0.01%	50	100	5	0.04	Xiang ^{58,54,59,60}

Table 3. Corrosion rates measured in dense phase CO2 containing water, SO2 and/or O2.

Similar to NO₂, SO₂ will also partition to the remaining liquid phase during pipeline depressurization. Dugstad et al.^{77,78} performed corrosion experiments during depressurization of an autoclave filled with dense phase CO₂ containing 140 ppmv SO₂ and 1220 ppmv H₂O. The exposed carbon steel foil got a black layer of corrosion products and the corrosion rate was ~0.1mm/year. Sulphuric acid which is not very mobile⁴⁸, but very hydroscopic, will absorb water from the surrounding CO₂ phase. As concentrated (ca 70-80 mass %) sulphuric acid is less corrosive than diluted one⁶⁶, corrosion rate can increase with time.

3.4. $CO_2 - H_2O - SO_2 - NO_2$ and $CO_2 - H_2O - SO_2 - NO_2 - H_2S$ system

A synergistic corrosive effect of SO₂ and NO₂ dependent on relative humidity is observed in atmospheric corrosion.^{64,65} It is assumed that NO₂ increases the rate of SO₂ oxidation to sulphate and acts as oxygen carrying agent. A similar phenomena was recently observed in the multi impurity system $H_2O - O_2 - SO_2 - NO_2$ in dense phase CO_2 .⁴⁷

Screening experiments, at ambient pressure and at constant flow of CO₂ were presented by Ruhl et al^{67,68} (see Table 4). Experiments were performed with different water content, at different temperatures and with different steels (carbon steels, chromium containing steels and corrosion resistant steels). The water content was measured with a dew point meter. Visible condensation occurred at 5 °C at both 1000 and 8000 ppmv water and corrosion products containing FeSO₃·3H₂O and FeSO₄·4H₂O (rozenite) were detected.⁶⁷ The condensed phase contained sulphuric acid and a 10 times lower concentration of nitric acid.

Paschke et al⁴⁷ and Rutters et al⁶⁹ reported that carbon steel specimen (L360NB) exposed to CO₂ containing 1000 ppmv H₂O and 4.7 vol% O₂ at 110 bar and 60 °C did not show sign of corrosion, neither after addition of 50 ppmv CO nor 70 ppmv SO₂. However, significant corrosion occurred after addition of 100 ppmv NO. Different kinetics for the different acid formation reactions were suggested. It was concluded that NO seems to be oxidized to NO₂ and form nitric acid whereas oxidation of SO₂ to SO₃ is kinetically hindered at such low temperatures and formation of sulphuric acid is hindered indirectly too. When both SO₂ and NO were present, sulphur was found in the oxide layer. The authors explained the phenomena with the catalytic behaviour of nitrogen oxides on sulphuric acid formation (lead chamber effect):

$$NO_2 + SO_2 + H_2O = NO + H_2SO_4$$
 (2)

Yevtushenko et al⁷⁰ performed corrosion experiments in a circulating (but not refilling) CO₂ environment within the COORAL project. Experiments were performed in a loop consisting of a compressor, flow meter and two autoclaves with CO₂ containing H₂O, SO₂, NO₂, CO and O₂ (see Table 4). Mass loss corrosion rate of 30 μ m/year was calculated for carbon steel (L360NB) and 40 μ m/year for only iron. Pitting was observed for X20Cr13 and X46Cr13 steel. EDS analyses of the corrosion films formed on carbon steel and iron consisted of iron, sulphur and oxygen.

A long-term experiment (186 days) has been described by Yevtushenko et al in reference 71. Three different types of steel (CrMo, C, 13Cr) were exposed to impure supercritical CO_2 at 60 °C and 100 bar. The experiment was performed in the loop described previously. The fluid was changed every third day of the exposure, but the concentrations of the impurities in the CO_2 were not confirmed by any analytical method. The corrosion rate of the carbon steel decreased with exposure time. It was concluded that corrosion products precipitated out as a protective layer.⁷¹

In reference 72 the authors analyzed the condensed phase that precipitated from impure CO_2 and performed electrochemical measurements at ambient pressure in a liquid with the same composition as measured in the condensed phase, i.e. 2.5% H₂O, 1.8% O₂, 220 ppm SO₂ and 1000 ppm NO₂. The measured corrosion rate was 0.6 mm/y after 14 days exposure in H₂SO₄ and 1.5 mm/y after 14 days exposure in H₂SO₄ and HNO₃.⁷² The corrosion rates are very high and much higher than compared to the corrosion rates measured at dense phase conditions. It can be questioned if all the condensed phase that is produced in dense phase CO_2 reached the corrosion sample and if there is other inhibiting factor like e.g. nickel presence in the condensed fluid.

Dugstad et al^{73,79} described experiments performed in dense phase CO_2 containing H_2O , H_2S , NO_2 , SO_2 and O_2 (see Table 4). The experiments were performed in a rocking autoclave with continuous dosage of CO_2 and impurities. The concentrations of impurities were continuously measured during the exposure. Different analytical techniques were applied: tunable diode laser system for water measurements, non-dispersive, infrared, ultraviolet, visible photometer for NOx and SOx and gas chromatograph for H_2S and O_2 analysis. Impurities were dosed continuously to the autoclave with 3 separate dosing lines as many impurities cannot be premixed.

Table 4. Experiments performed with mixed impurities

Reference	Pressure bar	Temperature °C	Flow	H ₂ O ppmv	SO ₂ ppmv	NO ₂ ppmv	H ₂ S ppmv	O ₂ ppmv	CO ppmv	Exposure time, days	CR, mm/y	Observations
Dugstad [45, 46]	100	25	rotated autoclave 3 rpm	488	138	191				7	0.017	Lower CR comparing to CO ₂ -H ₂ O-NO ₂ system
Ruhl [67,68]	ambient	5, 30, 60, 170	continuous flow of humid gas with impurities	1000, 8000	220	1000		1.8%	750	25	not given	condensation at 5 °C, FeSO ₃ /FeSO ₄ detected
Paschke [47] Rutters [69]	110	60	static	1000	70	100 ppmv NO		4.7%	50	7	0.015- 0.073	XRD: α-FeO(OH) EDS: Ο, Fe, S
Yevtushenko [70]	100	60	loop, not refilled	1000	70	100		8100	750	7	0.03	EDS: Fe, O, S
Yevtushenko [71]	100	60	loop, batch every 3 rd day	1000	70	100		8100	750	7 186	0.025 0.003	CR decreases with exposure time
Yevtushenko [72]	ambient	5	static		0.11M H ₂ SO ₄	0.018M HNO ₃				14	1.5	electrochemical test in simulated condensate
Dugstad [73]	100	25	rocking autoclave with continuous dosage of impurities	122	69	96	130	275		10	0.034	EDS: sulphur formation IC: H ₂ SO ₄ and HNO ₃
Dugstad [79]	100	25, 45	rocking autoclave with continuous dosage of impurities	300	100	100	100	350		9	0.04	acids and sulphur formation

The concentration of the impurities decreased significantly during the experiment as new phases were formed. Ion chromatography analysis indicated formation of sulphuric and nitric acid. EDS analyses confirmed formation of elemental sulphur grains. Although the mechanism of sulphur formation is uncertain, it was suggested that formed acids take part in the sulphur formation reaction according to the equations:

$$H_{2}S + H_{2}SO_{4} = S + SO_{2} + 2 H_{2}O$$
and
$$3H_{2}S + 2HNO_{3} = 3S + 2 NO + 4 H_{2}O$$
(3)
(4)

Experiments done within the COORAL project^{47,69,70,71} and at $IFE^{73,79}$ confirmed that reactions between impurities can occur at ppm level and that multi-impurity systems with impurity concentrations less than the concentrations suggested in the Dynamis⁸ and NETL^{10,11} recommendations are corrosive.

4. Experimental challenges

No standards exist for corrosion experiments in dense phase CO_2 with impurities. The data published in the literature have been obtained from experiments performed in stationary and dynamic autoclave and loop systems. The main experimental challenge has been impurity control. The volume fraction of the corrosive phase that can form in a system with a few hundred ppmv of impurities is very small, less than 10^{-4} . The consumption of the impurities during the exposure and to which degree the corrosive phase actually reaches the exposed steel specimens in the autoclave experiments become critical issues. The consumption rate of impurities (H₂O, SO₂, NO₂) due to corrosion depends on the corrosion rate, the steel surface to dense phase CO_2 volume ratio and the corrosion mechanism. A large part of the impurities can become "non-active" during the exposure as the corrosive phase can be trapped in dead legs or wet the autoclave walls preferentially.

Many studies have been performed in autoclaves where the water was added first, then followed by the other impurities (e.g. SOx, NOx) before the system was pressurized with CO_2 .^{40,41,45,46,55,61} It cannot be excluded that part of the water reacted with the added impurities and formed H₂SO₄ and HNO₃ before the system was pressurised. In such cases, it can be argued that the observed corrosion is an experimental artefact and not representative for the real system.

In some of the experiments the corrosion rates were measured with an electrochemical technique where water droplets were present on the electrode surface.^{40,41} Corrosion rate measurements under such conditions cannot be related to the corrosion in CO₂ containing low concentration of water, but rather corrosion rates measured in CO₂-saturated water. An electrochemical technique was successfully used by Beck et al⁷⁴ for corrosion studies in dense phase CO₂ with \geq 2000 ppmv water present in the system when Nafion-coated electrodes were used. At higher water concentration the membrane could be saturated with water and enable electrochemical measurement.

The experimental observations support the need for a dynamic test system with renewal of impurities and instant (continuous) analyses of the dissolved impurity concentrations. Such dynamic tests are required in order to define acceptable CO₂ specifications with confidence. To our knowledge only 3 dynamic systems used for corrosion studies in dense phase CO₂ are described in the literature. The first system was developed at BAM in Germany within the COORAL project.⁷¹ This system can replace impurities at intervals, but has no online systems for continuous measurements of the impurity levels. The second system was built at the Cranfield University in UK within the MATTRAN project⁷⁵ but so far there are no public data available from corrosion studies in dense phase CO₂ with impurities in the ranges suggested in the DYNAMIS or NETL tables. The third system that was developed at IFE in Norway has capabilities for continuous injection of impurities and an online system for continuous analyses of impurity concentration in the test environment.⁷³

Strong acids can form in multi impurity systems and corrosion of the equipment becomes an issue. Corrosion of CRA can release alloying elements that might affect the corrosion rate of the exposed carbon steel due to formation of inhibiting nickel or chromium layers.⁷²

5. Conclusion

Although dense phase CO_2 has been transported for more than 30 years, there is limited knowledge about corrosion and bulk phase reactions when the CO_2 contains flue gas impurities like SOx, NOx, O_2 , and CO, in addition to H_2O and H_2S . A number of tentative CO_2 specifications and recommendations for maximum acceptable impurity concentrations have been published i.e. Dynamis and NETL. A large variation in the reported impurity concentrations is seen, and that is reasonable as the impurities in the CO_2 stream will depend on the fuel type, the energy conversion process (post-combustion, pre-combustion, or oxyfuel) and the capture process. In addition, with new capturing technologies, new compounds (impurities) can be formed and higher concentrations of impurities can follow the CO_2 phase.

The justification for the proposed CO_2 specifications can be questioned as very little published lab data are found supporting the suggested compositions. The present lack of relevant corrosion data from the lab and the field makes corrosion predictions difficult. In order to predict corrosion rates and safe operation windows for future pipelines, there is a strong need to better understand the mechanisms for the formation of separate corrosive phases and how the amount of corrosive phases impact the corrosion rate.

References

- M. Mohitpour, P. Seevam, K.K. Botros, B. Rothwell, C. Ennis, "Pipeline transportation of carbon dioxide containing impurities", ASME, 2012
- [2] A. Oosterkamp J. Ramsen "State-of-the-Art Overview of CO₂ Pipeline Transport with relevance to offshore pipelines" Open Polytec report: POL-O-2007-138-A
- [3] A. Dugstad, M. Halseid, "Internal corrosion in dense phase CO₂ transport pipelines state of the art and the need for further R&D", CORROSION/2012, Paper No 1452, NACE international, Houston, 2012
- [4] I.S. Cole, P. Corrigan, S. Sim, N. Birbilis,"Corrosion of pipelines used for CO₂ transport in CCS: Is it a real problem?", Int. J. Greenhouse Gas Control, 5 (2011) 749
- [5] M. Seiersten, "Corrosion of pipeline steel in supercritical CO₂/water mixtures" Eurocorr 2000, London
- [6] M. Seiersten, "Material Selection for Separation, Transportation and Disposal of CO₂" CORROSION/2001, Paper No. 01042, NACE International, Houston, 2001
- S. Walspurger, H.A.J. van Dijk, EDGAR CO₂ purity: type and quantities of impurities related to CO₂ point source and capture technology: a Literature study, 2012, ECN-E-12-054
- [8] DYNAMIS, Project no.: 019672, Towards Hydrogen and Electricity Production with Carbon Dioxide Capture and Storage, D 1.1.A-F Final Activity Report, 2009
- [9] E De Visser, C Hendriks, M Barrio, MJ Mølnvik, G de Koeijer, S. Liljemark, YL Gallo, "Dynamis CO₂ quality recommendations", Int. J. Greenhouse Gas Control 2 (2008) 478
- [10] NETL Quality Guidelines for Energy System Studies, "CO₂ impurity design Parameters", DOE/NETL-341/011212, 2012
- [11] NETL Quality Guidelines for Energy System Studies, "CO₂ impurity design Parameters", DOE/NETL-341/011212, 2013
- [12] J. Wang, D. Ryan, E. J. Anthony, N. Wildgust, T. Aiken, "Effects of impurities on CO₂ transport, injection and storage", Energy Procedia 4 (2011) 3071
- [13] Zhao, Q., Li, Y.-X., "The influence of impurities on the transportation safety of an anthropogenic CO₂ pipeline", Process Safety and Environmental Protection 92 (2014) 80
- [14] J.M. Race, B. Wetenhall, P.N. Seevam, M.J. Downie, "Towards a CO₂ pipeline specification: defining tolerance limits for impurities", Journal of Pipeline Engineering, 11 (2012) 173
- [15] IEA Greenhouse Gas R&D Programme, Impact of impurities on CO₂ capture, transport and storage, Report No PH4/32, , 2004
- 16] R. Wiebe,"The binary system carbon dioxide water under pressure", Chem. Rev., 29 (1941) 475
- K. Y. Song, R. Kobayashi, "Water Content of CO₂ in Equilibrium with Liquid Water and/or Hydrates", SPE Formation Evaluation (1987) 500
- 18] K.Y. Song and R. Kobayashi, "The water content of a CO₂-rich gas mixture containing 5.31 mol% methane along three-phase and super-critical conditions", J. Chem. Eng. Data, 35 (1990) 320.
- M. B. King, A. Mubarak, J. D. Kim, T. R. Bott, "The mutual solubilities of water with supercritical and liquid carbon dioxides", J. Supercrit. Fluids 5 (1992) 296
- [20] A. N. Sabirzyanov, A. P. Il'in, A. R. Akhunov, and F. M. Gumerov, "Solubility of Water in Supercritical Carbon Dioxide, High Temperature", Vol. 40, No. 2, 2002, pp. 203–206. Translated from Teplofizika Vysokikh Temperatur, Vol. 40, No. 2, 2002, pp. 231– 234. Original Russian Text Copyright © 2002 by Sabirzyanov, Il'in, Akhunov, Gumerov
- Y. Choi, S. Nešić, "Corrosion behaviour of carbon steel in supercritical CO₂ water environments", CORROSION/2009, Paper No. 09256, NACE International, Houston, 2009

- [22] Y. Choi, S. Nešić, "Determining the corrosive potential of CO₂ transport pipeline in high pCO₂-water environments", Int. J. Greenhouse Gas Control 5(2011) 788
- [23] N. Spycher, K. Pruess and J. Ennis-King, "CO₂-H₂O mixtures in the geological sequestration of CO₂. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar", Geochim. Cosmochim. Acta 67 (2003) 3015
- [24] A. Austergard, E. Solbraa, G, De Koeijer, M. Mølnvik, "Thermodynamic Models for Calculating Mutual Solubilities in H₂O-CO₂-CH₄ mixtures" Chemical Engineering Research and Design, 84(A9) (2006) 781
- [25] G.D. Pappa, C. Perakisa, I.N. Tsimpanogiannisb, E.C. Voutsasa, "Thermodynamic behaviour of the vapour-liquid equilibrium of the CO₂/H₂O Mixture", Fluid Phase Equilibria 284 (2009) 56
- [26] Springer, R.D., Wand, Z., Anderko, A., Wang, P., Felmy, A.R., A thermodynamic model for predicting mineral reactivity in supercritical carbon dioxide: I. Phase bahavior of carbon dioxide-water-chloride salt systems across the H2O-rich to the CO2 –rich region, Chemical Geology, 322-323 (2012) 151
- [27] S.T. Munkejord, J.P. Jakobsen, A. Austegard and M.J. Mølnvik, "Thermo- and fluid-dynamical behaviour of two-phase multicomponent carbon dioxide mixtures", Energy Procedia 01 (2009) 1649
- [28] T.E. Gill, "Canyon Reef Carriers, Inc. CO₂ Pipeline: Description and 12 Years of Operation", ASME Energy-Source Technol. Conf, Pipeline Eng. Symp., p. 59, 1985.
- [29] J.M.West, "Design and Operation of a Supercritical CO₂ Pipeline-Compression System Sacroc Unit, Scurry County, Texas", SPE Paper No. 4804, 1974.
- [30] L.E.Newton, "SACROC CO₂ Project Corrosion Problems and Solutions", CORROSION/84, Paper No. 67, NACE International, 1984.
- [31] W.A. Propp, T.E. Carleson, C.M. Wai, P.R. Taylor, K.W. Daehling, S. Huang, M. Abdel-Latif, "Corrosion in Supercritical Fluids", US Department of Energy report DE96014006, Washington DC, 1996.
- [32] Z.D. Cui, S.L. Wu, S.L. Zhu, X.J. Yang, "Study on corrosion properties of pipelines in simulated produced water saturated with supercritical CO₂", Applied Surface Science, 252 (2006) 2368
- [33] A. Dugstad, B. Morland, S. Clausen, "Corrosion of Transport Pipelines for CO₂ effect of water ingress", Energy Procedia, 4 (2011) 3063
- [34] A. Dugstad, B. Morland, S. Clausen "Transport of dense phase CO₂ in C-steel pipelines –when is corrosion an issue?", CORROSION/2011, Paper No. 19202, NACE International, Houston, 2011.
- [35] A. Dugstad, M. Halseid, B. Morland, S. Clausen "Dense phase CO₂ transport when is corrosion a threat?", NACE International 2011 Northern Area Western Conference, Regina, February 7-8, 2011
- [36] A. Dugstad, B. Morland, S. Clausen, "Transport of dense phase CO₂ in C-steel pipelines- when is corrosion an issue", CORROSION/2011, Paper No 11070, NACE international, Houston, 2012
- [37] F.W. Schremp, G.R. Roberson, "Effect of Supercritical Carbon Dioxide on Construction Materials", SPE Paper No. 4667 (1973)
- [38] F.W. Schremp, G.R. Roberson, "Effect of Supercritical Carbon Dioxide on Construction Materials", Soc. Petr. Eng. J., 15 (1975) 227
- [39] B. P. McGrail, H. T. Schaef, V.-A. Glezakou, L. X. Dang, A. T. Owen, "Water Reactivity in the Liquid and Supercritical CO2 Phase: Has Half the Story Been Neglected?", Energy Proceedia 1 (2009) 3415
- [40] R. Thodla, F. Ayello, N. Sridhar, "Materials performance in supercritical CO₂ environments", CORROSION/2009, Paper No. 9255, NACE International, Houston, 2009
- [41] F. Ayello, K. Evans, R. Thodla, and N. Sridhar, "Effect of impurities on corrosion of steel in supercritical CO₂", CORROSION/2010, Paper No. 10193, NACE International, Houston, 2010
- [42] L.E. Newton, R.A. Mcclay, "Corrosion and Operational Problems, CO₂ Project, Sacroc Unit", SPE Paper No. 6391, 1977
- [43] M. Seiersten, K. O. Kongshaug: "Materials Selection for Capture, Compression, Transport and Injection of CO₂", pp 937 in "Carbon Dioxide Capture for Storage in Deep Geologic Formations – Results from the CO₂ Capture Project, Capture and Separation of Carbon Dioxide from Combustion Sources", Vol. 2, Ch. 16, Edited by David C. Thomas, Elsevier, 2005
- [44] K. O Kongshaug, M. Seiersten, "Baseline Experiments for the Modelling of Corrosion at High CO₂ Pressure", CORROSION/2004, Paper No. 4630, NACE International, Houston, 2004
- [45] A. Dugstad, M. Halseid, B. Morland, A.O. Sivertsen, "Corrosion in dense phase CO₂ with small amounts of SO₂, NO₂ and water", EuroCorr 2012, Istanbul
- [46] A. Dugstad, M. Halseid, B. Morland, "Effect of SO₂ and NO₂ on corrosion and solid formation in dense phase CO₂ pipelines", Energy Procedia, 37 (2013) 2877
- [47] B. Paschke, A. Kather, "Corrosion of pipeline and compressor materials due to impurities in separated CO₂ from fossil-fuelled power plants", Energy Procedia 23 (2012) 207
- [48] A.S. Ruhl, A. Kranzmann, "Corrosion in supercritical CO₂ by diffusion of flue gas acids and water", J. Supercritical Fluids, 68 (2012) 81
- [49] S. Sim, I.S. Cole, F. Bocher, P. Corrigan, R.P. Gamage, N. Ukwattage, N. Birbilis, "Investigating the effect of salt and acid impurities in supercritical CO₂ as relevant to the corrosion of carbon capture and storage pipelines", International Journal of Greenhouse Gas Control, 17 (2013) 534
- [50] S. Sim, P. Corrigan, I.S. Cole, N. Birbilis, "Use of aqueous solutions to simulate supercritical CO₂ corrosion", CORROSION, 68 (2012) 045004-1
- [51] S. Sim, M.K. Cavanaugh, P. Corrigan, I.S. Cole, N. Birbilis, "Aqueous corrosion testing and neutral network modelling to simulate corrosion of supercritical CO₂ pipelines in the carbon capture and storage cycle", CORROSION, 69 (2013) 477

- [52] I.S. Cole, D.A. Paterson, P. Corrigan, S. Sim, N. Birbilis, "State of the aqueous phase in liquid and supercritical CO₂ as relevant to CCS pipelines", Int. J. Greenhouse Gas Control, 7 (2012) 82
- [53] Y.-S. Choi, S. Nesic, D. Young, "Effect of impurities on the corrosion behavior of CO₂ transmission pipeline steel in supercritical CO₂-water environment", Environ. Sci. Technol., 44 (2010) 9233
- [54] Y. Xiang, Z. Wang, Z. Li, W.D. Ni, "The upper limit of moisture content for supercritical CO₂ pipeline transport", J. Supercritical Fluids, 67 (2012) 14
- [55] F. Farales, Y.S. Choi, S. Nesic, "Effects of CO₂ phase change, SO₂ content and flow on the corrosion of CO₂ transmission pipeline steel", CORROSION/2012, Paper No. C2012-0001322, NACE international, Houston, 2012
- [56] A. Dugstad, M. Halseid, B. Morland, "Corrosion and solid formation in pipelines transporting dense phase CO₂ with impurities what do we know and what we need to know", The 3rd Int. Forum on the Transportation of CO₂, Newcastle, UK, 2012
- [57] A. Dugstad, M. Halseid, B. Morland, "Corrosion in dense phase CO₂ pipelines state of the art", EuroCorr 2011, Stockholm, Paper No 4954
- [58] Y.Xiang, Z. Wang, Ch. Xu, Ch. Zhou, Z. Li, W. Ni, "Impact of SO₂ concentration on the corrosion rate of X70 steel and iron in watersaturated supercritical CO₂ mixed with SO₂", J. Supecritical Fluids, 58 (2011) 286
- [59] Y. Xiang, Z. Wang, Z. Li, W.D. Ni, "Effect of exposure time on the corrosion rates of X70 steel in supercritical CO₂/SO2/O₂/H₂O environments", Corrosion, vol 69, No 3 (2013) 251
- [60] Y. Xiang, Z. Wang, X. Yang, Z. Li, W.D. Ni, "Effect of temperature on the corrosion behavior of X70 steel in high pressure CO₂/SO₂/O₂/H₂O environments", Corrosion Engineering, Science and Technology, 48 (2013) 121
- [61] Y.-S. Choi, S. Nešić, "Effect of impurities on the corrosion behaviour of carbon steel in supercritical CO₂ water environments", CORROSION/2010, Paper No. 10196, NACE International, Houston, 2010
- [62] F. Farales, Y.S. Choi, S. Nesic, "Corrosion behavior of API 5L X65 carbon steel under supercritical and liquid carbon dioxide phases in the presence of water and sulfur dioxide", CORROSION, 69 (2013) 243
- [63] Y.S. Choi, S.Nesic, "Effect of water on the corrosion behavior of carbon steel in supercritical CO₂ phase with impurities", CORROSION/2011, Paper No. 11377, NACE international, Houston, 2011
- [64] Corvo, F., Reyes, J., Perez, T., Castaneda, A., "Role of NOx in material corrosion and degradation", Revista CENIC. Ciencias Quimicas, 41 (2010) 1
- [65] Ameur-Bouddabbous, I., Kasperek, J., Barbier, A., Harel, F., Hannoyer, B., Transverse approach between real world concentrations of SO₂, NO₂, BTEX, aldehyde emissions and corrosion in the Grand mare tunnel, J. Env. Sci., 24 (2012) 1240
- [66] Panossian, Z., de Almeida, N.L., de Sousa, R.M.F., de Souza Pimenta, G., Marques, L.B.S., "Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: a review", Cor. Sci, 58 (2012) 1
- [67] A.S. Ruhl, A. Kranzmann, "Corrosion behavior of various steels in a continuous flow of carbon dioxide containing impurities", Int. J. Greenhouse Gas Control, 9 (2012) 85
- [68] A.S. Ruhl, A. Kranzmann, "Investigation of corrosive effects of sulphur dioxide, oxygen and water vapor on pipeline steels", Int. J. Greenhouse Gas Control, 13 (2013) 9
- [69] H. Rutters et al, COORAL project, "COORAL CO₂ purity for capture and storage", presented at 7th CO₂GeoNet Open Forum, April 17-19, 2012
- [70] O. Yevtushenko, R. Bäßler., I. Carrillo-Salgado, "Corrosion stability of piping steels in a circulating supercritical impure CO₂ environment", CORROSION/2013, Paper No. 2372, NACE international, Houston, 2013
- [71] O. Yevtushenko, R. Bäßler, "Water impact on corrosion resistance of pipeline steels in circulating supercritical CO₂ with SO₂ and NO₂ impurities", CORROSION/2014, Paper No. 3838, NACE international, Houston, 2014
- [72] O. Yevtushenko, D. Bettge, R. Bäßler, S. Bohraus, "Corrosion of CO₂ transport and injection pipeline steels due to the condensation effects caused by SO₂ and NO₂ impurities", Materials and Corrosion, 2013, in pres
- [73] A. Dugstad, M. Halseid, B. Morland, "Experimental techniques used for corrosion testing in dense phase CO₂ with flue gas impurities" CORROSION/2014, Paper No. 4383, NACE international, Houston, 2014
- [74] Beck, J., Lvov, S., Fedkin, M., Ziomek-Mroz, M., "Membrane-coated electrochemical probe for corrosion measurements of high strength carbon steel in supercritical CO₂", CORROSION/2013, Paper No. 2347, NACE international, Houston, 2013
- [75] K.Patchigolla, J.E. Oakey, "Design overview of high pressure dense phase CO₂ pipeline transport in flow mode", Energy Procedia 37 (2013) 3123
- [76] A. Dugstad, M. Halseid, B. Morland, A.O. Sivertsen,"Corrosion in dense phase CO₂ the impact of depressurisation and accumulation of impurities", Energy Procedia, 37 (2013) 3057
- [77] A. Dugstad, M. Halseid, B. Morland, A.O. Sivertsen,"Dense phase CO₂ and the impact of depressurisation and accumulation of impurities", Paper No. 2785, NACE international, Houston, 2013
- [78] A. Dugstad, M. Halseid, B. Morland, "Corrosion in dense phase CO₂ pipelines consequences of upset conditions", The 4th International Forum on Transportation of CO₂ by Pipeline, Newcastle, UK, 2013
- [79] A. Dugstad M.Halseid, B. Morland, "Testing of CO₂ specifications with respect to corrosion and bulk phase reactions", GHGT 12, 2014