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Abstract. Cellulose nano crystals (CNCs) are promising materials for
energy efficient buildings related to the control of reflectivity and heat
absorption/reflection of light. In this sense it is important to improve
CNCs films fire retardant properties, which can be achieved by adding
clays. Cellulose nanocrystals (CNCs) and nanolayers obtained from
Sodium Fluorohectorite (NaFh) synthetic clay are both known to form
liquid crystalline phases in aqueous suspensions. CNCs form cholesteric
phases, which structure is preserved after water evaporation, while
dry NaFh nanolayers aligned films collapse. In this initial work, it is
shown that CNCs are compatible with NaFh clay. We demonstrate
that the liquid crystalline phase of CNCs in water is not destroyed by
the presence of NaFh nanolayers. The NaFh nanolayers act as planar
anchoring surfaces to the cellulose nanorods and, after evaporation of
the water coloured films are obtained. The precursor solutions and the
photonic films were investigated by Describe several techniques.

1 Introduction

Nature is an inexhaustible source of inspiration for materials science due to evolution
and natural selection. Life on earth has developed extraordinary complex multifunc-
tional molecules and materials with unique properties. Natural creatures have estab-
lished distinctive functions such as directional water collection on wetted spider silk,
antifogging properties of mosquito compound eyes, water capture and wing-locking
device of the beetle, multicolour surface of butterfly wings, and super hydrophobicity
and low adhesion of lotus leafs, among other examples [1]. Structural colours have
attracted much attention in a wide variety of research fields due to the complex inter-
actions between light and sophisticated microstructures created [2]. This mechanism
forms the basis of the most stunning displays of colour in nature that can be observed

a e-mail: ana.c.trindade@ntnu.no

https://epjst.epj.org
https://doi.org/10.1140/epjst/e2020-000015-y
mailto:ana.c.trindade@ntnu.no


2742 The European Physical Journal Special Topics

in butterflies, moths, beetles, birds, fishes, plants and fruits. A beautiful example of
this type of colouration can be found on the Morpho butterfly wings, which occurs
due to the presence of lamellar structures in its ridges that offer a strong reflection
in a given wavelength [3].

The depletion of petroleum-based resources and the increasing environmental
concerns have stimulated considerable interest in the development of environmen-
tally sustainable materials. Bio-based materials that have various advantages (e.g.,
renewability, biodegradability, and environmental friendliness), can be used as a good
alternative. Cellulose, the most abundant renewable organic compound on earth, is
a fascinating and almost inexhaustible, sustainable natural polymer that has been
vastly used in our day-to-day products and applications and is now considered an
alternative to fossil fuel-based polymers [4,5].

Cellulose nanocrystal particles are produced through a controlled chemical treat-
ment, usually via a strong acidic hydrolysis, where the amorphous domains are dis-
solved and the local crystalline contacts between nanofibrils are broken. After that,
the dispersion is submitted to a high-power mechanical or ultrasonic treatment and
the free acid is removed by several neutralization steps with distilled water [6]. The
extraction of CNCs using this acid hydrolysis method was first described in 1949
by R̊anby and Ribi [7] and results in a suspension consisting of nanorods [8]. Above
a critical concentration and under suitable conditions, CNCs have a self-assembling
tendency in suspension towards a chiral nematic liquid crystalline orientation [9]. The
geometric dimensions of CNCs, such as length and width, may vary depending on
the origin of cellulose microfibrils and the acidic hydrolysis conditions such as time,
temperature, purity or cellulosic source [8].

Solid films prepared from cellulose nanocrystals present remarkable optical prop-
erties: iridescence, selective reflection of left circularly polarized light, and transmis-
sion of right circularly polarized light [10]. Fernandes et al. [11] reported sheared
iridescent cellulosic films, with tuneable mechanical and structural colour properties,
which mimic the structures found in plants.

Clays are fascinating materials present almost everywhere on Earth and as CNCs,
clays can generate a liquid crystalline phase in water. Recently clays have become
part of nanomaterials science [12,13]. Clay minerals are phyllosilicates consisting
of charged nanolayers, which are made up of sheet structures based on the Si4O10

unit cell [12]. Sodium-Fluorohectorite (NaFh), with nominal composition NaxMg(3−x)

LixSi4O10F2 (x is the magnitude of the layer charge) is a smectite clay that belongs
to the 2:1 clay family [14,15]. In the case of Sodium-Fluorohectorite, the charge-
compensating counterion present in the interlayer space is Na+ [13,14]. The nanolay-
ers (“cards”) in the dry state form nano-layered particles, so-called “decks of cards”
[12–15]. NaFh belongs to the family of water swelling clays that can incorporate water
at variable amount in the interlayer space [15]. NaFh can be synthesized [16] with
charge homogeneity superior to their natural counterparts [16], allowing for quan-
titative swelling and delamination into individual nanolayers [17]. For the samples
used in the present study, x = 0.5, i.e., we have been working with clays samples
with nominal composition Na0.5Mg2.5Li0.5Si4O10F2.

Synthetic NaFh belongs to a handful of layered compounds that show the phe-
nomenon of osmotic swelling [17,18]. Contrary to liquid-phase exfoliation, e.g., with
graphene that involves brute force sonication, osmotic swelling is a thermodynami-
cally allowed process [19]. It allows for a gentle delamination, preserving the aspect
ratio inherent in the particle diameter of the starting material. For NaFh, nano-layers
with a thickness of 1 nm and a median diameter of 20µm can be obtained simply
by immersing the clay as synthesized material into deionized water. Due to the large
aspect ratio, even very dilute suspensions (<1% vol) are not isotropic but generally
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nematic [17]. Due to this large aspect ratio, even non-exfoliated NaFh particles can
form nematic phases [20–22].

Previous work on CNC-clay composite materials include the work of Liu et al.
who combined montmorillonite clay and nanofibrillated cellulose to prepare a clay
nano-paper hybrid material for fire retardancy and gas barrier functions [23]. They
added montmorillonite in order to improve the barrier properties of pure cellulose
nano-paper. The data suggest that clay nano-paper is of great interest for application
in self-extinguishing composites and for further development into barrier layers in
packaging applications.

Initially, in this work we describe the production of cellulose nanocrystals from a
commercial source, followed by the characterization (chemical, structural and dimen-
sional) of the starting materials (i.e., the starting cellulosic material (CMC) is com-
pared to the prepared CNC material). Then we present the analysis of solutions
and thin solid films are then characterized by a range of techniques, including spec-
troscopy, microscopy, as well as X-ray and neutron scattering. Moreover, we present
for the first time the results of addition of NaFh nanoclay to nanocrystalline cellulose.

2 Materials and methods

2.1 Production of CNCs and CNC/NaFh mixtures

The CNC particles were prepared based on the method documented by Gray et al.
[24], with minor adjustments by Fernandes et al. [10]. The cellulosic source used in this
work is a commercial microcrystalline cellulose derived from cotton (MCC; Avicelr,
PH-101, ∼50µm particle size, lot #BCBJ0229V, Sigma-Aldrich). The microcrys-
talline cellulose was hydrolysed in sulfuric acid (95–97% purity, Sigma-Aldrich), with
an acid/solid ratio of 8.5:1, at 45 ◦C for 40 min under continuous magnetic agitation.
In order to cease the reaction, ultrapure water (Millipore Elix Advantage 3 water
purification system) was added, with a volume of 10 times the initial volume of the
reaction. The resulting material was washed, diluted and centrifuged with ultrapure
water (12.000 rpm for 20 min, Thermo Scientific Heraeus Multifuge X1R Centrifuge)
until the pH of the CNC suspension was between 1.9 and 3.9, and then the super-
natant was collected. The suspension was dialyzed in ultrapure water (using Spec-
trum Spectra/Porr 4 dialysis membranes), and the water was changed every day
until constant pH readout was obtained. The suspension was produced by submitting
it to three consecutive cycles of 20 min of sonication (Hielscher UP400S ultrasonic
homogenizer, 460 W, 24 kHz) over an ice bath at 0.85 of the cycle and 80% amplitude.
The concentration of the aqueous CNC, 2.47% (w/w), was obtained by gravimetry.
A suspension of NaFh at 1% (w/w) concentration in water and the aqueous CNC
suspension at 2.47% (w/w) concentration were mixed to a final solution with 98%
CNCs and 2% NaFh (w/w).

2.2 Characterization

Several characterization techniques were used to characterize chemically, optically,
structurally and dimensionally the CNCs prepared in this work. Fourier Transform
Infrared (FTIR) spectroscopy was used to chemically characterize microcrystalline
and nanocrystalline cellulose used throughout this study. For this characterization
a Spectrum Two FT-IR spectrometer was used, equipped with an attenuated total
reflectance (Perkin Elmer), with a spectral gap from 4000 to 400 cm−1 and a resolu-
tion of 4 cm−1.
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Elemental analysis (EA) was conducted by a Flash EA 1112 CHNS series elemen-
tal analyser from Thermo Finnigan-CE Instruments. Using a NETZSCH STA 449 F3
Jupiterr thermal analyser, differential scanning calorimetry with thermogravimet-
ric analysis (DSC-TGA) was performed. To determine the caloric effects and mass
change, the samples, 2 mg w/w, were heated, open crucibles, at 10 ◦C/min from 25
to 550 ◦C in an inert nitrogen atmosphere.

In order to map the surface of solid CNC films derived from droplets, we used
the profilometry characterization technique. This measurement was made with an
AlphaStepr D-600 Stylus Profiler from KLA Tencor. The specifications of the scan-
ning speed were 0.2 mm/s, while the stylus force applied was 1 mg.

The morphology was examined by scanning electron microscopy (SEM), with a
Carl Zeiss Auriga CrossBeam (SEM-FIB) system, equipped with an Oxford energy
dispersive X-ray spectrometer. The images were acquired with an acceleration voltage
of 5 kV and an aperture size of 30µm. The characterized samples were glued with a
double-sided tape to a sample holder and were subsequently coated with a mixture
of gold and carbon using a Q300T D sputter coater from Quorum Technologies.

Atomic Force Microscopy (AFM) allowed to determine the mean dimensions of
length and width of the CNCs. The equipment used was an Asylum Research MFP-
3D in tapping mode with commercial silicon probes (scanning frequency of 300 kHz,
k = 26 N/m). The samples to be characterized were submitted to a preparation pro-
cess consisting in the sonication (using a Hielscher UP400S, 460 W, 24 KHZ, at 0.85
of the cycle and 80% amplitude) of a diluted aqueous CNC suspension (0.01% w/w)
on an ice bath during two consecutive runs of 10 min. Immediately after the sonica-
tion process, 1µl droplets of the diluted suspension were deposited onto a mica sub-
strate (Muscovite Mica V-5 from Electron Microscopy Sciences). The acquired AFM
images were analysed via the software Gwyddion (version 2.53, http://gwyddion.
net), which consisted in 150 manual measurements of length and width of CNC
particles.

X-Ray Diffraction (XRD) spectra were measured using an X-Ray diffractometer
(PANalytical XPert PRO MRD) with Bragg-Brentano (θ/2θ coupled) with CuK-α
(1.54 Å) radiation. The scanning step during the characterization was 2θ = 0.003,
from 10◦ to 40◦.

The width of the prepared films was measured with a Mitutoyo Digimatic Microm-
eter Series 293. Each film was measured at least 10 times in different positions. Macro-
scopic photographs of films (from both droplets and suspensions) were taken with a
Canon 550D camera, outfitted with a Canon EF-S 60 mm macro lens under visible
light. Left and right circular polarizers and cross polarizers were also used to charac-
terize the reaction of the samples under visible light. Polarized Optical Microscopy
(POM) images were recorded and analysed using an Olympus BX-51 microscope
connected to a cold light source (Olympus KL2500) with an attached camera (Olym-
pus DP73) together with Olympus Stream Basic 1.9 software. Using the program
Lightscan 1.1.17 in combination with the microscope, the spectra of reflectance of
visible light of the samples were obtained. The solid iridescent films were observed
under linear and circularly polarized light.

The SANS-instrument at the JEEP-II reactor at IFE was employed for the small-
angle neutron scattering (SANS) measurements. Samples for SANS were prepared
by dissolving nanocellulose powder in heavy water (D2O) with subsequent stir-
ring (1 hr) and ultrasonication (20 min). D2O was used instead of H2O order to
obtain a low background and good contrast in the SANS measurements. Sample
concentrations of 5% (w/w) and 1% (w/w) were employed, and in addition measure-
ments were done with the 5% (w/w) sample subjected to a horizontal magnetic field
(1 T). Two different sample-detector distances (1.0 m and 3.4 m) and two differ-
ent neutron wavelengths (5 Å and 10 Å) were used in order to obtain a large total
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Fig. 1. (a) FTIR spectra of CMC and CNC samples that were analysed. (b) XRD diffrac-
tograms of the produced CNCs (red line) and the starting material CMC (black line). (c)
DSC-TGA analysis of cellulose nanocrystals (black lines) and microcrystalline cellulose (red
lines).

scattering range (q-range). The transmission was measured separately, and the scat-
tering was normalized to absolute units (cm−1) by taking into account empty cell
and background scattering. All samples were inspected before being introduced into
2 mm quartz cuvettes. The temperature used during the measurements was 23 ◦C.

3 Results and discussion

3.1 Chemical, structural and morphological characterization of CNCs

The produced cellulose nanocrystals and the starting cellulosic material (CMC) were
characterized by means of different structural, dimensional, and chemical techniques:
DSC-TGA, FTIR, AFM, XRD and EA (Figs. 1, 2 and Tab. 1). A comparison of
CMC and CNCs is necessary to assess if the performed acidic hydrolysis reaction
was successful.

The FTIR spectra of both samples (CMC and CNCs) are represented in Figure 1a,
where the absorbance bands of the stretching vibrations are visible. Each individual
vertical line represents stretching vibrations of the cellulose molecules. The exami-
nation of this figure allows to establish that both samples display the same cellu-
lose characteristic bands at 3330, 2900 and 1030 cm−1, approximately, which is in
accordance with the theoretical values found in literature. These bands correspond
to the stretching vibrations of O–H, C–H and C–O bonds, respectively [26]. The
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Fig. 2. AFM image from amplitude retrace mode of a diluted aqueous CNCs suspension
after evaporation. Window dimensions: 2 µm× 2 µm.

Table 1. Percentage of each element (C, H, S and O) in the CMC and CNC samples as
obtained by elemental analysis. The oxygen percentage was obtained by mass difference
between all elements.

Sample Carbon Hydrogen Sulphur Oxygen −OSO3H/100
(% (w/w)) (% (w/w)) (% (w/w)) (% (w/w))

Pure Cellulose 44.44 6.18 – 49.38 –
predicted
values [25]
CMC 42.85 6.30 – 50.85 –
CNCs 38.93 6.20 0.76 54.11 3.92

absorbance band at 890 cm−1 is associated with the stretching vibration of C–O–C
of the β(1,4) glycosidic linkage [27]. Another band, at 820 cm−1, corresponds to the
S–O bond stretching [28]. This last band can only be observed in the spectra of the
CNC sample and was only visible in samples that went through an acidic hydrolysis
process (in other words, that have sulfate groups present in the cellulose structure).

The X-ray diffractograms of the synthetized CNCs and the starting CMC material
are displayed in Figure 1b. The data show a main peak at 2θ = 22.7◦, which is
consistent with crystalline the 002 plane. Two smaller peaks can be observed at
2θ = 15.0◦ and 2θ = 16.6◦ corresponding to the 101 and planes, respectively [29].
These results correspond to the characteristic peaks of cellulose type I, which allow
to conclude that the cellulose structure remains stable after the acidic hydrolysis
process [30]. In the diffractogram pattern of the CMC sample there is also a small
peak at 2θ = 34.6◦, which corresponds to the 004 plane.

Using the data from the diffractogram patterns, the crystallinity index (CrI) of
both CMC and CNC samples can be determined employing the documented empirical
method of Segal et al. [31], where the CrI can be calculated using the extracted data
from Figure 1a in combination with equation (1):

CrI =
(I(002) − Iam)

I(002)
× 100. (1)
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In this equation, I(002) corresponds to the maximum diffraction intensity from the 002
peak at a 2θ-angle between 21◦ and 23◦. Iam corresponds to the minimum diffraction
intensity of the amorphous region at a 2θ-angle between 18◦ and 20◦. The crystallinity
index obtained for the samples was 75.2% for CMC and 89.8% for CNCs. As expected,
the CrI of the CNCs increased in comparison to that of the CMC sample due to
the acidic hydrolysis process in which the amorphous regions were removed. These
results are in accordance with the values found in the literature for a cotton source
[28]. Hoeger et al. [32] presented an identical crystalline index for CNCs from Avicel
PH-101 (88%) using similar hydrolysis conditions (65% sulfuric acid, 55 ◦C, 30 min).

The DSC-TGA analysis of both cellulose nanocrystals (CNCs) and the CMC
microcrystalline cellulose is presented in Figure 1c, allowing analysis of the thermal
stability before and after the acidic hydrolysis. On both samples, all mass changes
before 100 ◦C occurred as a result of the evaporation of residual water that remained
in the cellulose fibres. The CMC sample shows a single sudden decline in the TGA
curve between 260 ◦C and 360 ◦C as a result of mass loss of cellulosic material and a
series of degradation processes that take place, such as dehydration, decomposition
and depolymerization of the glycoside units [33,34]. These results are confirmed by
DSC measurements. The CNCs sample had been subjected to an acidic hydrolysis
process, performed with H2SO4, which means that the degradation process becomes
a second order pyrolysis reaction with two mass change events. A sharp mass drop,
the first degradation step in the CNCs sample, can be observed at temperatures
between 130 ◦C and 240 ◦C. The direct after-effect to this step is the degradation of
the regions that are more accessible to sulphate groups [33,35]. The second degrada-
tion step corresponds to the degradation breakdown of the more crystalline regions of
the sample, which are less susceptible to the hydrolysis process [33]. Beyond 400 ◦C
cellulose oxidation occurs, leading to the formation of carbon-based residues of the
samples [34].

The dimensional characterization of the CNCs sample was done by AFM imaging
techniques, cf. Figure 2. The acquired AFM image shows a dehydrated droplet of
the diluted aqueous CNC suspension (0.01% (w/w)). In order to assess the lateral
dimensions of the “rice-like” CNC structures, 150 measurements were made using
the Gwyddion software. The mean values of the lengths and widths measured were
182± 34 nm and 5± 1 nm, respectively, which correspond to an aspect ratio of 36.
The obtained length is within the range presented by Fernandes et al. (152± 65 nm)
[10] and in accordance to the values listed by Rochas and co-workers for similar
hydrolysis conditions (65% sulfuric acid, 45 ◦C and 30 min) [36].

The amount of sulphate ester groups in the anhydroglucose units present in the
CNC chains can be quantified by the elemental analysis (EA) technique. Table 1
shows the collected data regarding the percentage of carbon, hydrogen and sulphur
of each sample in addition to the predicted values for pure cellulose and the calculated
value (n) of the average degree of substitution of the OSO3H anhydroglucose units.

From the data obtained with the EA technique, it is possible to conclude that, as
expected, the CMC sample does not have sulphur present in its chain. Using these
data from Table 1 in combination with the method developed by Hamad et al. [37]
and given in equation (2), it is possible to determine the value (n) of the degree of
substitution of the −OSO3H anhydroglucose units according to the formula:

n = (100× 162× S(%))/(3206− 80× S(%)). (2)

Here S(%) is the measured value of sulphur by elemental analysis. The sulphur content
of the CNCs sample is 0.76%, which is equal to the value presented by Hoeger et al.
[32] for similar hydrolysis conditions. The value of n for the −OSO3H anhydroglucose
units for the CNC sample is calculated to 3.92, which is slightly lower than the value
4.39 published by Fernandes et al. [10,11]. This discrepancy is probably due to the
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Fig. 3. (a) Transmission spectrum and reflection spectra measured at light incidence angles
of 90◦ and 45◦. The coloured band shows an approximate rendering of the visible spectrum.
(b) and (c) Optical microscope images of the same sample in 90◦ transmitted and reflected
light, respectively.

hydrolysis time (130 min) used by these authors, since longer reaction time translates
into a greater degree of substitution and therefore a higher value of n.

Droplets with 10µl of the CNC suspensions were drop-cast on microscope slides
using Easy 40+ micropipette in order to produce thin films by solvent evaporation at
room temperature. The obtained thin films of CNCs on glass plates were studied by
optical microscopy. The diameters of the nearly circular areas were about 15 mm, and
the thickness was about 20µm. Figure 3 shows an example of a low-magnification
microscope image of a film. Near the outer edge, red, yellow and green colours can
be seen, but closer to the centre the colour is strong blue with some tiny green spots
in between.

In order to record the colour spectrum, samples were mounted in a microscope
(Nikon Optiphot) with a spectrometer (Redtide USB650, Oceanoptics.com) attached
to the C-mount port of the microscope via an optical fibre. The spectra were anal-
ysed using the OceanView software. The intensity of the light sources was adjusted
to use the full intensity range of the spectrometer, and typically the acquisition time
for a spectrum was set to 200 ms. The samples were studied both in transmitted and
reflected light with 90◦ incidence angle of the light. The microscope light source used
a halogen lamp (Osram XenoPhot HLX) with colour temperature 3350 K. The spec-
trum of the light source was used as references for calculating the optical transmission
and reflection spectra. For both types of spectra, a set of crossed linear polarizers
were used to remove diffuse scattered white light.

In this configuration the films showed clear green or green-blue colours with some
spots of red and orange in between. Figure 3a shows the calculated transmission and
reflection spectra based on the light intensity measurements, and Figures 3b and 3c
show microscope images of the measured areas in the film. The spectrometer field of
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Fig. 4. SANS patterns from cellulose nanocrystals in heavy water (D2O) at varying con-
centrations. Also, the scattering from dry CNC powder is shown for comparison.

view is circular with a diameter of about 100µm. As seen, the transmission spectrum
is slightly shifted toward a shorter wavelength λ than that for the reflection, with peak
values at λ = 525 nm and 535 nm, respectively. The same sample was also mounted
on the microscope with incidence and reflection angles both equal to ϕ = 65◦, 45◦,
and 30◦. A main broad peak in the reflection spectrum was then located in the range
415 nm≤ λ ≤ 475 nm corresponding to a dark blue colour as can be seen in Figure 3a
for ϕ = 45◦. The optical images showed a mixture of µm-sized domains in various
shades of blue and green, which may be the reason for relatively wide peaks. Colour
differences may be partly due to misalignment of the cellulose nanocrystals relative to
the glass surface beneath. Using the CIE 1931 colour space [34], the 45◦ reflected light
spectrum in Figure 5a could be characterized with coordinates (x, y) = (0.30, 0.31) in
the CIE xy-chromaticity diagram. The green colours for 90◦ reflection, as in Figure 3c,
were closer to (x, y) = (0.38, 0.48).

3.2 Characterization of CNCs and NaFh solutions by small-angle neutron
scattering

The CNCs was also characterized by means of small-angle neutron scattering (SANS).
Solutions from CNCs in heavy water (D2O) with different concentrations (1% and 5%
(w/w)) were prepared, and the small-angle neutron scattering patterns are presented
in Figure 4. The scattering from dry CNC powder is also shown for comparison.

We observe strong scattering from the solutions, and only weak scattering from
the CNC powder. This is mainly due to the difference in contrast, since CNCs in
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Fig. 5. (a) SANS measurement of scattered neutron intensity as function of scattering vector
q for nanocellulose (CNC) at 5% concentration in D2O and (b) data from a suspension of
NaFh clay particles. The data from nanocellulose has been fitted to a parallelepiped particle
model, whereas the clay data show the typical −2 slope (log-log scales) for extended platelet-
shaped particles.

water (here D2O) gives a large difference in scattering length density between the
particles and surroundings, whereas this difference is much smaller in air.

The solution patterns are typical for particles with at least one of the dimensions
in the nm range. The SANS signal (I) can generally, to a first approximation, be
expressed simply as I = C · P (q) · S(q), where C is a constant proportional to the
concentration, P (q) is the particle form factor (representing the size and shape of
the particles), and S(q) is the structure factor (representing interactions between
particles). If the particle interaction is negligible, the intensity in the low-q limit will
be directly proportional to the concentration. As expected, the 5% sample scatters
significantly stronger than the 1%, but the increase is less than a factor of 5. This is an
indication of a slight interaction between the particles, since the structure factor will
produce a depression of the signal at low scattering vector q. There are reports from
literature [38,39] that nanocellulose particles can be partly aligned under a magnetic
field, due to diamagnetic interaction. SANS is highly sensitive to any ordering in the
sample, since this can be detected as an angular variation in the intensity over the
2D-detector. For this reason, we also collected SANS data on the 5% sample when
subjected to a field of 1 Tesla. As can be seen from the figure, there is full overlap for
the data measured without and with magnetic field. Thus, no restructuring due to the
field can be observed on the length scale accessible by SANS (below ca 100 nm) for the
moderate field strength used in this experiment. This does not exclude that magnetic
ordering can take place also for this system – e.g. by employing a considerable higher
field strength and/or concentration – in line with the existing variability in threshold
values, as commented in reference [36].

The scattering profile could be fitted quite well to a parallelepiped model (see
Fig. 5a), i.e., a particle with rectangular cross-section and a length significantly larger
than the two other dimensions. This is in line with the observations of Mao et al. [25]
for the nanocellulose investigated in their study. The dimensions extracted from the
model were 3 and 12 nm for the cross-sectional size, and these dimensions are quite
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similar to those discussed by Mao et al. for one of their nanocellulose types, i.e. 3
and 20 nm. Note that in this analysis, also a structure factor S(q) was included in
the modelling to take into account the interaction between particles, as commented
on above. For this purpose, a so-called Hayter-Penfold structure factor [40] was used,
in order to include electrostatic repulsion due to the negative charge on the surface
of the CNC particles.

From SANS one can also get a rough estimate of the lower limit of the particle
length. This value was estimated to ca. 90 nm based on model fit to the pattern in
Figure 5a, which is considerably shorter than the length found from AFM, mentioned
previously (average of 182 nm). Here it should be taken into account that the low-q
limit of the SANS data (ca. 0.006 Å−1) is not sufficient to properly probe dimensions
above 100 nm. The fitted value for the length based on SANS data is therefore just
a lower bond for these particles, and will furthermore be affected by any sample
polydispersity. In conclusion, this means that AFM is much more accurate for the
largest sizes, but does not have the necessary resolution for probing the cross sectional
dimensions, where SANS can give detailed information. This investigation of the indi-
vidual CNC particles in solution thus demonstrates that they are indeed nanosized,
with two of the dimensions in the range of a few nanometres (cross-sectional sizes
3 and 12 nm), and the third dimension well above 100 nanometres (average length
182 nm). These are the primary building elements for the macroscopic samples that
were studied with other techniques, e.g., optical microscopy as described above.

In Figure 5b is shown the SANS pattern from a suspension of Na-fluorohectorite
clay. These particles have a large aspect ratio (lateral size towards micrometers),
and in suspension they behave as independent platelet-shaped entities (disks) when
the concentration is not too high (around 1% (w/w) or lower). In contrast to the
nanocellulose suspension, we do not observe any plateau-like behavior at low q-values
for the clay suspension, demonstrating that the size (diameter) of the clay particles
is on average larger than the size limit of the current SANS-setup (around 100 nm).
Furthermore, the log-log slope of the pattern is found to be close to −2.0, which is
the expected value for disk-like particles.

The SANS patterns of nanocellulose and clay are shown in comparison here to
highlight the clear differences in scattering patterns from individual particles of these
two systems. In a situation where nanocellulose is mixed with clay and the solvent
left to evaporate, there will obviously be strong interactions between the two par-
ticle types, as well as between the particles and the supporting medium, and other
techniques than SANS must be used to inspect the resulting structures.

3.3 Characterization of solid coloured films

In order to analyse the effect of the addition of NaFh particles on the properties of the
films based on CNCs, solid films were also prepared from CNCs + NaFh solutions.
The IR- and X-ray spectra shown in Figures 6a and 6b indicate that the characteristic
bands of CNCs are still present and the crystallinity of the CNC nanorods are not
much affected by the presence of the clay nanoparticles. However, the retardant effect
of the clay nanoparticles in the mixture was detected as a shift of the DSC-TGA peaks
toward higher temperatures, as seen in Figures 6c and 6d, which is an indication that
a small amount of NaFh (2% w/w) is enough to promote a fire-retardant behaviour
of the composite. The presence of the clay nanoparticles also affects the roughness of
the films at the micro/nano scale. AFM images reveal a smooth surface (Figure 7)
that was also observed in SEM images as seen in Figures 8c and 8d. Figure 7a shows
an AFM scan of a 3× 3 (µm)2 flat region of a typical film. Two height profiles from
this image are shown in Figure 7b. There are local height variations of the order of
10 nm over typical horizontal scales of 100–200 nm.
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Fig. 6. CNCs and CNC/NaFh samples characterized by (a) FTIR spectra, (b) XRD diffrac-
tograms, (c) TGA analysis and DSC analysis.

Fig. 7. (a) AFM scan of a 3× 3 (µm)2 area of a CNC-clay film. The colour coded heights
are in nm. (b) Two height profiles from this image.

One of the most important results is related to the structural colouration of
the films, which is still present for the amounts of nano-clays used in the present
experiments. A “coffee-ring” effect was observed for both samples, with and without
nano-clays as shown in Figures 8b and 8a, respectively. The presence of the NaFh
sheets favours the appearance of a pixelated texture at the border of the sample with
colours shifted toward longer wavelengths when compared to the centre of the sample.
The clay nanosheets do not destroy the cholesteric arrangement of the CNCs in solid
films, and do not influence the handeness of the structure, but tend to decrease the
values of the cholesteric pitch. This suggests a planar anchoring of the CNCs at the
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Fig. 8. A slightly tilted film seen at low magnification in an optical microscope as observed
under visible light, left circularly and right circularly polarized light, from left to right,
respectively, for (a) CNCs and (b) CNC/NaFh. SEM images obtained for the cross section
of the films: (c) CNC and (d) CNC/NaFh. Scale bars: (a, b) 7.5 mm; (c, d) 400 nm.

surface of the nano-clay and a formation of a layered structure of CNCs (cholesteric
layers) and NaFh nanosheets, corroborated by the SEM cross section image shown
in Figure 8d.

4 Conclusions

This work shows that CNCs and NaFh aqueous systems are compatible. CNC water
solutions were investigated, and photonic solid films were prepared. The photonic
characteristics of CNC films were preserved when 2% by weight of NaFh was added
to the water solution. The photonic solid films prepared from the mixture of CNCs
and NaFh show iridescence and present left-handed nano-structures. The layered
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structuring was preserved, as shown in the cross-section images obtained by SEM.
The quantity of NaFh used does not prevent the formation of a “coffee ring” effect,
which translates into the development of concentric pixelated rings that change colour
from the centre to the border of the sample, from blue, to green/reddish.

The material obtained will typically have fire-retardant properties, in line with
what is known from other types of clay-based materials. There may therefore also be
a correlation between the colour observed and specific properties, such as the degree
of fire-retardation, as an example. Such properties will likely depend on the exact
clay-type used, the relative concentration of CNCs and clay, as well as the overall
concentration of material in the prepared suspension. The present initial work does
not encompass such studies, but these possibilities are among those we plan to explore
in later investigations.
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Polymers 10, 1145 (2018)
27. I.K.I. Al-khateeb, S.M. Hussin, Y.M. Al-Obaidi, Int. J. Mater. Chem. Phys. 1, 99 (2015)
28. D. Gaspar, S.N. Fernandes, A.G. de Oliveira, J.G. Fernandes, P. Grey, R.V. Pontes, L.

Pereira, R. Martins, M.H. Godinho, E. Fortunato, Nanotechnology 25, 094008 (2014)
29. I. Carrillo, R.T. Mendonça, M. Ago, O.J. Rojas, Cellulose 25, 1011 (2018)
30. D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Angew. Chemie – Int. Ed. 44, 3358 (2005)
31. L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, Textile Res. J. 29, 786 (1959)
32. I. Hoeger, O.J. Rojas, K. Efimenko, O.D. Velev, S.S. Kelley, Soft Matter, 7, 1957 (2011)
33. N.F. Vasconcelos, J.P.A. Feitosa, F.M.P. Gama, J.P.S. Morais, F.K. Andrade, M.S.M.

de Souza Filho, M.F. Rosa, Carbohydr. Polym. 155, 425 (2017)
34. M. Roman, W.T. Winter, Biomacromolecules 5, 1671 (2004)
35. M.A. Mohamed, W.N.W. Salleh, J. Jaafar, S.E.A.M. Asri, A.F. Ismail, RSC Adv. 5,

29842 (2015)
36. S. Elazzouzi-Hafraoui, Y. Nishiyama, J.L. Putaux, L. Heux, F. Dubreuil, C. Rochas,

Biomacromolecules 9, 57 (2008)
37. W.Y. Hamad, T.Q. Hu, Can. J. Chem. Eng. 88, 392 (2010)
38. K.J. De France, K.G. Yager, T. Hoare, E.D. Cranston, Langmuir 32, 7564 (2016)
39. B. Frka-Petesic, G. Guidetti, G. Kamita, S. Vignolini, Adv. Mater. 29, 1701469 (2017)
40. J.B. Hayter, J. Penfold, Mol. Phys. 42, 109 (1981)


	1 Introduction
	2 Materials and methods
	3 Results and discussion
	4 Conclusions

