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A B S T R A C T   

Methods for quick and accurate detection and diagnosis of defects in PV systems are increasingly important as 
the global photovoltaic (PV) capacity continues to grow at a rapid pace. Two of the most used methods for defect 
detection involve aerial infrared thermography and data analysis of production data. In this work, we combine 
the two methods to analyze two utility scale PV plants, providing new understanding about the two methods. We 
report on the percentage and distribution of thermal anomalies of different categories and quantify their rela
tionship with performance on string level. We find that the most important parameter for determining pro
duction losses on string level is the number of module substrings containing thermal anomalies. Due to the large 
variability of the effect of different thermal signatures, as well as uncertainties in the estimate of the string 
performance, we find no clear correlation between performance and thermal signature category or temperature. 
However, a whole hot cell is the thermal signature that on average has the smallest impact on the power output 
on string level. Finally, in our data, the performance of a string of 20 modules with 3 bypass diodes is on average 
reduced by 1.16 ± 0.12% per module substring containing thermal anomalies.   

1. Introduction 

The annual global installed PV power capacity has sky-rocketed in 
recent years, reaching almost 100 GWp in both 2017 and 2018 (Masson 
et al., 2019). This amounted to an increase of around 1/3 and 1/4 of the 
cumulative capacity in these years, respectively. Since 2013, most of the 
new PV capacity has been installed in utility scale power plants (Masson 
et al., 2019). For the owners, once a plant has been commissioned, it is 
important that the energy output is as expected, and preferably higher. 
This demands adequate operation and maintenance (O&M) routines, 
which includes cleaning, fault detection, and quick replacement of 
faulty components. Several approaches exist for fault detection, 
including real-time monitoring of power output on inverter or string 
level, visual inspection, electroluminescence and Infrared Thermography 
(IRT) (Daliento et al., 2017; Hoyer et al., 2009). Further, much research 
has been done involving distributed power electronic architectures and 
dynamical reconfiguration techniques for fault detection and hot-spot 
mitigation (Balato et al., 2015; Costanzo and Vitelli, 2018; Femia 
et al., 2008; Olalla et al., 2015). In this study, however, we are interested 

in gaining an increased understanding of IRT and power output moni
toring by combining the two methods. 

IRT is a contactless imaging technique relying only on an infrared 
camera, as well as stable weather conditions of relatively high irradia
tion. This allows for detection and classification of thermal anomalies on 
module, string and inverter level during operation (Buerhop et al., 
2012a; Jahn et al., 2018; Tsanakas et al., 2016). Classification of thermal 
anomalies is normally done by ascribing them into one of several sub
categories, as explained in Section 2.2 and in the literature (Jahn et al., 
2018; Tsanakas et al., 2016). To increase throughput of IRT inspections 
Unmanned Aerial Systems (UAS), usually in the form of multicopters, 
have been adopted (Aghaei et al., 2015; Buerhop et al., 2012b; Gallardo- 
Saavedra et al., 2018; Zefri et al., 2018). This allows for significantly 
lower inspection times, especially for larger systems. Interestingly, 
despite the level of implementation on commercial scale, it is still not 
well-known how a given thermal signature will affect the power loss of a 
PV system with a given string design. 

In the literature, there are many examples of research on data-based 
performance analysis. Some of the authors focus on the models/metrics 
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that are used (Bizzarri et al., 2015; Marion et al., 2005; Ventura and 
Tina, 2016), some focus on the procedure for detecting outliers/faults 
(Platon et al., 2015; Woyte et al., 2014), while some explore the possi
bilities of employing machine learning on the problem (Rodrigues et al., 
2016). A rich variety of approaches exist, all with their different 
strengths and weaknesses (Livera et al., 2019). However, many of the 
proposed methods are only tested on lab-scale systems, and not vali
dated for utility scale scenarios. Furthermore, there is little feedback 
from the commercial PV system owners about which methods have been 
successfully employed, and which are not considered relevant. There is 
therefore a need for scientific contributions based on utility scale sys
tems in order to increase the usefulness of these models in commercial 
PV plant operation. 

Both IRT and performance monitoring are important tools by 
themselves. However, these two methods are based on different physical 
principles, and each has the capacity to detect only a limited range of 
defects. The combination of the two methods might provide information 
that is lost when each method is applied independently. In the literature, 
some steps have been taken to illuminate this topic. One approach has 
been to model thermal signatures observed in the field, with support of 
field measurements, to better understand the power loss at module level, 
and how this translates to string level (Buerhop et al., 2015, 2012b). The 
conclusion was that system power loss is very dependent on defect type 
and severity, as well as the numbers of modules in the string. Others 
have focused on comparing IRT to power production data from mea
surements on module scale, either with power optimizers on 1–3 mod
ules, or module resolved voltage measurements (Buerhop et al., 2018; 
Teubner et al., 2017). The high granularity of measurements in these 
systems makes it possible to trace defects back to their origin, and 
determine when a specific defect has occurred (Buerhop et al., 2018). 
Another study that combines IRT with production-based performance 
analysis is based on module resolved measurements (Stegner et al., 
2018). This is an advantage for understanding the losses that happen on 
module level, but the conclusions do not necessarily generalize to losses 
on string or inverter level, since the electrical operating conditions 
change when modules are connected in series and parallel. The first 
study, to our knowledge, that combines IRT analysis with string-level 
production data from commercial/utility scale PV plants is (Dalsass 
et al., 2015). The plants they study have a combined capacity of about 9 
MWp, giving a decent basis for defect statistics. Dalsass et al., like us, 
also employ simulations of the PV systems, which demonstrably gives a 
deeper insight into the mechanisms of the thermal anomalies. However, 
the ambient conditions during the IRT were not as stable as in our case, 
leading to higher uncertainties in the thermal signature analysis. Also, 
even though Dalsass et al. has data from about 40,000 PV modules, this 
does not provide enough data on thermal anomalies to quantify any 
correlation between average production losses and hot-spot tempera
ture, defect category, or the number of defects. 

In all the cases above, the number of thermal signature categories 
discussed is limited. This is largely due to the limited availability of 
thermal signature data from the field. Since PV modules are relatively 
reliable components, a large number of inspected modules are required 
in order to get significant statistics on thermal signatures. This begs the 
need for more data from utility scale systems. However, acquiring pro
duction data from such systems is often difficult for independent re
searches, since the data are considered proprietary or business sensitive. 

This study is aimed at filling in this gap. This paper presents data 
from two utility scale PV systems with a combined capacity of 115 MWp, 
giving valuable insight into both the statistics of thermal signatures, and 
the statistics of the effect on these signatures on system performance. 
This is important not only to the owner of the particular PV systems 
being studied, but to PV researchers and asset owners in general. In 
short, the goal of this work is to explore the cross-section between 
thermal imaging and production-based performance analysis. The 
research questions that are addressed in this paper are:  

(a) What parameters determined by thermal imaging are most 
correlated with performance losses on system level?  

(b) Are there any systematic differences in the average string-level 
losses induced by the different thermal signature categories?  

(c) What effect does different hot spot temperatures typically have 
on power losses on string level? 

2. Method 

2.1. Description of PV systems 

The data used in this paper come from 2 utility scale power plants in 
Sub-Saharan Africa with a combined DC capacity of 115 MWp. Ac
cording to the Köppen-Geiger climate classification system (Beck et al., 
2018), both plants are in a cold, arid steppe climate (BSk). Both the 
systems were commissioned in 2014 and have single-axis trackers Both 
sites have a similar array setup, with 43 and 82 central inverters in 
location 1 and 2 respectively. Each inverter has one MPPT, and about 
160 strings connected in parallel, with 20 modules in each string. The 
current measurements used are for two and two strings connected in 
parallel. One such unit of two strings is the smallest unit where currents 
are measured, and this is done with a maximum uncertainty of 1%. We 
will refer to these units as double-strings in the remainder of the paper. 
The modules have 72 cells and a peak capacity of 290 Wp and 295 Wp in 
location 1 and 2. All the modules in these plants have three bypass di
odes, defining three module substrings of 24 cells connected in series. 

2.2. Infrared thermography 

The thermal images involved in the analysis in this paper were 
captured with aerial IRT. The imaging and the image analysis were done 
by Hawk62 Aviation and GeoSUN Africa. We have access to these results 
through a report, with detailed information about each module with a 
thermal anomaly (see snippet in Fig. 1). For each module, the number of 
defective cells (or diodes), hot spot temperatures, thermal signature 
categories (see Section 2.2.1), visual defects, and ambient conditions 
(temperature and irradiance) at the time of imaging are recorded. To 
avoid false positives, temperature anomalies smaller than 5 ◦C are 
ignored. The overall findings are summarized in table format, with one 
row for each defective module, which makes it easy to import the data to 
an analysis platform. It is the results from these reports that are used in 
the analysis in this paper. 

For imaging, a FLIR Tau2 640 × 512 IR camera, with an absolute 
temperature uncertainty of 5 K and a sensitivity of 50 mK, and a 16 MP 
Micro Four Thirds optical camera was utilized. All IR images were taken 
at an altitude corresponding to a ground sampling distance of <1.3 cm/ 
pixel. For geotagging of images, a combination of real time and post 
processed Kinematic GNSS receivers were used. According to Hawk62 
Aviation and GeoSUN Africa, this leads to an uncertainty of ±1 module 

Fig. 1. Example from the IR-report, showing (a) an optical image of a module, 
(b) an overlay of the optical image and the IR-image, (c) a discretized IR-image, 
and (d) the categorization of the individual cells according to the categories 
described in Section 2.2.1. 
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to the left or right. 
The thermal signature of a defect depends on ambient conditions. 

Since we are comparing thermal images which are necessarily taken at 
different times, it is important that the air temperature and the in-plane 
irradiance is as constant as possible during these times, and that the 
guidelines of IEC TS 62446-3 are upheld (IEC, 2017). In Fig. 2 we show 
the distribution of ambient temperatures and in-plane irradiances dur
ing the imaging process. The temperature varied with about 5 ◦C, and 
the irradiance varied with less than 40 W/m2, during the imaging of the 
plants. 

2.2.1. The thermal defect categories 
The IRT images containing thermal anomalies are divided into 6 

thermal signature categories (listed in Table 1), adapted from the IEA- 
PVPS report “Review of Failures of Photovoltaic Modules” (Köntges 
et al., 2014). We emphasize that this categorization is based on the shape 
and area of the thermal signatures, not the underlying defects. However, 
we have listed some possible causes of each category in Table 1. Based 
on the data that was available to us, it is apparent that the different 
categories overlap, and that the distinction between them is not always 
obvious. This means there may be instances of misclassification. This 
form of categorization, however, is easy to implement, and to our 
knowledge there is no better alternative in the literature. It is worth to 
note that, even if category D is listed with the possible cause “fully active 
bypass diode”, all the thermal signatures from A to E may cause the 
bypass diode to be activated. 

2.3. Performance analysis 

The granularity in which data-based performance analysis can be 
done is determined by the granularity of electrical measurements in the 
power plant. As mentioned in Section 2.1, the smallest unit on which 
electric measurements are done in the plants analyzed in this paper are 
two strings connected in parallel (double-strings), and these are thus 
also the units that are used for performance analysis. 

The performance analysis is carried out in three steps: (1) Time series 
data from the plant are acquired. In this case, these data include only 
currents and voltages from the double strings. (2) These data are filtered, 
in order to remove corrupt data and minimize noise, and aggregated into 
a daily array yield. (3) Finally, the average yield in the period when the 
thermographic images were taken is compared on string level, giving a 
relative deviation for each double-string. This relative yield is used as 
the metric for comparing the string performances. The following sec
tions will explain this procedure in more detail. 

2.3.1. Filtering 
Before the data is processed, it is very important to ensure good data 

quality. All measurements that are corrupted, either by communication 
loss during logging, or insufficient maintenance of the sensors, are 
removed. Subsequently, filtering for noise reduction is employed. The 
goal of such filtering is to maximize the variations in the performance of 
the double-strings that is caused by real defects, relative to variations in 
the performance that is not caused by defects, and that we are unable to 
account for or model. For instance, we may account for both variations 
in irradiance and temperature by assuming that they have an approxi
mately linear correlation with the energy output of a PV module. On the 
other hand, it is difficult to account for varying spectral effects in the 
incident light, varying irradiance and temperatures across the power 
plant, or varying degrees of soiling and self-shading. Instead, we try to 
minimize such effects by filtering away time stamps with low irradiance, 
low solar elevation angle, high angle of incidence, and cloudy condi
tions. We achieve this by applying filtering cutoff thresholds, following 
the procedure described in (Skomedal et al., 2019). The applied cutoff 
thresholds are summarized in Table 2. Further, clear sky filtering 
(removing cloudy conditions) is done using the clear sky detection al
gorithm implemented in Python PVLib (F. Holmgren et al., 2018). 

2.3.2. The performance metric 
In order to assess the effect of the thermal defects on the performance 

of the PV system on double-string level, it is necessary to quantify this 
performance. In the literature, there are many suggested metrics that 
can be used for this purpose, including the performance ratio (PR) 
(Guerriero et al., 2017; Marion et al., 2005; Ventura and Tina, 2016; 
Woyte et al., 2014), the closely related temperature-corrected PR 
(PRSTC), and the weighted relative energy error (Bizzarri et al., 2015). 
Further, empirical models like the PVUSA model (Whitaker et al., 1997), 
or the models proposed in (Platon et al., 2015) and (Ventura and Tina, 
2016), may be employed to model the system output. What these 
methods have in common is that they account for the irradiance and 
possibly the temperature conditions, correcting for these effects in a 
more or less physical way. There are also many examples in the litera
ture where machine learning (ML) models have been employed for 
performance analysis, e.g. in (Rodrigues et al., 2016). 

Fig. 2. Distribution of (a) temperatures T and (b) in-plane irradiance Gi during 
the imaging of the plants. <T> and <Gi> are the average temperature and in- 
plane irradiance during the imaging of each plant. 

Table1 
Description of the thermal signature categories provided by the aerial IRT 
report.  

Thermal sign. 
category 

Description Possible cause 

A Whole cell is hot Shunted or partially shaded cell 
B Part of cell is hot Cracked cell or disconnected 

interconnect 
C Single hot point Cracked cell or damaged busbar/ 

interconnect 
D Uniformly hot substring Fully active bypass diode1 

E Patchwork pattern of 
hot cells 

Short-circuited diode/cracked 
front glass 

J Hot junction box Poor connection causing ohmic 
heating  

1 By fully active, we mean that the diode is conducting almost all the current, 
presumably because the module substring is unable to carry any significant 
current. This could be caused by a very high series resistance or a cell with very 
low current generation. 

Table 2 
Filtering cutoff thresholds for minimum solar elevation angle, maximum angle 
of incidence, and minimum in-plane irradiance for the plant locations.  

Location L1 L2 

Min. solar elevation angle (◦) 35 20 
Max. angle of incidence (◦) 55 55 
Min. Gi (W/m2) 430 640  
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Both physical, empirical and ML models have tuning parameters that 
need to be adjusted to the system that is to be modeled. For physical 
models, these are physical parameters (e.g. array orientations, topology, 
and shading conditions) found in the design drawings of the system. For 
empirical and ML models, these parameters are set by fitting/training 
the model to/on historical data. In this case, all defects need to be 
labeled in advance, so that they can be excluded from the model fitting/ 
training. If this is not done adequately, one may end up with a model 
that perfectly models the system, including the effect of the defects, thus 
defeating the purpose of the study. Doing this manually on thousands of 
time series is an enormous task, and any automatic labeling would need 
extensive validation. As far as we know, no method for doing this 
robustly exists to date. Developing our own method for doing this falls 
outside the scope of this paper. 

For these reasons, our approach to performance assessment does not 
require any kind of modeling. Instead we rely on the statistics of the 
utility scale power plant. This approach is applicable if the current (or 
power) is measured on near string-level (e.g. two strings in parallel, as in 
this work). It is also required that the strings can be grouped into sec
tions where the physical conditions of the strings (orientation, topology, 
shading conditions, soiling, etc.) are similar, and that there are many 
modules in each group. 

Our approach is simply to use the relative differences in production 
between the strings in periods where the weather conditions are most 
uniform across the plant, and to use this relative difference as a measure 
of the performance of each string. The method for ensuring uniform 
weather conditions is to use filtering, as discussed in Section 2.3.1. The 
performance metric we use is the filtered relative yield, which is defined 
as 

y*
rel =

Y*
s − Y*

s,med

Y*
s,med

⋅100%, (1)  

where Y*
s =

∑
E*

i,out/Pnom is the filtered specific yield on a given day, and 
Y*

s,med is the median Y*
s of the double-strings of the same group on the 

same day. 
∑

E*
i,out is the total energy output over a given period and Pnom 

is the nominal power of the sub-array for which the specific yield is 
calculated. The asterisk * means that the data is filtered prior to ag
gregation. In this work, the y*

rel is calculated daily for each double-string. 
Finally, it is the average relative yield <y*

rel> over the one-month period 
around the time when the thermographic images are taken that is used 
as a measure of the performance of each double-string. Note that this 
metric is identical to what is used for performance assessment in (Dal
sass et al., 2015), with the exception of filtering. 

It is also worth to note that we are comparing <y*
rel>, which is based 

on a whole month worth of data, with an instantaneous scan of our 
plants (the IRT images). The reason we do this is that, even after 
filtering, there is a day-to-day variability in y*

rel. When we do a time- 
average, we take advantage of the law of large numbers, assuming 
that the impact of faults on performance is stable in this period, and that 
the variability can be treated as symmetric noise that will average to 
zero over time. Thus, by doing this we remove the random day-to-day 
variability in performance. Since we expect a correlation between 
<y*

rel> and the number of thermal anomalies, the length of the averaging 
period was chosen in order to maximize this correlation, measured by 
the R2 of the regression fit shown in Section 3.2. 

One potential shortcoming of our approach is that we do not 
differentiate between the performance of arrays connected to different 
inverters. Since we are only comparing strings connected to the same 
inverter, and since the MPPTs are located at the inverters, any differ
ences in the MPP voltage (Vmpp) are neglected. Thus, if one MPPT en
forces a reduced Vmpp due to a large number of defects, this is not 
accounted for. Further, a lowered Vmpp caused by active bypass will give 
a smaller, or even zero current reduction in strings with defects. In 

general, the more the Vmpp is lowered by active bypass diodes, the 
smaller the difference in y*

rel will be between defective and non-defective 
strings. This effect is neglected by our approach. However, in our data 
there is no significant correlation between Vmpp and the number of 
thermal anomalies in each inverter. We interpret this to mean there are 
not enough defects to significantly alter the Vmpp, which gives us con
fidence that we can rightly neglect the effect of defects on the operating 
voltage. 

2.4. Defect power loss simulations 

In a previous publication it was shown that the IV-curves of modules 
containing different thermal signatures can be recreated using a relative 
simple MATLAB Simulink circuit model based on the single diode 
equation (Aarseth and Marstein, 2019). In this study we use a similar 
model, based on 72 cell modules with 3 bypass diodes, but since the 
exact effect of the different thermal signatures on the IV characteristics 
of the modules in this study are unknown, we limit the possible defect 
parameters to series resistance. This is of course an oversimplification, 
that assumes the entire loss from the module substring defect can be 
approximated as ohmic losses, as long as the bypass diode is not acti
vated. In the simulations, the module power is 290 W, and the module IV 
characteristics are fitted to the module datasheet. The resulting cell 
parameterization in the one diode model is a diode saturation current I0 
= 2.9 × 10-10 A, photo generated current Iph = 8.6 A, quality factor of N 
= 1, and a cell series resistance Rs = 6 × 10-2 Ω. A piecewise linear diode 
is used for the module bypass diode, with an on-voltage of Vf = 0.1 V, on- 
resistance Ron = 1 × 10-2 Ω and an off-conductance Goff = 1 × 10-8 S. 

To simulate how the different thermal signature categories affect 
measurable string performance, we simulate 1 to 4 module substrings in 
a double-string of otherwise fault-free modules, using the different re
sistances for thermal signature categories A-C listed in Table 3. The re
sults of this are shown in Section 3.3. The magnitude of the resistances 
do not lead to the activation of the bypass diode. For category D, how
ever, the module substring is removed so that the current can only flow 
through the bypass diode. Lastly, for category E, the bypass diode is 
removed, causing the module substring to short-circuit. 

The two systems reviewed here both have central inverters into 
which between 75 and 80 double-strings connected in parallel are fed, 
all controlled by one MPPT. Simulations of full systems of this size 
require substantial simulation times. For this reason, only two double 
strings have been simulated at a time, one fault-free and the other 
containing the defects under review. The system Vmpp is then set to the 
Vmpp of the fault-free string, thus assuming that the MPP voltage of the 
entire 80 parallel double-string setup will only change negligibly due to 
one defective double-string, as discussed in Section 2.3.2. The resulting 
power of both double-strings are used to calculate the relative yield, 
using Eq. (1) from Section 2.3.2. 

3. Results and discussion 

3.1. Statistics of thermal anomalies 

A summary of the number of thermal anomalies relative to module 
number (left) and differentiated by defect category relative to the 

Table 3 
The simulation parameters of the thermal signature categories. Category J has 
not been simulated because of the low number of signatures in this category.  

Thermal signature Simulated by 

A Rs = 0.2 Ω 
B Rs = 1.2 Ω 
C Rs = 1.4 Ω 
D Removing module substring 
E Short circuiting module substring  
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number of defects (right), found in each location is shown in Fig. 3. The 
most numerous thermal signature is category B, which is a part of a cell 
that is hot. There is some difference in both the fraction of defective 
modules and the relative distributions of the thermal signature cate
gories between the sites. The reason for this is probably not related to 
climatic conditions, as both plants are located in the same climatic zone. 
The largest relative difference between the locations is in category E 
(short-circuited diode), which constitutes about 12% of defects observed 
in location 2, while only 2% in location 1. The reason for this can be a 
higher frequency of reported thunder events at location 2. 

3.2. Number of thermal anomalies and string performance 

There is a clear relationship between the performance on double- 
string level and the number of thermal anomalies in the double-string. 
In Fig. 4, the average relative yield <y*

rel> is shown as it varies with 
the number of module substrings containing thermal anomalies (affected 
substrings). The variation in <y*

rel> within each x-value, and especially at 
zero affected substrings, illustrates the implicit uncertainty in our esti
mate of the performance. Despite this, there is a clear tendency that the 
performance decreases with increasing number of affected module 
substrings. In fact, there is a near linear decrease in the median <y*

rel> in 
all locations, at least up to five affected substrings. The trend lines in 
Fig. 4 are obtained by ordinary least squares regression based on all data 
points in each location, and, in the case of the aggregated value, on all 
data points from all locations combined. The R2-value is based on the 
mean <y*

rel> at each x-value. Note that we are not saying that the per
formance loss is expected to vary linearly with the number of affected 
substrings. On the contrary, in Section 3.3 we argue, based on simula
tions, that the response is probably non-linear. However, the linear 
regression is useful to quantify the typical relationship between per
formance loss and number of affected substrings. 

Because the data from the two locations exhibit a similar trend, and 
since the locations have virtually identical configurations, we assume 
that aggregating the data from the two plants is meaningful, and that 
further analysis based on the whole dataset, including both locations, is 
valid. 

Interpreting the trend line of the aggregated data to represent the 
average effect of the number of defects, we conclude that there is a 0.58 
± 0.06% decrease in the performance of a double-string per affected 
module substring in the systems we consider. Let us call this the per
formance loss rate. The uncertainty in the performance loss rate is two 
times the standard error of the regression estimate. If we extrapolate 
linearly from the result at double-string level, the performance loss rate 
is on average 1.16 ± 0.12% per affected substring in a 20-module string, 
and 1.16 ⋅ 20 ⋅ 3 ≈ 70% (±7%) in each substring that is affected. 

A defect that limits the maximum current of a module substring will 

often lead to the activation of a bypass diode. With an active diode, the 
voltage contribution of the module substring is lost. This loss of voltage 
leads to a current reduction in the whole string (because the string is 
operating at a voltage set by the MPPT, and the string current is adjusted 
so as to accommodate this), which constitutes the loss caused by the 
module substring. As long as the diode is active, the voltage loss is in
dependent of how many defects there are in the module substring. If the 
performance loss in each string has a stronger correlation with the 
number of module substrings containing thermal anomalies (affected 
substrings) than the number of cells with thermal anomalies, this could 
mean that most of the defects lead to activated diodes. Although there is 
a correlation between <y*

rel> and the number of cells with thermal 
anomalies in a string, in our data the correlation is stronger with number 
of affected module substrings. This is confirmed by the fact that R2 =

0.73 for the linear regression on number of cells with thermal anomalies, 
while R2 = 0.88 for the linear regression on number of affected sub
strings. This is the reason we choose to report the performance loss per 
affected substring, rather than per affected cell. 

Note that the performance loss rate of 1.16 ± 0.12% per affected 
substring (in a 20-module string) is based on two particular PV systems 
where 150–160 strings in parallel feed into each MPPT, and where each 
string has 20 modules and each module has three substrings. It does not 
necessarily generalize to systems with different MPPT, string, and 
module configurations. This is discussed further in the next section. 

3.3. Thermal signature category and string performance 

To study the effect of the different thermal signature categories, we 
have isolated double-strings that contain exclusively one kind of thermal 
signature. In Fig. 5 we show how the average relative yield depends on 
the number of affected module substrings for double-strings containing 
exclusively defects of category A, B, C, D and E respectively. In this way 
we hope to isolate the performance loss rate associated with each 
category. There were not enough defects of category J to make this kind 
of plot. Note that, for simplicity of visualization, in this plot we show the 
median along with the 25th and 75th percentile, defined by the boxes. 

Judging by the median relative yield, it seems that thermal signa
tures of category A (whole cell hot) are not correlated with as large a 
performance loss as the other categories. There is a measured increase in 
performance at two affected substrings, and a drop in performance at 
three and four affected substrings. There are only three data-points at 
four affected substrings, and this is not enough data to average out the 
uncertainty in our performance estimate. On the other hand, category B, 
C, D and E correlate with larger performance losses, except at three 
affected substrings for category D. However, there are only 5 double- 
strings at this position, and we consider it an outlier. 

Simulations of the relative reduction in Pmpp on double-string level 
for the thermal signature categories are also shown in Fig. 5. Assuming 
the relative reduction in Pmpp to be proportional to the change in the 
performance, and hence to the relative yield, we can compare the 
measurements to the simulations. Of course, the exact effect of a given 
thermal signature on the IV-curve of a module is not predictable. Small 
variations in the underlying defect can give large variations on cell and 
module IV characteristics, but the thermal signature category may 
remain the same. Therefore, series resistance has been chosen as the 
simulation parameter for all categories, and all defects of the same 
category have been simulated with the same module substring series 
resistance. With this approach we are not able to correlate each indi
vidual thermal defect with a corresponding IV-curve. However, it makes 
us able to estimate “typical” losses in Pmpp of strings containing each 
defect category, and how of the number of affected substrings relates to 
mismatch between the Vmpp of the string and the central inverter. 

Although there is a large variation in the measured relative yield of 
the double-strings at each x-value, there is a clear tendency that the 
median decrease in relative yield is similar to the simulated decrease in 

Fig. 3. Number of modules with thermal anomalies relative to the total number 
of modules (left) and the number of anomalies of each category relative to the 
total number of defects (right) at the two locations. 
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Pmpp. Except at four affected substrings in category A and E, and three 
affected substrings in category D, the simulations fall within the 25th 
and 75th percentiles of the measurements. However, there are only five 
or less datapoints at these positions. This means that the empirical 
performance assessment agrees well with the simulations. 

Considering the simulations in Fig. 5, it is evident that the relation
ship between performance loss and number of affected substrings is not 
linear: The more affected substrings, the larger the effect of each added 
fault. The reason for this is that the IV-curve, and hence the MPP, of a 
string is altered by faults, and the higher the number of affected sub
strings is, the further away the string MPP will be from the system MPP 
enforced by the central inverter. In other words, according to our sim
ulations, faults typically lead to a reduction in string current that is 
larger, relatively speaking, than the voltage loss in the isolated MPP of 
the string, for large parallel connected systems like L1 and L2. 

The categories associated with the biggest loss is category D and E, 
which we have simulated as a fully activated bypass diode and a short 
circuited bypass diode, respectively. In a 40-module double-string, both 
give a loss of ~1% in Pmpp with one affected substring. This is higher 
than the 0.83% loss one might expect (if one assumes the loss is limited 
to 100%/40/3 = 0.83%, and neglects the bypass diode on-voltage and 
-resistance), and this is due to the mismatch between the MPP of the 

defective double-string and the system MPP. To simulate category E as a 
perfect short-circuit may be an oversimplification; in some cases there 
will be some resistance in the shunt. Furthermore, a patchwork pattern 
of hot cells caused by a short circuited bypass diode can be hard to 
distinguish from several A and B signatures within a substring. Thus, it is 
also possible that there is a number of mis-categorizations between 
signature A, B and E. This is important, because robustly distinguishing a 
short-circuited bypass diode from other categories will potentially limit 
the O&M measure to replacing the bypass diode instead of the entire 
module. However, in Fig. 5E we see a very good agreement between 
simulations and measured performance loss, indicating that in our data 
most of the E-anomalies are indeed short circuits. 

We judge that the variation in the relative yield is too high to 
distinguish the relative magnitude of the effect of the different cate
gories on performance, except that category A is less detrimental than 
the other categories. Because of this, we have gathered category B-E in 
the last subfigure of Fig. 5 and applied an ordinary least squares linear 
regression on all data points from the four categories. The result is a 
reduction in relative yield by 0.74% per affected substring in a double- 
string, or equivalently 1.5% for a 20-module string. This means that the 
linear decrease in relative yield per affected substring is increased by 
near 30% by excluding category A, underlining the lower significance of 

Fig. 4. Average relative yield <y*
rel> of the double- 

strings as it varies with number of module sub
strings with thermal anomalies in the two locations. 
The boxplots encompass the 25th and 75th percen
tiles, the horizontal lines show the median values, 
and the whiskers show the 2.5th and 97.5th percen
tiles. The numbers close to the top of the plot show 
how many data-points (each point representing one 
double-string) are represented in each respective x- 
value. The trend lines are obtained by ordinary least 
squares regression based on all data points in each 
location, and, in the case of the aggregated value, on 
all data points from all locations combined.   

Fig. 5. The measured average relative yield 
<y*

rel> of double-strings containing only 
defects category A (whole cell hot), B (part of 
cell hot), C (single hot point), D (uniformly 
hot substring), E (patchwork of hot-spots), 
respectively, as well as B, C, D and E com
bined. The boxes encompass the 25th and 
75th percentiles, and the black line marks 
the median of <y*

rel>. Simulations of the 
effect the different defects on the relative 
reduction in Pmpp are also shown. A linear 
regression on the data with B, C, D and E 
defects is shown in the subplot marked by (B, 
C,D,E).   
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this category in our data. 
Although it is tempting to assume that the performance loss shown in 

Figs. 4 and 5 is caused by the observed thermal anomalies, we would like 
to emphasize that we don’t have sufficient grounds to make claims about 
causality. Granted, we observe clear correlations, but there may be other 
factors involved, such as a correlation between thermal anomalies and 
other, non-thermal loss factors, that we have not controlled for. Still, 
through the simulations, we have shown that the average performance 
loss rates may be caused by module-level defects, and hence it is possible 
that all the observed performance loss is associated with thermal 
anomalies. 

While the average performance loss per affected substring (Fig. 4) 
does not necessarily generalize to other PV system configurations, we 
would argue that the performance loss rate of each thermal signature 
category (Fig. 5) may be similar for other systems. Variations in climatic 
conditions and c-Si cell technology (i.e. cell thickness, etc.) may lead to 
different numbers and distributions of thermal signatures (ref. Fig. 3), 
but the performance loss will be limited by the bypass diodes. In systems 
similar to the ones we have studied, with central inverters, 20 c-Si 
modules in each string, and 72 cells and 3 bypass diodes in each module, 
we expect that categories B-E will have a performance loss per affected 
substring similar to what we have found. This, however, needs to be 
confirmed by further studies. 

3.4. Hot spot temperature and string performance 

In order to study the effect of hot spot temperature we have isolated 
double-strings with exactly one thermal signature, and plotted the 
average relative yield versus the difference between the maximum hot 
spot temperature in the double-string and the average temperature of 
non-defective modules, ΔT. This is shown in Fig. 6, with the different 
categories shown in the different subplots. 

There is no statistically significant correlation between performance 
and temperature in any category. This was tested statistically with the 
Pearson correlation coefficient at a significance level of 5%. We note 
that (Dalsass et al., 2015) seemingly find a correlation, although they 
don’t quantify it. 

In our data, the variation in the performance between non-defective 
double-strings is around 20%. The performance loss per affected sub
string is around 0.58%. We expect the effect of temperature to be of a 
smaller magnitude than this. This means that we are looking for a cor
relation that is much smaller than the noise in the data. Also, we do not 

necessarily expect two thermal signatures of the same category that have 
the same temperature to have the same effect on the IV curve of their 
modules, for instance if they have different sizes. Given these facts, it is 
not unlikely that any correlation between performance and temperature 
is so small that it drowns in noise in our data. This makes us unable to 
say anything quantitative about the effect of hot-spot temperature on the 
performance on double-string level. This is not to say that performance 
is not negatively correlated with hot spot temperature, for instance on 
module or cell level. However, in our data, any correlation between hot- 
spot temperature and performance is overshadowed by variations that 
are not related to temperature. 

We note that, from a thermodynamics perspective, it is not neces
sarily the maximum temperature that determines the thermal losses of a 
defect. As is noted in (Teubner et al., 2019), a more relevant parameter 
to correlate with performance losses would be the difference in the 
average temperature between the defective areas and the non-defective 
areas. In this way, the area of the thermal anomaly, as well as its tem
perature, is taken into account. Unfortunately, as we did not have access 
to the raw IR images, we were not able to perform this analysis. 

4. Conclusion 

By combining IRT with production-based performance analysis, we 
have gained an increased understanding of how thermal anomalies 
relate to performance on string and double-string level. We find that the 
most important parameter is the number of module substrings con
taining thermal anomalies. Although a single defect may reduce the 
power output of a string of 20 modules with 3 bypass diodes each by as 
much as 2% (according to our simulations), on average, in the plants in 
this study, the power output is reduced by 1.16 ± 0.12% per module 
substring with a thermal anomaly. Of the different defect categories, 
cells that are uniformly hot (category A) are the least detrimental for the 
power output. We are not able to determine the relative magnitude of 
the effect of the other categories independently, but by excluding the 
effect of the thermal signature category A, the power output is on 
average reduced by 1.5% per affected substring. We argue that this 
result, applying to thermal anomalies of category B, C, D or E, might 
generalize to other systems with c-Si modules and similar configuration 
to the plants in this study. Lastly, we do not observe any significant 
correlation between maximum hot spot temperature and performance 
on double-string level. 

Previously, much research on how different defects affect the 

Fig. 6. The measured average relative yield <y*
rel> as it varies with temperature for the different defect categories. Only double-strings with 1 affected module 

substring have been included, in order to isolate the defect categories. Theil-Sen regression lines with 95% confidence intervals (marked by shaded region) are shown. 
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performance of PV modules has been published. However, little research 
exists quantifying how common different defects actually are in the 
field, and how much production loss one can expect from the different 
defects on system level. This case study is, to this date, the study where 
IRT analysis has been combined with production-based loss analysis that 
is based on the largest number of PV modules. Thus, we contribute to the 
state of the art by quantifying the distribution of thermal signatures in 
three utility scale PV power plants, quantifying the relationship between 
performance loss and thermal anomalies, and identifying correlations 
between parameters found by IRT and performance loss on string level. 
This is valuable information for PV stakeholders, as well as PV system 
operators, IRT service providers, policy makers, and other researchers in 
the field. 
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