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Abstract: Carbon capture and storage has gained increased attention during the last decade, and
several full-scale projects are currently being planned. From economic and public acceptance point of
view it is important to ensure that the transportation system is operated in a safe manner, avoiding
threats such as corrosion or formation of solid matters. Thus, routine chemical analyses are required
to ensure that the CO2 stream complies with the required specifications. The CO2 will usually be
transported in the liquid or supercritical state (high pressure), which makes the practicalities around
chemical analyses difficult. Phase transition from liquid or supercritical state to gaseous state may
also introduce several physiochemical effects that may affect the analyses. This paper discusses
technical and practical challenges with CO2 stream analyses experienced in a joint industry project
that studied corrosion and chemical reactions in a simulated CO2 transport system.
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1. Introduction

Carbon capture and storage (CCS) has gained increased attention as a method to
reduce emissions of anthropogenic CO2 to the atmosphere [1,2]. Separation of CO2 from
gases has been carried out for almost a century and a number of techniques are available.
However, the captured CO2 will always contain some additional components, called
impurities in the present work. The types and concentrations depend on the CO2 source,
the capturing technique, and how many impurities are removed in the liquefaction process.
In most cases, the CO2 streams will need further conditioning/purification before transport
and injection.

It has been shown experimentally that certain combinations of impurities react if they
are present above a critical concentration [3–5]. It was demonstrated that H2O, H2S, SO2,
NO2, and O2 at concentrations much less than 100 ppmv reacted and created separate
aqueous phases containing high concentrations (several mol/kg) of sulfuric and nitric acid.
Formation of acid was also observed by Yevtushenko et al. [6] in experiments containing
SO2, NO2, and O2 at water saturation. The acidic aqueous phase may introduce corrosion
problems in the CO2 transportation system, a system which most likely will be constructed
of carbon steel due to cost and availability [7,8]. Elemental sulphur is another possible
reaction product [9,10]. If the sulphur remains dissolved in the bulk CO2 phase, it will
probably not cause any problems, but it may precipitate as solids and create particulate
problems in the transportation system and reduced injectivity in the reservoir.

Several CO2 specifications have been proposed to ensure safe operation of the CO2
transportation chain. As the mechanisms for formation of corrosive species and particulate
matter have become better understood, the CO2 specifications have become more and more
strict (lower maximum impurity content). The actual composition of the CO2 stream (or
bulk carrier) needs to be documented by chemical analyses.

In most cases, CO2 will be transported in pipelines or by ship (bulk transport).
Pipelines will be operated at high pressures (>74 bar) and ambient temperature. Bulk
transport will be carried out with CO2 cooled to the liquid state with a small gas cap, for
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which the pressure will be in the range of 6–20 bar depending on the temperature [11–13].
Since nearly all CO2 transport specifications [14] are based on the concentration of impu-
rities in the transport system, this paper focuses on the monitoring during transport or
monitoring related to mixing of several CO2 streams.

Measurements of impurities in dense phase CO2 (liquid or supercritical state) is
challenging, particularly since some of the impurities are present at low concentrations,
and in addition some of them may react before analysis can be carried out.

Most of the present work is based on the experience gained during the process of
building a corrosion test system that can be operated under CCS conditions in our lab.
Analysers were used to compare the impurity concentration of inlet and outlet CO2 from
the autoclave (reaction chamber). Work with the test system(s) has been going on for more
than 10 years and the development is still in progress. Even if the practicalities around
such analysis may vary significantly from the lab to the field, many of the general problems
and challenges are still the same and will be discussed in the paper. Currently there are
no standard methods for impurity analyses of dense phase CO2 streams. The present
work highlights the most challenging issues of such analyses. Furthermore, as this work is
intended to focus on the test approaches in general, details about the actual instruments
that were used are intentionally not given. Similarly, chemical reactions, etc., are only
briefly treated here, as more details can be found elsewhere [3,9,15].

2. Analysing the Impurity Content of CO2 Streams
2.1. The Pressure Challenge

Highly accurate gas analysers have been available for a long time and there are nu-
merous instruments and techniques available. However, none of the instruments available
on the open market are able to carry out analyses under actual process conditions (CO2 in
the liquid and supercritical state).

In practice, the pressure must be reduced to near atmospheric before analysis can be
made, and therefore the CO2 must be transformed from the supercritical or liquid state to
the gaseous state. A pressure regulator is needed for this, and usually it will also require a
mass flow controller to maintain a stable (but adjustable) feed of analyte.

With pressure reduction and phase transformation, there are several physiochemical
factors that may affect the chemical analysis. Figure 1 shows the solubility of water in pure
CO2. When CO2 is transferred from the liquid to the gaseous state, there is a sharp drop
in the water solubility, and hence there is a risk of water precipitation. The problem is
enhanced by the Joule–Thomson effect, which reduces the temperature in the gas reduction
valve. The reduction valves should therefore be operated with electric heating, as this
prevents precipitation of liquid water. Heating will also prevent/reduce the risk of hydrate
formation, which may occur at temperatures of 11 ◦C or lower [16,17]. In the gaseous state,
the water solubility increases with decreasing pressure (left side of Figure 1).
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Figure 1. Water solubility (ppmv) in CO2 as a function of pressure and temperature. The data were
calculated with the OLI software.
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An example that shows the effect of water precipitation in the gas regulator is given
in Figure 2. The initial water analysis was very stable (500 ppmv), but it started to fluctuate
somewhat when the water content was increased to 1200 ppmv. Shortly after injection of
fully water-saturated CO2 (in this example it started at 54 h), the water signal started to
fluctuate significantly. This is believed to be the result of water precipitation/dissolution
dynamics in the heated gas regulator. This behaviour is so common that it is used by the
authors as an indication of water saturation.
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Figure 2. Water analysis from an experiment where the water injection was increased from 500 to
1250 ppmv (28 h) and from 1250 to 2200 ppmv (54 h).

Figure 3 shows the predicted water solubility at 25 ◦C assuming full equilibrium
and no temperature changes. If the water content is low, precipitation of water is not
expected when the pressure is reduced from 100 to 1 bar (example with 250 ppmv shown
by the green line/circles). The black lines/circles show the same process for a higher water
content of 2000 ppmv. The water solubility is clearly exceeded during the phase transition
from liquid to gaseous CO2, where about 800 ppmv of water will precipitate as liquid
water. It will gradually dissolve again when the pressure is reduced below 50 bar and it
will be fully dissolved when the pressure reaches 20 bar.
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Figure 3. The blue line shows the water solubility (ppmv) in CO2 as at 25 ◦C (calculated with the
OLI software). The green and black lines represent two CO2 streams with 2000 ppmv and 250 ppmv
water, respectively.
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A sharp drop in solubility with decreasing pressure is also observed for other species
such as nitric acid, sulfuric acid, and elemental sulphur. If the precipitation is fast, species
may accumulate in the heated gas regulator. This will of course result in erroneous chemical
analysis, but it may also introduce clogging of the regulator, the mass flow controller, and
the analysers (see the example in Section 3.2). Furthermore, if certain species precipitate,
they could introduce chemical reactions in the feeding lines from the gas regulator to the
analysers. If an aqueous phase with acids precipitates inside the heated gas regulator,
the water measurements may also fluctuate even in the low parts per million by volume
(ppmv) range, as shown in Section 3.3.

2.2. The Calibration Challenge

Some instruments, such as gas chromatographs, as well as UV and IR photometers,
need regular calibration. Even if this process is automated, it can be a somewhat tedious
process, particularly in the field. It also means that bottles with calibration gas (one for
each concentration) must be available at the site and be refilled in due time. Thus, there is
a technological and logistic issue that has to be dealt with. This should be manageable at a
CCS facility, which nevertheless will require a certain amount of qualified work force. The
situation may be different on a remote site.

2.3. Saturating the Sampling System with Analyte

Several impurities may adsorb on internal surfaces of the sampling loop, such as
phase transition regulators, flow meters, and analysing lines. Normally, the volume in
the sampling system should be fully replaced with CO2 feed (analyte) three to five times
before a representative sample can be collected. This is not a problem for a continuous
analysing system, but the lag time could be long when considering both the volume
exchange and adsorption/desorption effects. This is commonly referred to as “saturating”
the analysing system. If the analyte composition changes, these impurities will adsorb
or desorb according to the surface equilibrium. It has been observed that H2O, H2S, and
NH3 require long saturation times, while SO2, O2, and CO are much faster. The actual
response time depend on the length of the analysis line and the volume and surface area of
additional equipment.

One of the setups in our lab consists of 20 m 1/16′ ′ stainless steel tubing, three valves,
two filters, a heated gas regulator, and a 300 mL autoclave. It takes about 16 h to saturate
this setup when changing the water content from 5 to 1500 ppmv with 500 mL/min total
gas flow. If the water content is reduced from 1500 to 1000 ppmv, stable measurements are
achieved after about 2 h. The dry-up time for such a system is very long. The experience is
that it takes about 2 weeks to reduce the water content from 1000 to 1 ppmv, and the last
50 ppmv are the most time consuming. It is possible to purchase tubing that has a special
surface treatment (“inert tubing”) that is claimed to reduce the problem. This effect has not
yet been tested by the authors.

The problem can be reduced by designing the sampling system with a high-volume
exchange rate. In practice, this means low diameter tubing or a large flow of CO2. With
smaller diameter tubing, there is an increased risk of clogging by solids and therefore some
optimisation has to be made.

The phase transition regulator should be made of inert material. Usually, a fine tuning
of the heat supply would also be necessary. More heat would at least give shorter adsorp-
tion/desorption time, but it could increase the risk of reaction between the impurities.
Thus, there is a trade-off between response time and accuracy.

2.4. Sampling Location

Corrosion and impurity reactions can form solid and liquid phases [3–5]. These
products (solids, liquids) may separate from the CO2 bulk phase due to density differences
and either stick to the wall or follow the CO2 stream. Depending on the pressure and
temperature (density of CO2), the products may be lighter or heavier than the bulk CO2
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phase. This is further complicated by the large variation of CO2 density (varies significantly
with pressure and temperature), meaning that certain components can be both lighter or
heavier than the bulk CO2 depending on the conditions. Flow and turbulence may also
have an effect, particularly in pipelines. Products that are expected to be separated by
gravity could be kept in the bulk phase as emulsions or small particles, but they may
also accumulate either at the top or bottom of the transportation system. The practical
sampling locations will have to be evaluated for each system, but one approach could be to
sample from the top position (light components), middle position (bulk phase), and bottom
position (heavy components), as indicated in Figure 4. Applying a large-diameter flange at
the bottom would allow for accumulation of heavy components if the turbulence is not
too high.
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Partitioning of impurities in two-phase CO2 is the case for a number of impurities,
and sampling from the gas or liquid phase will therefore give different results [18–20].
Experiments have shown that H2O, SO2, and H2S partition preferentially into liquid CO2
phase, while O2 partition preferentially into the gas phase. This means that it is important
to carry out sampling in a manner that prevents a two-phase system, e.g., by introducing a
large pressure drop by fast sampling. A piston cylinder with back pressure could be used
to avoid two phase formation during analysis of a batch CO2 sample.

2.5. Impurity Range

The impurity levels are expected to be low (typically < 10 ppmv) during normal
operation, and consequently low detection limits are required. Upset conditions, on the
other hand, may introduce relatively high impurity levels. Thus, there is a trade-off
between wide range and accuracy of the lowest concentrations.

3. Analysis and the Need for Phase Separation

The CO2 stream can in principle contain both gaseous, liquid, and solid products. Each
of these components will usually require different types of analysing techniques and will
therefore have to be separated. With gaseous components, it is here meant components that
are in gaseous state around room temperature and at pressure near 1 atm (after pressure
reduction). The analysing approach will probably vary from site to site, but one example
of a possible solution is shown in Figure 5.
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3.1. Gasseous Species

After the heated gas regulator, the gas can be analysed directly. The choice of analysing
method is usually based on a number of factors, of which economy, number of analysed
species, detection limit, reproducibility, need for calibration, ease of repair/maintenance,
and equipment lifetime are the most important. Analysers based on laser absorption
spectroscopy were selected in the authors’ lab as the best choice due to high analysis
frequency and long calibration intervals. One disadvantage with the current setup is
that the number of possible analysed species is fixed. Furthermore, not all species can be
analysed for (there are several reasons for this). Although this probably can be improved in
the future, it means that these laser-based techniques must be combined with other analytic
methods. Several laser-based analysers may also be applied in series. FTIR spectroscopy is
another analytical technique that probably could be used, but at present it has not been
tested by the authors. The technique is promising since it is capable of multi component
analysis, and new components in principle can be added to the analysis by only changing
the software.

Gas chromatography (GC) needs regular calibration, and therefore we did not use
it for long-term analysis (with dense phase CO2). It is sometimes used for infrequent
analysis. However, GC has the advantage that it relatively easy can be modified to analyse
for new species.

Regardless of the analysis technique, it is difficult to find one technique and instrument
that can handle all species, and thus several analysers have to be used in combination.

3.2. Solids

Solids can be separated from the bulk CO2 phase with filters. Since the solubility of
certain components vary with pressure, it is best to apply the filter before the phase transi-
tion regulator. This will also prevent clogging problems of the gas regulator. Nevertheless,
the filter housing must be able to handle the CO2 pressure, and it must withstand frequent
depressurization in a controlled manner (particularly soft materials such as rubber gaskets
or Teflon-coated diaphragm can be damaged due to rapid depressurisation). The filters
could be analysed by standard methods, e.g., by X-ray powder diffraction (XRD), scanning
electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Dissolving
the products in a suitable solvent could be another solution.

A filter can also be installed on the low-pressure side for protection of the analysers
and the mass flow controllers, etc. Comparison of filters from up- and downstream
the reduction valve may provide useful information, since the pressure drop over the
heated gas regulator may lead to precipitation of certain species (see Figure 6). Previous
research [3,10,15] has shown that interaction between impurities may occur when certain
types are present, and the concentrations exceed a critical limit. The analysis system is
vulnerable to precipitation of solids if they settle inside the analytical instruments. The
green/yellow solids seen in Figure 6 (diaphragm to the right) was identified with XRD
to be elemental sulphur. The sulphur was initially fully dissolved in the CO2 stream not
transported to the gas regulator as solid but rather as dissolved species [10] in the CO2 and
precipitated when the pressure dropped over the regulator. This is commonly observed,
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and most of the impurity solubilities shows a minimum solubility right before the phase
transmission from gas to liquid (see an example in Figure 1). As long as such species
remain dissolved in the CO2 stream, they might not be a problem for the transport system,
but it may introduce problems for the analysing loop.
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3.3. Liquids

Liquids can be difficult to separate from dense phase CO2 since they may have al-
most the same density. The density differences are much higher downstream the pressure
regulator (where CO2 is in the gaseous state), and gaseous and liquid species can then be
separated by top and bottom streams in a small separator. The separator could even be
equipped with a small window for in situ observation of liquids. The liquid could be anal-
ysed using conventional method, such as ion chromatography, liquid chromatography, etc.

Even if there is no separate liquid phase in the CO2 stream, liquids may condense
inside the heated regulator due to the pressure drop, as shown in Figure 6. An ion chro-
matograph analysis of the liquid in Figure 6 showed that it consisted of both nitric and
sulphuric acid. Installation of a drain on the regulator would allow for sampling of such
liquids while at the same time providing a simple method for purging the regulator for
liquids and particles. It is expected that routine purging would decrease the need for
maintenance due to corrosion of the regulator material and solid accumulation. It may also
improve the chemical analysis. Typical signs of liquid condensation inside or downstream
the regulator are fluctuations in the water analysis, as shown in the example in Figure 7.
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4. Monitoring Multiple CO2 Streams

For single CO2 streams, it should be relatively straightforward to document that the
quality is within a given specification by using the earlier mention techniques. If no reaction
or corrosion occurs, the content of impurities should be the same along the whole transport
system. Changes in impurity concentration would indicate that chemical reactions or even
corrosion is taking place. This will obviously require multiple analysing points.

For a large CO2 transportation network, there will be CO2 streams from several CO2
sources gathered in large transport lines or temporary stored for ship transport (see the
illustration in Figure 8). The different CO2 streams might have different impurities in
both type and concentration. Even if these streams are stable individually (no chemical
reactions), chemical reactions could occur when the streams are mixed. Thus, there is a
need to document the impurity content before and after mixing.
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4.1. Reactions

Due to the large number of possible impurities, the number of possible chemical
reactions is high. The most important reactions that were identified in the Kjeller dense
phase CO2 project (KDC) [3,4,9,15,21] were

H2S + 3NO2 → SO2 + H2O + 3NO (1)

2NO + O2 → 2NO2 (2)

SO2 + H2O + NO2 → NO + H2SO4 (3)

2NO2 + H2O → HNO3 + HONO (4)

Nitrogen dioxide is a strong oxidation agent and will readily react with hydrogen
sulphide to sulphur dioxide and water (reaction (1)). As long as oxygen is present, nitrogen
dioxide will be regenerated according to reaction (2). It should be noted that due to this
regeneration, only trace amount of NO2 is required to oxidise H2S as long as oxygen is
present. The only NO2 sink will be formation of nitric acid or corrosion.

Sulphuric acid is formed according to reaction (3), but to form liquid acid inside the
transport system, it has been observed that the SO2 content needs to exceed 50–60 ppmv
before H2SO4 forms and precipitates as a liquid phase (25 ◦C and 100 bar).

Reactions (1)–(4) could be used for guidance when interpreting the results from the
analyses of the CO2 streams. This will be discussed further in the following chapters.

4.2. False Accordance with the Specification

Monitoring the composition of a CO2 stream where the impurities may react before
the analysis introduces the need for special evaluations in addition to the chemical analysis.
For example, monitoring parameters such as flow, pressure, and temperature could reveal
possible risk of precipitation (see, for example, Figure 3). Comparison of analyses at
different positions can also provide valuable information. All of this should be combined
and compared with the known chemical reactions and limits (see Section 4.1) and also
compared to thermodynamic models (if available).
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Examples of how misleading the analyses can be are shown in Figures 9 and 10. The
injected impurity concentrations were the same in both experiments [9] but the injections of
the impurities were started at different times. In Figure 9, it is quite clear that no chemical
reactions took place when H2O, SO2, O2, and H2S were injected as they all reached stable
target values. Once the NO2 injection started, reactions took place, and an aqueous phase
of H2SO4 and HNO3 precipitated. In the other experiment (Figure 10), where all the
impurities were injected simultaneously from start-up, the analysis showed practically
zero content of H2S, and SO2 and O2 were much lower than the injected content. The
readings in Figure 9 could therefore erroneously lead to the conclusion that the CO2 stream
was in accordance with the specification, even if more than 70 percent of the impurities
were missing due to reactions. The reason for the missing impurities was reaction to acids
(reactions (3) and (4)) and solid formation. If all the sulphur species (SO2 + H2S) react
to sulphuric acid (reaction (1) + reaction (3)), about 500 g would be produced per ton
CO2. A system transporting 1 megaton per year would in this case produce 500 tonnes of
acid per year. This large amount of acid would most likely threaten the integrity of the
transportation system due to corrosion, and routines must be implemented to prevent (and
detect) such a situation. This emphasises the importance of several measuring points to
ensure sufficient control over the transport system, and the design of the analysing system
must take into consideration that new products from chemical reactions could appear in
addition to those impurities included in the specification.
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Figure 10. The result of simultaneous injection of 300 ppmv H2O, 350 ppmv O2, 100 ppmv of
NO2, SO2, and H2S in 100 bar CO2 and 25 ◦C. None of the impurities reached their setpoint due to
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4.3. Simulation and Predicting

By using reactions (1) to (4), we were able to make simple predictions of the results of
mixing CO2 streams. If all side streams and the main CO2 stream (Figure 11) are monitored,
it is possible to identify upsets. If no reactions take place, a simple mass balance of the
small streams should give the composition of the mixed stream.
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However, even if most of the chemical reactions are known, a full simulation of the
mixing of multiple CO2 streams with occurring reactions is quite a complex process. Pa-
rameters such as chemical kinetics and competition between reactions, surface adsorption,
and catalysing effects are not fully understood at present. Another aspect that would add
complexity to the simulation occurs if a separate aqueous phase forms and accumulate in
the system. The presence of an aqueous phase might not only change the kinetical param-
eters but could also change the ongoing reactions or introduce new reactions, including
corrosion reactions, that would further complicate the simulation.

The results from the KDC-project are currently being implemented in a thermody-
namic model developed by OLI Systems [22,23]. The model is still in the development
stage for use in CCS systems.

Even though an accurate simulation might be complex, the prediction from the reaction
alone would give valuable input to the outcome of mixing streams or building specifications.
Table 1 shows an example of such prediction, where no aqueous phase will form since the
sum of H2S and SO2 is well below the threshold value for reaction (3) (see Section 4.1). An
interesting outcome of the exercises is that reaction 1 leads to higher concentration of SO2
and H2O, which in certain situations could exceed the threshold for reaction (3), even if the
original SO2 content was well below this level. Further increase of impurity content could
eventually result in exceeding the accepted specification. Yet, research has shown that the
concentrations in Table 1 are safe [3].

Table 1. Prediction based only on the reactions; the input impurities are the sum of all streams while
the output concentration are the results of the reactions.

Impurity
Concentration

before Reaction
(ppmv)

Concentration
after Reaction

(ppmv)

NO2 10 3
O2 10 0

H2O 30 39
SO2 10 19
H2S 9 0
NO 0 7
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The understanding of ongoing processes in the transported CO2 might ease the
simulations but it might also untangle the complex analysis after mixing several CO2
streams loaded with even more types of impurities.

5. Conclusions

Analysis of impurities in dense phase CO2 streams requires pressure reduction and
phase transformation to gaseous CO2 and is therefore more complicated than analysis of
gaseous CO2 alone. Possible reactions of impurities make such analysis even more chal-
lenging, particularly since even 99.95% pure CO2 (food grade) has the potential to produce
acids and solids, which may have negative effects on the analysis system. Impurities may
partition between phases, and this may be another complicating factor during analysis.
Precipitation of solids and liquids on the low-pressure side of the analysis line may also
introduce challenges due to particle accumulation, corrosion, and fluctuation of certain
impurities that interact with the liquids.

Multiple analysing points along the CO2 transportation system (e.g., inlet and outlet)
will increase the possibility to reveal ongoing processes such as chemical reactions and/or
corrosion. If multiple CO2 streams are being merged in a network, it might be necessary
to analyse all CO2 streams before and after mixing in order to ensure that the specifica-
tion is fulfilled. Such analysis could also be assisted by predictions based on identified
chemical reactions.
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Abbreviations

atm atmosphere (pressure unit)
CCS Carbon capture and storage
GC Gas chromatography
FTIR Fourier transform infrared spectroscopy
IR Infrared
ppmv parts per million by volume (or by mole)
SEM Scanning electron microscopy
UV Ultraviolet
XRD X-ray powder diffraction
EDS Energy-dispersive X-ray spectroscopy
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