

Future compressed hydrogen infrastructure for the domestic maritime sector

IFE/E-2020/006

Janis Danebergs Fredrik Aarskog

	ISSN	Revision No.:	Publication date:		
IFE/E-2020/006		REVISION NO	2020-12-11		
		2535-6380 2020			
Client/Client ref.:	ISBN				
- Arena Hyway					
Ocean Cluster	978-82-7017-930-5				
- NTRANS					
- MoZEES					
Title: Future compres	ssed hydrogen infrastructure for the	domestic maritime	sector		
Summary:					
maritime transport in for hydrogen in the of the supply chain for of in the supply chain c were gathered from b	he HyInfra project lead by Arena O n FME NTRANS. Previously, in HyInf domestic maritime sector was defin compressed hydrogen could become alculated with the levelized cost of both Arena Ocean Hyway Cluster me ed cost levels by 2030.	ra work package C, t ned. This new work a e based on the costs hydrogen (LCOH) me	he potential demand aims to estimate how of the different steps ethodology. The costs		
SMR with CCS was identified as the cheapest production option, and costs for three different					

SMR with CCS was identified as the cheapest production option, and costs for three different electrolyser sizes were used. Alkaline technology was used as the basis for electrolysis as it was identified as the cheapest option. By balancing cheaper hydrogen due to economies of scale and the additional cost of transport, the demand was clustered into feasible groups with common production units and some local production units. This clustering was done through two scenarios that either included or excluded already announced hydrogen production units. The results varied between the scenarios and are presented in both map and table format.

The demand size of the different clusters of compressed hydrogen varies between ~500 to ~6 000 kg hydrogen per day. When including the already planned hydrogen production locations, more local production sites were identified.

local production s	ites were identified.	
	Prepared by:	
	Janis Danebergs	
	Fredrik Aarskog	
		(digitally signed on last page)
	Reviewed by:	
	Kari Espegren	
		(digitally signed on last page)
	Approved by:	
	Arne Lind	
		(digitally signed on last page)

Institute for Energy Technology P.O. Box 40, NO-2027 Kjeller, Norway / P.O. Box 173, NO-1751 Halden Telephone: +47 63 80 60 00/ +47 69 21 22 00 https://ife.no / firmapost@ife.no

IFE

1	Intro	oduction	1
2	Met	hodology	2
3	Dem 3.1 3.2	nand for compressed hydrogen and pre-defined production Demand for compressed hydrogen Pre-defined production	4
4	Cost	t analysis	8
	4.1	Electrolyser	8
	4.2	Steam methane reforming	9
	4.3	Compression	10
	4.4	Transport and storage	10
	4.5	Hydrogen refuelling system	11
5	Resu	ults	13
	5.1	Levelized cost of hydrogen	13
	5.2	Geographical distribution	14
6	Disc	ussion and conclusion	19
	6.1	Future work	20
7	Ackr	nowledgment	20
8	Refe	erences	21

Appendix A - Overview of production and demand sites for Scenario 1 Appendix B - Overview of production and demand sites for Scenario 2

1 Introduction

In 2019 the Norwegian greenhouse gas emissions from the maritime sector reached 3.0 million tonnes CO2 equivalents [1], which corresponds to 5.9% of the total national emissions. Hydrogen in compressed and liquid form, as well as e-fuels with hydrogen as a central component, is seen as a promising option to decarbonize the sector. Arena Ocean Hyway Cluster leads the HyInfra¹ project, with the overall goal to reduce uncertainty and risk related to hydrogen infrastructure for the maritime industry. The project involves the mapping of future hydrogen and ammonia demand, technical solutions and hydrogen value chains, technical uncertainty and project risk, safety and regulations, and other barriers.

Previously in the HyInfra project, potential national demand for compressed and liquid hydrogen, as well as ammonia, was mapped. This report is a continuation of the HyInfra project and aims to analyse the upstream production and distribution of compressed hydrogen. The cost of producing compressed hydrogen is known to decrease with increasing production volumes, and transportation of compressed hydrogen is known to be expensive. In this report, the benefits of scale versus high transport costs is the main issue being analysed. Similar reports covering liquid hydrogen and ammonia are being prepared in parallel by Ocean Highway Cluster and Amon Maritime.

This work has been co-developed with the user case study on hydrogen in the maritime sector conducted by the research centre for environmentally friendly energy NTRANS. The findings in this work provide a valuable basis for analysing how to unlock the potential of hydrogen and possible barriers to doing so.

¹ <u>https://www.oceanhywaycluster.no/projectlist/hyinfra</u>

2 Methodology

The demand was received as a printout of the dataset for compressed hydrogen used in the Ocean Highway Cluster (OHC) interactive map² consisting of 67 entries with GPS coordinates and a demand connected to each location. The initial work was to quality check the dataset and to merge nearby locations into a single demand to facilitate the main analysis.

The core question is how to satisfy the defined demand in the most cost-effective manner while considering two main aspects of the supply chain: i) the cost benefits of large-scale vs. local small-scale production and ii) the additional cost of hydrogen transport from large-scale production sites to the consumer.

To carry out this work, a techno-economic analysis of the production technologies was done based on the levelized cost of hydrogen (LCOH) defined by [2] as

$$LCOH = \frac{\sum_{t=1}^{n} \frac{I_t + M_t + E_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{H_t}{(1+r)^t}}$$
(1)

where I_t is the initial investment in year t, M_t is the operations and maintenance costs, E_t is the fuel costs, H_t is the hydrogen produced in the year t, r is the discount rate and n defines the system lifetime.

The production cost by commercial electrolysers and steam methane reforming (SMR) was reviewed and differentiated based on size where relevant.

In this analysis, only road transport of hydrogen and its associated costs are considered based on hydrogen transport modules. Transport of compressed hydrogen by waterway is not included as it is still considered an immature method with unknown cost. The only exception is that trucks transporting hydrogen can use ferries, which are common along the Norwegian coast.

The LCOH for the different components is calculated for a 2030 case where some components are expected to cost less relative to today's levels (2020). This decision is based on the main demand growth's being expected between 2025 and 2035.

The main cost variables for the hydrogen supply chain were collected at a workshop with OHC members on 25 August 2020 where all participants discussed and agreed on a common dataset. This dataset was later also complemented by additional input and discussions with key partners and, where needed, additional data was gathered from the literature.

Based on the identified production and transport costs it is possible to determine the transport distance at which it becomes more feasible to build an additional local production facility.

² https://www.oceanhywaycluster.no/membersarea

The hydrogen production facilities in this work are divided in two groups: i) pre-defined sites and ii) compressed hydrogen demand-driven sites. The pre-defined sites are sites that have either been

- announced by the industry as hydrogen producing sites, no matter their main source of demand (industry, transport or other), or
- identified within HyInfra as covering demand for liquid hydrogen.

The demand for hydrogen was provided as a list of locations and their daily and yearly hydrogen demand. With the help of a Python code that asks for distance using the Google Maps API, a distance matrix was created covering all locations. Based on this matrix and the previously identified thresholds of how far it is feasible to transport hydrogen vs. producing it locally, all the demands in the distance matrix were clustered to a production facility manually using the following design rules:

- 1. All demand which is feasible to connect to external hydrogen production facilities is assumed to be served by facilities that are already pre-defined.
- 2. The demand that cannot be connected to pre-defined hydrogen production facilities is clustered with a new production facility in the following manner:
 - a. The largest demand of the demands not yet clustered is identified and a production unit at or nearby this point is assumed.
 - b. All demands for which hydrogen transport is feasible considering the transport distance are added, thereby creating a new cluster of demands
 - c. As long there are demands not yet clustered, the process is restarted from point a.

To show a diversity of how the supply chain can be structured, two scenarios are analysed: **Scenario 1**, which considers the announced locations for future hydrogen production plants by market actors and including the production locations for the LH2 set within HyInfra and **Scenario 2**, which looks at optimal location when considering only the demand of compressed hydrogen for maritime sector.

3 Demand for compressed hydrogen and pre-defined production sites

In this chapter, the main inputs of demand and possible production facilities are presented. The possible production facilities are either announced by industry actors or have been identified by the HyInfra project during analysis of liquid hydrogen supply chains.

3.1 Demand for compressed hydrogen

The demand for compressed hydrogen has previously been identified for car ferries and high-speed ferries as part of HyInfra work package C. The work done to estimate which high-speed ferries are eligible for hydrogen as energy carrier and the estimated energy demand is publicly available [3] while the methodology for car ferries is available through the Ocean Highway Cluster member area.

In total 67 connections where identified as feasible for hydrogen as an energy carrier, of which 17 are car ferries and 50 are high-speed ferries. The average daily demand for compressed hydrogen approaches 34 tonnes per day over the next decade, as shown in Figure 1. If all hydrogen would be produced with electrolysers at 66% efficiency, the annual electricity consumption for hydrogen production would be approximately 620 GWh of electricity by 2036.

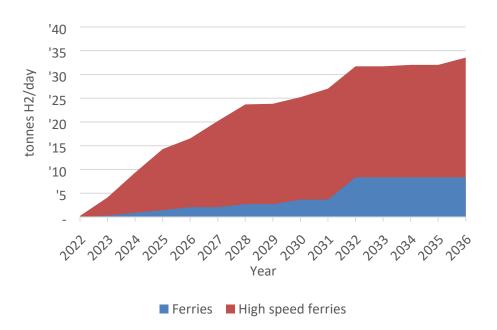


Figure 1 Projected increase in the demand for compressed hydrogen over time

The dataset for demand was reviewed in two steps. In the first step, all demand locations on islands were examined. In total, 23 of 67 demand locations were on islands. Of these locations, 14 were manually moved to the mainland or to the island with strongest grid and/or easiest access for delivering distributed hydrogen. When moving a demand (bunkering) location, the only alternative considered was another end-stop point on the route; however, feasibility with the existing route schedule was not assessed. From this analysis, local production was assumed as the only option for two routes, "Trænaruten", and "Gåsvær-Hardbakke", as they were located too far from mainland.

In the second step, the demands which lie within a 30 km radius of each other were merged into a single demand. This step was taken because it was assumed that the probability of two production facilities being placed so close to each other is low. This assumption is based on the fact that there will always be certain advantages of scale and administration to build and run a single plant instead of two separate plants, which might not be included in the simple methodology used in this work. It also facilitates further analysis as the number of locations is reduced.

After the process of merging locations, 50 unique locations remained. The demand in this dataset varies between 45 and 3135 kg_{H2} /day per site, while the average demand is 599 kg_{H2} /day. The daily demand is estimated by dividing annual demand by 365 days/year, while actual daily demand can vary depending on day of the week and season.

The original demand dataset is illustrated in Figure 2a. The modified dataset is illustrated in Figure 2b, with merging of demand and moving of bunkering locations indicated by separate colours. Also, the local fast-ferry route, "Trænaruten", with limited grid capacity and assumed local production is shown in red in Figure 2b. The other route with limited grid and local production, "Gåsvær-Hardbakke", is hard to identify in the figure due to its small hydrogen demand.

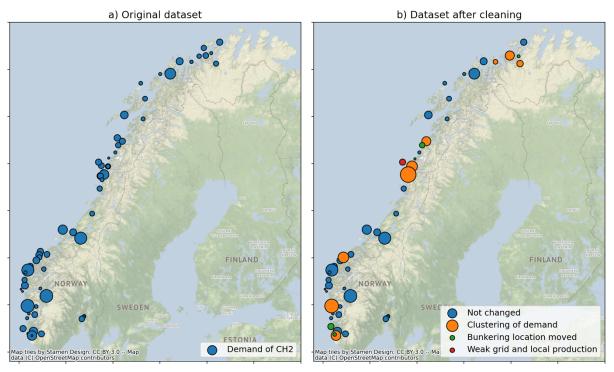


Figure 2 Illustration of a) original H_2 demand dataset and b) H_2 demand dataset after cleaning and clustering

3.2 Pre-defined production sites

Several companies have published press releases about their intentions to build hydrogen production facilities in Norway. In addition, through analysis of liquid hydrogen supply chains within the HyInfra initiative, additional production sites have been identified. Table 1 shows the overview of all the predefined production plants while Figure 3 displays them on the map.

There has no official statement regarding an initiative to build a steam methane reforming (SMR) plant in connection with Equinor's facilities in Mongstad, but the site is very relevant considering its ongoing carbon capture and storage (CCS) activities and is likely to be the location of a hydrogen liquefaction plant. Not far from Mongstad, in Kollsnes, Øygaarden, the companies CCB and ZEG Power have already received funding to demonstrate a small-scale hydrogen production plant based on ZEG Powers technology which utilizes Sorption Enhanced Reforming (SER). Carbon capture is an integral part of the SER process, making it an alternative to producing hydrogen from methane using SMR technology with CCS. It can be concluded that despite there being no announced plans to build large-scale SMR/SER plants based on natural gas as energy feedstock, there are ongoing activities with great potential for realizing such a plant in the vicinity of Bergen. This analysis is based only on an SMR plant in Mongstad. However, it is assumed that the changes in results would be marginal if the production facility were moved to Kollsnes (assuming production costs of SMR and SER are comparable).

As hydrogen production typically favours economies of scale, it is assumed that additional demand allocated to any of these sites will be a win-win situation both for producers and consumers of the hydrogen.

Location	Initializer	Start year	Production type	Estimated GPS coordinates	Source
Glomfjord	Nel ASA, Greenstat AS and Meløy Energi AS (LH2 HyInfra)	2024	Electrolyser	66.815933, 13.940030	[4]
Mo i Rana	Statkraft, Celsa & Mo Industrial park	2023	Electrolyser	66.310437, 14.167243	[5]
Finnsnes	Statkraft & CRI	2023	Electrolyser	69.221681, 18.082201	[6]
Mongstad	BKK, Equinor & Air Liquide, and other (LH2 HyInfra)	2024	Electrolyser	60.810344, 5.031334	[7, 8]
Mongstad	A future SMR plant is assumed		SMR	60.810344, 5.031334	
Kollsnes, Øygaarden	CCB & ZEG Power	2022	SER – demo	60.550048 <i>,</i> 4.838676	[9]
Hellesylt	Hellesylt Hydrogen Hub	2023	Electrolyser	62.086274, 6.870644	[10]
Berlevåg	Varanger kraft (LH2 HyInfra)	2020	Electrolyser	70.854403 <i>,</i> 29.117184	[11]
Florø	HyFuel	Construction starts 2021	Electrolyser	61.608586 <i>,</i> 5.049001	[12]

Table 1 Overview of pre-defined production locations

Figure 3 Location of announced future large-scale hydrogen production sites

4 Cost analysis

To suggest a future national supply chain is very complicated as its formation will consist of many different aspects, many of which are not yet public or possible to foresee in this type of national analysis. Therefore, this analysis builds on a simplified methodology based on comparing the LCOH cost for different components in the supply chain and on the pre-determined geospatially spread demand to make a reasonable match between production and demand.

In all the calculations, a discount rate of 9% is assumed. This corresponds to the approximate yearly increase of the Oslo stock market index between 2010 and 2019. This value was selected to illustrate the opportunity cost an investor would face when investing in the hydrogen supply chain.

In the following subchapters, the LCOH is presented for different parts of the supply chain including both current and future costs.

4.1 Electrolyser

Only the electrolyser technologies commercially available today are considered in this work. This limits the technology alternatives to either alkaline or PEM type electrolysers. Their main assumed performance and cost variables for today and for 2030 are presented in Table 2.

			2020			2030	
		0.4 MWel	1 MWel	10 Mwel	0.4 MWel	1 MWel	10 Mwel
Alkaline							
Investment cost	kNOK/MW _{el}	21,130	11,000	7,500	12,486	6,500	3,900
Average energy efficiency	%	63	63% 65%		66%		
Production capacity	kg _{H2} /day	181	454	4680	190	475	4,752
Technical lifetime	hours		75,000		95,000		
Electrolyser outlet pressure of H2	bar	5 15		5			
PEM		0,2 MWel			0,2 MWel		
Investment cost	kNOK/MW _{el}	34,044	19,780	10,221	25,240	14,665	7,577
Average energy efficiency	%		58%			66%	
Production capacity	kg _{H2} /day	84	418	4,176	95	475	4,752
Technical lifetime	hours	60,000		75,000			
Electrolyser outlet pressure of H2	bar	30				30	

Table 2 Assumed performance and cost variables for alkaline and PEM electrolysers

The main operational costs are connected to the electricity supply, which is comprised of the energy cost and grid connection fees. Future energy costs are very hard to predict, and in this work, they are assumed to be constant at 400 NOK/MWh both for today and for 2030. In addition to the energy price, the power consumer also needs to pay grid fees for operation and maintenance of the electrical grid. In this work, the grid fees are set at 50 NOK/MWh and 100 NOK/MWh for large (1 MWel) and small

consumer (1, 0.4 and 0.2 MWel), respectively. This differentiation is made to illustrate that larger consumers might harvest some benefits through a strategic location or a more favourable connection to the grid or be co-located with an energy production or consumption site with the flexibility to ramp down at peak demand hours. The cost of the electrolyser is calculated based on a yearly capacity factor of 90%.

Based on the data provided above, the results of LCOH for both technology types, different sizes and years are calculated and shown in Table 3. Based on the data available today and the method used, an alkaline electrolyser will be the cheapest option in all cases and further analysis will be based on this technology. The importance of this comparison is to identify the different cost levels between the different sizes of electrolyser and not make a definite conclusion about preferred technology type.

			Size (MWe)				
		10	1	0.4	0.2		
2020	Alkaline	32	41	53			
	PEM	42	61		83		
2030	Alkaline	27	32	39			
	PEM	32	43		56		

Table 3 LCOH for producing hydrogen by electrolysis in NOK/kg_{H2}

The results showing that alkaline is the cheapest option should be interpreted with caution as factors such as the cost of land area, the cost of hydrogen compression and additional income sources such as variable load operation as support for the grid have not been considered. In a more detailed analysis, these factors might lead to a different result.

4.2 Steam methane reforming

Data from IEA's Future of Hydrogen report were used for the costs of SMR technology and are presented in Table 4 together with the expected cost for transport and storage of sequestered carbon dioxide according to HyInfra members. In the analysis, an average cost of 750 NOK/ton is used for carbon transport and storage. An essential parameter for SMR is the cost of natural gas; a value of 200 NOK/MWh is used based on the average historic price between 2014 and 2019 at one of the main natural gas trading hubs in Europe, TTF Hub [13]. The calculation is simplified by assuming no CO_2 tax for the 10% of CO_2 that is not captured in the carbon capture process.

SMR w. CCS			Source:
Lifetime:	Years	25	
Investment costs:	kNOK/(Nm3/h)	35	[1 4]
Maintenance costs:	Share of CAPEX	3%	[14]
Efficiency:		69%	
Carbon transport and storage costs:	NOK/ton	500-1000	HyInfra workshop

Table 4 Input variables used to calculate cost of SMR with CCS

The costs and operation values presented in Table 4 are based on a reference plant with an hourly production of 100,000 Nm3H2 (\sim 220,000 kg_{H2}/day). While the national demand for compressed

hydrogen for maritime use is estimated by HyInfra to be ~35,000 kg_{H2}/day. One well-developed company within this field, Air Liquid, can offer modular plants down to 10,000 Nm3/h (~22,000 kg_{H2}/day) [15] which are assumed to have relatively similar production costs per kilogram produced hydrogen.

4.3 Compression

The compression of hydrogen depends on many different parameters and may look different depending on the design of the supply chain. Factors such as the output pressure of the electrolyser, the pressure level at the storage and dispenser sires, the choice of local production or distributed hydrogen and the type of hydrogen dispensing system are important. To keep the analysis manageable, only compression at the production site is included, based on assumptions for a "typical" compressor shown in Table 5, and is assumed to be constant towards 2030. Even if a top-up or high-pressure compressor will probably be required, it accounts for a smaller cost when considering 350 bar systems [16]. Based on the listed assumptions, the compressor would induce a LCOH of 5.6 NOK/kg_{H2}.

Item	Value
Capacity (kg/day)	1000
Max pressure (bar)	300
Investment cost incl. redundancy (NOK)	6,000,000
O&M excl. electricity (NOK/year)	500,000
Lifetime (years)	10
Energy intensity (kWh/kg _{H2})	3.25

 Table 5 Input parameters for calculating a representative compressor.

4.4 Transport and storage

The modelling of storage is greatly simplified in this analysis. The main technical and economic assumptions are listed in Table 6 and are partly inspired by hydrogen transport modules as shown in Figure 4. In discussion with the company Hexagon, which produces hydrogen transport modules, a 20-25% reduction in costs was estimated as possible towards 2030. This reduction was argued to be achieved mainly with more precise safety margins and to some extent economies of scale [17]. It should be noted that because Hexagon products are made of carbon fibre, their costs for hydrogen transport modules are probably above 5000 NOK/kg_{H2}. In this work, a slightly optimistic approach is taken to hydrogen storage cost in 2030 as a 20% reduction is estimated from the previously mentioned costs from 2020. Lifetime is another factor which is hard to estimate, therefore a fixed lifetime is set regardless of how often it is cycled.

Figure 4 Transport solution of hydrogen by truck in a 20- and 40-foot hydrogen transport module [18, 19]

Parameter	Value
Cost 2020	5000 NOK/kg _{H2}
Cost 2030	4000 NOK/kg _{H2}
Storage pressure	300 bar
Capacity for mobile unit	800 kgH2/unit
Storage density	4%
(kg hydrogen/total weight)	4%
Lifetime	25 years

Table 6 Estimated values of a hydrogen transport module

If the hydrogen needs to be distributed, it will imply higher volumes for buffer storage at the production and the refuelling sites, as well as for transport. This leads to less frequent cycling of the storage and thus smaller volumes of hydrogen among which the costs can be divided. This difference is modelled by assuming that at a local production site, the hydrogen storage tanks will by cycled on average once per day, while if hydrogen is distributed from a larger production site to a marine hydrogen refuelling station, the storage will be cycled once every second day.

The costs for transport of hydrogen are central to this analysis and are based on the cost function for dangerous goods (C_{transp} in NOK) and can be expressed as [20]

$$C_{transp} = 549 * t + 6,93 * d + 11 * w + 136$$
⁽²⁾

where t is time for the trip (h), d is the distance (km) and w the weight of the payload (ton). The payload will include the weight of the hydrogen, the storage tanks and accessories for the storage solution. As the truck will need to both deliver the full hydrogen transport module to the hydrogen refueling station and bring back an empty transport module, the transport cost needs to be doubled to represent a single hydrogen delivery. This cost is assumed to be constant until 2030.

4.5 Hydrogen refuelling system

Information regarding hydrogen refuelling systems for ships is very sparse as there are basically no hydrogen vessels built to be served by such infrastructure. An estimated cost of 5 million NOK was set after discussion with Ocean Highway Cluster members. This cost is assumed to only provide the dispenser itself without compression, storage or cooling. Approximate costs for compression and

storage of a supply chain are included separately, while it is assumed that no pre-cooling of hydrogen will be needed.

A lifetime of 15 years is assumed, as well as that several vessels can bunker from the same dispenser.

If it is assumed that a dispenser is serving only one ship and that daily demand corresponds to the average demand from the vessels assumed to operate with compressed hydrogen (599kg/day), the dispenser is inducing a cost of 2.8 NOK/kg_{H2}.

Due to the sparse information on dispenser systems, there is a great deal of uncertainty connected to the technical and economical input parameters for the hydrogen refueling system. However, this uncertainty will have no impact on this analysis as this equipment is involved at the end of the supply chain and in a general analysis like this does not affect the upstream steps. On the other hand, the cost of the hydrogen refueling system will affect the final supplied hydrogen cost and its design might affect suitable location at the harbour considering factors such as space requirements and safety distances.

5 Results

Based on data provided in the previous chapters, the levelized cost of hydrogen (LCOH) for the different components and different value chain solutions is presented. These findings will then be used in a national analysis based on pre-defined demand.

5.1 Levelized cost of hydrogen

Table 7 summarises the different steps included in the value chain and the cost they induce to the total LCOH in a 2030 scenario. It can also be seen that regardless of set-up, the cost of compression and dispensing is fixed while the other costs vary based on production method and for an eventual distribution step. The cost of transport is presented separately as it is dependent on distance travelled and is shown in Table 8.

Table 7 The induced LCOH of the different steps in the supply chain

Supply chain step	Production	Compression	Storage	Transport	Dispensing
LCOH (NOK/kg _{H2})	22–39	5.6	1.1–2.2	See table below	2.8

Table 8 LCOH induced by transport depending on distance for a 2030 case where 1000 kg aretransported at 300 bar in a 40-foot container

Distance (km)	5	10	50	100	200	400	800
LCOH (NOK/kgH2)	0.89	1.07	2.49	4.26	7.79	14.87	29.03

Based on the different production technologies, including distinct sizes of electrolysers, the cost of delivered hydrogen can be compared between different supply chain alternatives as a function of distance and is depicted in Figure 5. The stippled horizontal line shows the maximum transport distance to reach a price parity between a 1 MWel electrolyser and the 10 MWel or SMR hydrogen supply alternatives. Based on this figure, a matrix of price parity points was elaborated and is shown in Table 9. This matrix is used as decision base to cluster demands.

Figure 5 Variable cost of hydrogen supply chain depending on production technology and distance of transport

Table 9 Identified feasible transport distances in km when selecting between local and distributed
production

			duction alto	
		0.4 MW _{el}	1 MW _{el}	10MW_{el}
	Electrolyser 0.4 MW _{el}	-	-	-
Source of distributed	Electrolyser 1 MW _{el}	150	-	-
hydrogen	Electrolyser 10 MW _{el}	330	110	-
	SMR with CCS	470	250	70

5.2 Geographical distribution

Based on the identified price parity distances, suitable demands were clustered through two scenarios with **scenario 1** considering the announced locations for hydrogen production plants by market actors and including the production locations for LH2 set within HyInfra and **Scenario 2** considering the optimal location based soley on the demand for compressed hydrogen from the maritime sector. The clustering was done manually based on the decision rules set in the methodology chapter. The identified production locations and sizes are listed in Table 10 and Table 11 for scenarios 1 and 2 respectively. In addition, both production sites and demand are illustrated for both scenarios and divided between northern and southern Norway in Figure 6 and Figure 7 respectively. A detailed overview of both production sites and demand are shown in tables in Appendices A & B.

Production site	Connection	Location	Daily production volume of compressed H2 (kg)
Local (0)	Andenes-Gryllefjord	69,3268078, 16,133813	186
Local (0)	SørøysundXpressen	70,6646675, 23,6833834	520
Local (0)	Bodø-Svolvær	68,231487, 14,566642	768
Local (0)	Trænaruten	66,501698, 12,102514	494
Local (0)	Dyrøy-Øyrekken	63,7986987, 8,6814705	1118
Local (0)	Gåsvær-Hardbakke	61,1766807, 4,6945631	47
1	Glomfjord	66,815933, 13,94003	1637
2	Mo i Rana	66,310437, 14,167243	5210
3	Finnsnes	69,221681, 18,082201	3118
4	Mongstad	60,810344, 5,031334	6160
4	Kollsnes, Øygaarden	60,550048, 4,838676	0100
5	Hellesylt	62,086274, 6,870644	5171
6	Berlevåg	70,854403, 29,117184	0
7	Florø	61,608586, 5,049001	502
8	Trondheim-Kristiansund	63,438221, 10,39716	2816
9	Stavanger-Ryfylke	58,9725825, 5,7402974	3311
10	Skoleruta i Rognsundet Kvalfjord-Pollen	70,215343, 23,191892	1735
11	Aker Brygge-Slemmestad	59,7824773, 10,4980692	749

Table 10 Production locations and volumes for Scenario 1

Table 11 Production locations and volumes for Scenario 2

Production site	In connection to the route for	Location	Daily production volume of compressed H2 (kg)
Local (0)	SørøysundXpressen	69,3268078, 16,133813	520
Local (0)	Trænaruten	62,607904, 6,4488837	494
Local (0)	Dyrøy-Øyrekken	62,2067555, 5,5691984	1118
Local (0)	Gåsvær-Hardbakke	62,087436, 6,870432	47
1	Sandnessjøen-Bodø and other	69,977934, 23,331312	5275
2	Sunnhordaland-Austevoll-Bergen	63,6867782, 9,6708975	3260
3	Bergen-Sogn-Flåm	63,7986987, 8,6814705	2225
4	Trondheim-Kristiansund	59,8709668, 10,657193	2816
5	Bergen-Nordfjord	60,395307, 5,321904	2523
6	Brattvåg-Dryna-Fjørtofta-Harøya	61,6017458, 5,0285202	2785
7	Tromsø-Harstad	67,283743, 14,373536	2308
8	Stavanger-Ryfylke	59,023752, 5,613677	3311
9	LoppaXpressen and other	60,810344, 5,031334	2024
10	Bodø-Væran	59,412112, 5,255994	1572
11	Bodø-Svolvær	66,3393778, 13,0023048	1475
12	Askvoll-Fure-Værlandet	65,821969, 12,430263	1040
13	Aker Brygge-Slemmestad	62,086274, 6,870644	749

IFE

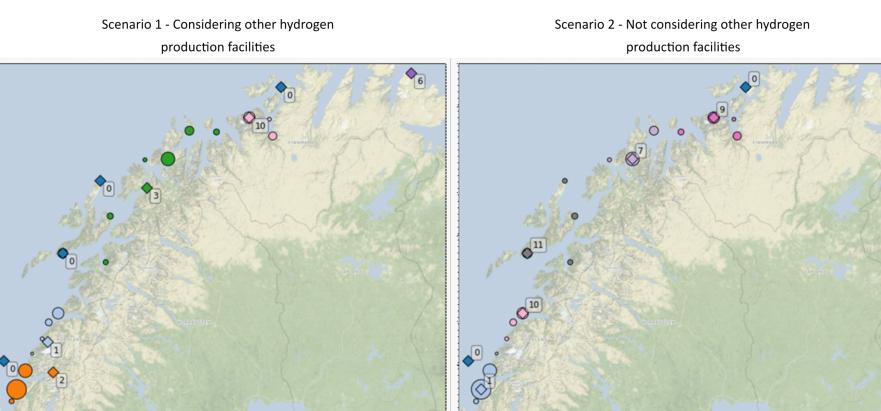


Figure 6 Assumed demand and its relative size and identified production facilities in northern Norway shown for both scenario 1 (left) and scenario 2 (right). The production and identified demand sites for distribution are color matched. Production sites numbered with 0 represent local production.

C

Demand of CH2

Electrolyzer

S

Demand of CH2

Electrolyzer

ð

IFE

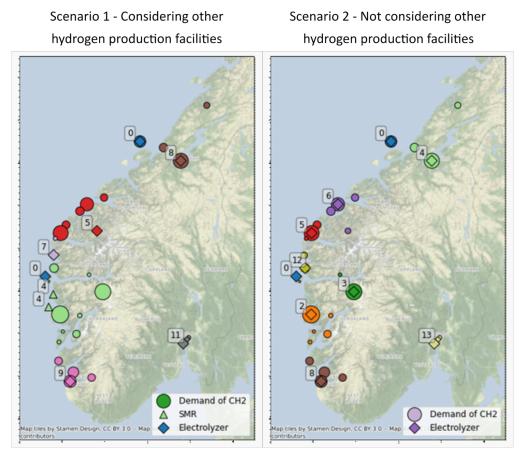


Figure 7 Assumed demand and its relative size and identified production facilities in northern Norway shown for both scenario 1 (left) and scenario 2 (right). The production and identified demand sites for distribution are color matched. Production sites numbered with 0 represent local production.

The demand, as shown in Figure 1, is assumed to increase gradually until 2036. How this affects the demand on the production sites identified in this chapter is illustrated in Figure 8 and Figure 9 for scenarios 1 and 2 respectively.

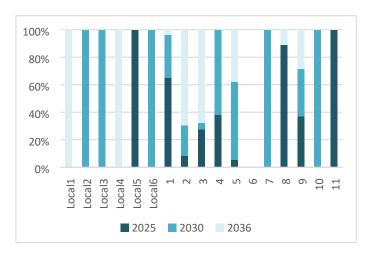


Figure 8 Overview of when the demand is estimated to appear for the local and clustered production facilities in Scenario 1



Figure 9 Overview of when the demand is estimated to appear for the local and clustered production facilities in Scenario 2

6 Discussion and conclusion

This work presents a suggestion of how the expected demand for compressed hydrogen for ferries and high-speed ferries can be satisfied in an efficient manner considering the costs of the different steps in the supply chain. The results show that, with expected 2030 cost levels, local supply chains will develop with cost of transport playing a central role. For the cheapest production alternative, SMR with CCS, it is worth it to distribute the hydrogen up to 470 km in a 2030 cost scenario if the demand is approx. 200 kg hydrogen per day while from a large electrolyser, the feasible distribution distance is up to 330 km to satisfy the same volume of demand. With larger demand, local production becomes more feasible and the distribution distances decrease.

The difference between scenarios 1 and 2 shows that there is great flexibility in terms of where the production facilities can be located. In addition, it shows that what the supply of compressed hydrogen looks like can depend on developments in where hydrogen is produced based on demand in other sectors. As the demand for compressed hydrogen in general is relatively small in terms of volume per location, those locations that are closest to large hydrogen production facilities mainly facing demand for hydrogen from other sectors will be able to enjoy lower production costs and thus become more competitive in comparison with other zero-emission technologies. On the other hand, it was observed that when the supply chain relies on production initiated by other sources of demand, local production became the most feasible option for more demands for maritime compressed hydrogen. This translates to smaller production units with more expensive fuel. It enforces the idea that the competitiveness of compressed hydrogen is dependent on other hydrogen projects.

This work shows how all the expected demand can be covered in the most efficient manner; however, the demand will increase stepwise until 2036. Due to the incremental nature of demand and necessary investments in production facilities, the supply chain might look different as the first investments are made to satisfy the first demand, thereby creating some lock-in effects for supply chain development. It could have similar effects to the already announced hydrogen production facilities and result in more local production, as the location of the first plants might be sub-optimal.

Another finding of this work has been that compressed hydrogen for the maritime sector is not geographically concentrated enough to motivate an SMR plant on its own as it is assumed to need a demand of at least $\sim 20,000 \text{ nm}_{H2}^3/h$ ($\sim 20,000 \text{ kg}_{H2}/day$).

The location of hydrogen production will depend on more factors than just where the demand is, for example access to grid capacity, access to land, and the possibility to offset biproducts of oxygen and heat might play an important role. It can be concluded that even if this work gives an idea of what an effective supply chain might look like considering the expected demand in 2036, there are many more parameters that will affect the actual investment decisions regarding where and how the hydrogen production will be realized.

As already mentioned, the transport cost of compressed hydrogen is a main design parameter of the supply chain. Therefore, if new ways of transporting hydrogen were to be introduced, a more concentrated hydrogen production could be enabled. For example, sea transport of compressed hydrogen could provide shorter transport distances along the geographically challenging Norwegian coastline.

The main analysis of this work is based on a set of decision rules which are implemented through a manual decision-making process for each location. For each location, different options needed to be evaluated and weighted against each other; this is demanding work with many numbers to keep in mind. Due to the large amount of manual decisions, some irrelevant results are to be expected. The

largest manual errors were noted and corrected when the production and demand sites where plotted on a map; however, some inconsequent decisions might be present, biased by a desire to cluster the demand. Another shortcoming has been that the demand is variable while the costs for production are based on three fixed electrolyser sizes, which required further simplifications in the analysis.

6.1 Future work

Several things can be done to improve the quality of this work, a central one of which is to create a code which could optimise the value chain to replace current manual methods. Another would be to identify the supply chain through time-steps so that it expands together with the demand. This would represent better how the actual development will occur.

The model could be expanded to also include possible demand from other sectors, such as forecasts of hydrogen demand for heavy-duty road transport. Again, this could better represent reality.

In addition, there is a great potential for more detailed analysis of the electrolyser locations, including assessment of access to grid, land and offset of biproducts (oxygen and heat). Such analysis could provide more reliable information regarding the most feasible location for the electrolyser.

Finally, the development of compressed hydrogen transport will have a considerable effect on the supply chain, so innovation in both road and sea transport might create a large impact on the supply chain of compressed hydrogen.

7 Acknowledgment

This report is part of the HyInfra project organised and partly financed by Ocean Hyway Cluster. Acknowledgement goes to Steinar Kostøl and Mark Purkis at Ocean Hyway Cluster to and its members for providing valuable feedback and technological insight for this report.

This work has also been done as a part of two studies in two Norwegian Centres for Environmentfriendly Energy Research (FME): NTRANS and MoZEES.

NTRANS - Norwegian Centre for Energy Transition Strategies, cosponsored by the Research Council of Norway (project number 296205) and 42 partners from research, industry and the public sector.

MoZEES – Mobility Zero Emission Energy Systems, cosponsored by the Research Council of Norway (project number 257653) and 40 partners from research, industry and the public sector.

IFE

8 References

- 1. Statistics Norway. 08940: Greenhouse gases, by source, energy product and pollutant 1990 2019. 2020 2020/11/29/; Available from: https://www.ssb.no/en/statbank/table/08940.
- 2. Weidner, S., et al., *Feasibility study of large scale hydrogen power-to-gas applications and cost of the systems evolving with scaling up in Germany, Belgium and Iceland*. International Journal of Hydrogen Energy, 2018. **43**(33): p. 15625-15638.
- 3. Aarskog, F.G. and J. Danebergs, *Estimation of Energy Demand in the Norwegian high-speed Passenger Ferry Sector Towards 2030.* IFE/E, 2020.
- 4. Glomfjord Hydrogen, *Signerer avtale Pressemelding*. 2020.
- 5. Nel Hydrogen, *Nel signs Lol with Statkraft for a green hydrogen project with up to 50MW of electrolyser capacity.* 2020.
- 6. Statraft, Industrial partners to develop first of its kind eMethanol plant in Norway 2020.
- 7. Brenna, A.L. *Mongstad kan bli produksjonsanlegg for flytende hydrogen til skipsfarten*. 2020 2020/05/11/; Available from: https://enerwe.no/hydrogen-mongstad/mongstad-kan-bli-produksjonsanlegg-for-flytende-hydrogen-til-skipsfarten/367013.
- 8. BKK. *BKK med på PILOT-E finansiert prosjekt for skipsnæringen | BKK*. 2020 2020/11/12/; Available from: https://bkk.no/artikkel/3e263b22-84a8-4eb4-8b7b-7617d36f73e2.
- 9. ZEG Power. CCB og ZEG Power får tildelt 77 millioner i ENOVA-støtte til utslippsfri hydrogenproduksjon og karbonfangst på CCB Energy Park. Stor betydning for fremtidig arbeidsplasser. 2020 2020/07/09/; Available from: https://www.zegpower.no/ccb-og-zegpower-far-tildelt-77-millioner-i-enova-stotte-til-utslippsfri-hydrogenproduksjon-ogkarbonfangst-pa-ccb-energy-park-stor-betydning-for-fremtidig-arbeidsplasser.
- 10. Hexagon group, *Granted NOK 37.6 million to deliver hydrogen to ferries and cruise ships in the Geirangerfjord*. 2019, Oslo børs news web.
- 11. Varanger Kraft, Hydrogenfabrikk Berlevåg. n.d.
- 12. Teknisk Ukeblad. *Bygger hydrogenanlegg på base i Florø*. 2020 2020/11/10/; Available from: https://www.tu.no/artikler/bygger-hydrogenanlegg-pa-base-i-floro/502287?key=RNx1yjgF.
- 13. IEA. *Evolution of natural gas spot market prices, 2014-2019.* 2019 2019/11/15/; Available from: https://www.iea.org/data-and-statistics/charts/evolution-of-natural-gas-spot-market-prices-2014-2019.
- 14. Birol, F., *The future of hydrogen. Seizing today's opportunities. IEA.* 2019.
- 15. Air Liquide. *Steam Methane Reforming Hydrogen Production*. n.d. 2018/07/10/; Available from: https://www.engineering-airliquide.com/steam-methane-reforming-hydrogen-production.
- 16. Hancke, R., et al., *Efficient hydrogen infrastructure for bus fleets Evaluation of slow refueling concept for bus depots and estimates of hydrogen supply cost.* 2020.
- 17. Steve, H., Phone call with Technical Sales Manager Maritime in Hexagon. 2020.
- 18. UAC. *Transport modules for Hydrogen Umoe Advanced Composites*. n.d. 2019/04/12/; Available from: https://www.uac.no/container-transportation-solutions/hydrogen.
- 19. Hexagon Lincoln. *Hydrogen Products*. n.d. 2019/04/12/; Available from: https://www.hexagonlincoln.com/hydrogen/hydrogen-products/hydrogen-products.
- 20. Grønland, S.E., *Kostnadsmodeller for transport og logistikk basisår 2016*. 2018, TØI: TØI.

Appendix A - Overview of production and demand sites for Scenario 1

Index	prod_ index	Connection	Location	Vessel type	Average daily demand (kg)	Distribution site	Production site	Distance	Daily production volume (kg)
1	1	Andenes-Gryllefjord	69,3268078, 16,133813	Ferry	186	0	Local		186
9	9	SørøysundXpressen	70,6646675, 23,6833834	High-speed ferry	520	0	Local		520
17	17	Bodø-Svolvær	68,231487, 14,566642	High-speed ferry	768	0	Local		768
23	23	Trænaruten	66,501698, 12,102514	High-speed ferry	494	0	Local		494
28	28	Dyrøy-Øyrekken	63,7986987, 8,6814705	High-speed ferry	1118	0	Local		1118
37	37	Gåsvær-Hardbakke	61,1766807, 4,6945631	High-speed ferry	47	0	Local		47
51	51	Glomfjord	66,815933, 13,94003	Electrolyser		1	1		1637
19	51	Bodø-Væran	67,283743, 14,373536	Cluster	1063	1		136	
20	51	Bodø-Ytre Gildeskål	67,1372797, 13,9795494	High-speed ferry	384	1		76	
21	51	Meløy	66,8672878, 13,7038281	High-speed ferry	125	1		18	
22	51	Rødøy-Melfjordbotn	66,624259, 13,2852	High-speed ferry	64	1		69	
52	52	Mo i Rana	66,310437, 14,167243	Electrolyser		2	2		5210
2	52	Stokkvågen-Onøy-Sleneset-Lovund and other	66,3393778, 13,0023048	Cluster	1510	2		74	
24	52	Sandnessjøen-Bodø and other	66,024375, 12,639482	Cluster	3135	2		110	
25	52	Forvik-Vistensteder og Tjøtta-Husvika	65,821969, 12,430263	High-speed ferry	202	2		146	
26	52	Brønnøysund-Sandnessjøen + Brønnøysund- Rørøy (Vega)	65,4740329, 12,2092223	High-speed ferry	364	2		243	
53	53	Finnsnes	69,221681, 18,082201	Electrolyser		3	3		3118
0	53	Hansnes-Vannøy	70,053535, 19,8528594	Ferry	649	3		229	
12	53	Tromsø-Skjervøy and other	70,0353393, 20,9829403	Cluster	289	3		254	
14	53	Tromsø-Harstad	69,646943, 18,959549	High-speed ferry	1525	3		153	
15	53	Sommarøy-Tussøy-Sandneshamn	69,6340507, 17,9971567	High-speed ferry	133	3		165	
16	53	Harstad-Flakstadvåg	68,8008765, 16,5478639	High-speed ferry	307	3		122	
18	53	Tysfjord	68,0930686, 16,3580214	High-speed ferry	214	3		233	
54	54	Mongstad	60,810344, 5,031334	Electrolyser/SMR		4	4		6160

Index	prod_ index	Connection	Location	Vessel type	Average daily demand (kg)	Distribution site	Production site	Distance	Daily production volume (kg)
55	54	Kollsnes, Øygaarden	60,550048, 4,838676	SER – demo		4	4	115	
6	54	Askvoll-Fure-Værlandet	61,3453005, 5,0644085	Ferry	630	4		121	
36	54	Flåm-Balestrand	61,2101118, 6,5379471	High-speed ferry	113	4		161	
38	54	Hardbakke-Utvær	61,0722132, 4,8375079	High-speed ferry	45	4		81	
39	54	Bergen-Sogn-Flåm	60,8630605, 7,1169918	High-speed ferry	2111	4		205	
40	54	Sunnhordaland-Austevoll-Bergen	60,395307, 5,321904	Cluster	2422	4		68	
41	54	Norheimsund-Herand-Utne-Kinarsvik-Loftshus- Ulvik-Eidfjord	60,371531, 6,146505	High-speed ferry	166	4		115	
42	54	Reksteren-Våge-Os	60,0381559, 5,4359447	High-speed ferry	90	4		136	
43	54	Rosendal-Bergen	59,9860597, 6,0072091	High-speed ferry	453	4		156	
46	54	Austevoll ruten	59,8162548, 5,2757573	High-speed ferry	128	4		174	
56	56	Hellesylt	62,086274, 6,870644	Electrolyser		5	5		5171
3	56	Brattvåg-Dryna-Fjørtofta-Harøya	62,607904, 6,4488837	Cluster	1455	5		103	
4	56	Larsnes-Voksa-Åram-Kvamsøya	62,2067555, 5,5691984	Ferry	518	5		106	
5	56	Geiranger-Hellesylt	62,087436, 6,870432	Ferry	274	5		0	
31	56	Molde-Helland-Vikebuktsekken	62,7368539, 7,1689301	High-speed ferry	454	5		106	
32	56	Ålesund-Valderøya-Nordøyane	62,4742543, 6,1532936	High-speed ferry	602	5		87	
33	56	Bergen-Nordfjord	62,0445606, 5,3432954	High-speed ferry	1869	5		127	
57	57	Berlevåg	70,854403, 29,117184	Electrolyser		6	6		0
58	58	Florø	61,608586, 5,049001	Electrolyser		7	7		502
34	58	Florø-Måløy	61,938035, 5,118909	High-speed ferry	137	7		99	
35	58	Florø-Svanøy-Askrova	61,6017458, 5,0285202	High-speed ferry	365	7		2	
30	30	Trondheim-Kristiansund	63,438221, 10,39716	High-speed ferry	1896	8	8		2816
27	30	Namsos-Leka og Rørvik	64,464085, 11,492235	High-speed ferry	310	8		192	
29	30	Trondheim-Brekstad	63,6867782, 9,6708975	High-speed ferry	610	8		109	
50	50	Stavanger-Ryfylke	58,9725825, 5,7402974	Cluster	1223	9	9		3311
7	50	Haugesund-Utsira	59,412112, 5,255994	Ferry	510	9		122	

Index	prod_ index	Connection	Location	Vessel type	Average daily demand (kg)	Distribution site	Production site	Distance	Daily production volume (kg)
8	50	Finnøysambandet	59,1701176, 5,8775741	Ferry	942	9		81	
48	50	Stavanger-Kvitsøy	59,023752, 5,613677	High-speed ferry	160	9		51	
49	50	Stavanger-Lysebotn	59,0545822, 6,6452997	High-speed ferry	476	9		84	
10	10	Skoleruta i Rognsundet Kvalfjord-Pollen	70,215343, 23,191892	High-speed ferry	120	10	10		1735
11	10	LoppaXpressen and other	70,2395601, 22,350474	Cluster	1074	10		165	
13	10	Alta-Hammerfest and other	69,977934, 23,331312	Cluster	541	10		53	
47	47	Aker Brygge-Slemmestad	59,7824773, 10,4980692	High-speed ferry	425	11	11		749
44	47	Aker Brygge - Drøbak	59,9104764, 10,7299428	High-speed ferry	149	11		31	
45	47	Nesodden-Lysaker	59,8709668, 10,657193	High-speed ferry	175	11		51	

Appendix B - Overview of production and demand sites for Scenario 2

Index	prod_ index	Connection	Location	Vessel type	Average daily demand (kg)	Distribution site	Production site	Distance	Daily production volume (kg)
9	9	SørøysundXpressen	69,3268078, 16,133813	High-speed ferry	520	0	Local		520
23	23	Trænaruten	62,607904, 6,4488837	High-speed ferry	494	0	Local		494
28	28	Dyrøy-Øyrekken	62,2067555, 5,5691984	High-speed ferry	1118	0	Local		1118
37	37	Gåsvær-Hardbakke	62,087436, 6,870432	High-speed ferry	47	0	Local		47
24	24	Sandnessjøen-Bodø and other	69,977934, 23,331312	Cluster	3135	1	1		5275
2	24	Stokkvågen-Onøy-Sleneset-Lovund and other	70,0353393, 20,9829403	Cluster	1510	1		108	
22	24	Rødøy-Melfjordbotn	70,215343, 23,191892	High-speed ferry	64	1		150	
25	24	Forvik-Vistensteder og Tjøtta-Husvika	69,646943, 18,959549	High-speed ferry	202	1		39	
26	24	Brønnøysund-Sandnessjøen + Brønnøysund- Rørøy (Vega)	69,6340507, 17,9971567	High-speed ferry	364	1		91	
40	40	Sunnhordaland-Austevoll-Bergen	63,6867782, 9,6708975	Cluster	2422	2	2		3260
41	40	Norheimsund-Herand-Utne-Kinarsvik-Loftshus- Ulvik-Eidfjord	63,438221, 10,39716	High-speed ferry	166	2		78	
42	40	Reksteren-Våge-Os	62,7368539, 7,1689301	High-speed ferry	90	2		73	
43	40	Rosendal-Bergen	62,4742543, 6,1532936	High-speed ferry	453	2		120	
46	40	Austevoll ruten	62,0445606, 5,3432954	High-speed ferry	128	2		111	
39	39	Bergen-Sogn-Flåm	63,7986987, 8,6814705	High-speed ferry	2111	3	3		2225
36	39	Flåm-Balestrand	65,4740329, 12,2092223	High-speed ferry	113	3		118	
30	30	Trondheim-Kristiansund	59,8709668, 10,657193	High-speed ferry	1896	4	4		2816
27	30	Namsos-Leka og Rørvik	59,8162548, 5,2757573	High-speed ferry	310	4		192	
29	30	Trondheim-Brekstad	59,7824773, 10,4980692	High-speed ferry	610	4		109	
33	33	Bergen-Nordfjord	60,395307, 5,321904	High-speed ferry	1869	5	5		2523
4	33	Larsnes-Voksa-Åram-Kvamsøya	61,2101118, 6,5379471	Ferry	518	5		62	
34	33	Florø-Måløy	59,9860597, 6,0072091	High-speed ferry	137	5		46	
3	3	Brattvåg-Dryna-Fjørtofta-Harøya	61,6017458, 5,0285202	Cluster	1455	6	6		2785

Index	prod_ index	Connection	Location	Vessel type	Average daily demand (kg)	Distribution site	Production site	Distance	Daily production volume (kg)
5	3	Geiranger-Hellesylt	61,1766807, 4,6945631	Ferry	274	6		103	
31	3	Molde-Helland-Vikebuktsekken	61,0722132, 4,8375079	High-speed ferry	454	6		66	
32	3	Ålesund-Valderøya-Nordøyane	60,8630605, 7,1169918	High-speed ferry	602	6		48	
14	14	Tromsø-Harstad	67,283743, 14,373536	High-speed ferry	1525	7	7		2308
0	14	Hansnes-Vannøy	68,231487, 14,566642	Ferry	649	7		77	
15	14	Sommarøy-Tussøy-Sandneshamn	67,1372797, 13,9795494	High-speed ferry	133	7		58	
50	50	Stavanger-Ryfylke	59,023752, 5,613677	Cluster	1223	8	8		3311
7	50	Haugesund-Utsira	59,0545822, 6,6452997	Ferry	510	8		122	
8	50	Finnøysambandet	58,9725825, 5,7402974	Ferry	942	8		81	
48	50	Stavanger-Kvitsøy	66,815933, 13,94003	High-speed ferry	160	8		51	
49	50	Stavanger-Lysebotn	66,310437, 14,167243	High-speed ferry	476	8		84	
11	11	LoppaXpressen and other	60,810344, 5,031334	Cluster	1074	9	9		2024
10	11	Skoleruta i Rognsundet Kvalfjord-Pollen	69,221681, 18,082201	High-speed ferry	120	9		165	
12	11	Tromsø-Skjervøy and other	68,0930686, 16,3580214	Cluster	289	9		177	
13	11	Alta-Hammerfest and other	60,550048, 4,838676	Cluster	541	9		113	
19	19	Bodø-Væran	59,412112, 5,255994	Cluster	1063	10	10		1572
20	19	Bodø-Ytre Gildeskål	59,1701176, 5,8775741	High-speed ferry	384	10		100	
21	19	Meløy	70,6646675, 23,6833834	High-speed ferry	125	10		118	
17	17	Bodø-Svolvær	66,3393778, 13,0023048	High-speed ferry	768	11	11		1475
1	17	Andenes-Gryllefjord	70,053535, 19,8528594	Ferry	186	11		212	
16	17	Harstad-Flakstadvåg	66,8672878, 13,7038281	High-speed ferry	307	11		169	
18	17	Tysfjord	66,624259, 13,2852	High-speed ferry	214	11		117	
6	6	Askvoll-Fure-Værlandet	65,821969, 12,430263	Ferry	630	12	12		1040
35	6	Florø-Svanøy-Askrova	59,9104764, 10,7299428	High-speed ferry	365	12		117	
38	38	Hardbakke-Utvær	64,464085, 11,492235	High-speed ferry	45	12		110	
47	47	Aker Brygge-Slemmestad	62,086274, 6,870644	High-speed ferry	425	13	13		749

Index	prod_ index	Connection	Location	Vessel type	Average daily demand (kg)	Distribution site	Production site	Distance	Daily production volume (kg)
44	47	Aker Brygge - Drøbak	70,854403, 29,117184	High-speed ferry	149	13		31	
45	47	Nesodden-Lysaker	61,608586, 5,049001	High-speed ferry	175	13		51	

Tittel: Future compressed hydrogen infrastructure for the domestic maritime sector

Dokumentklasse:

Signaturer:

Author:	Janis Danebergs ife.no∖janis.danebergs	2020-12-10 13:49:04 (UTC+00:00)
Author:	Fredrik Aarskog ife.no\Fredrik.Aarskog	2020-12-10 16:39:36 (UTC+00:00)
Review Approval:	Kari Aamodt Espegren ife.no\Kari.Espegren	2020-12-11 05:31:56 (UTC+00:00)
Content Approval:	Arne Lind ife.no\Arne.Lind	2020-12-11 10:57:37 (UTC+00:00)