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A B S T R A C T   

During recent years, ray tracing has frequently been used to study the absorption characteristics of structured 
solar cells. However, wave properties such as absorption enhancement due to resonances in optically thin solar 
films, cannot be explained by pure classical ray models. Here we present an exact three-dimensional ray model 
for oblique incidence of a plane electromagnetic wave on a thin film and show that the resonant structure of the 
absorption cross section calculated from our ray model is identical to exact calculations by electromagnetic wave 
theory. Both parallel and perpendicular polarized light are described exactly by the ray model presented. We 
validate the resonant structure of the absorption cross section of our ray model by an experimentally realized 
layered film, where we obtain perfect agreement between experiment and theory. We demonstrate further that 
for a beam with a finite beam waist, in accordance with Beer-Lambert’s law, absorption occurs along the path of 
the beam, while, in the case of a plane wave incident on an optically thin film, and contrary to Beer-Lambert’s 
law, absorption occurs along the axis perpendicular to the surface of the film.   

1. Introduction 

In optical systems where the wavelength is smaller than the struc
tures applied to the surfaces, geometrical optics approaches have been 
successfully applied for evaluating and understanding the absorption 
efficiency of materials. Geometrical optics approaches take into account 
the path length of optical rays, and absorption properties are estimated 
for a large number of rays calculating the decay of the intensity of the 
rays due to absorption. The intensity decay is achieved by attenuating 
the rays according to the Beer-Lambert’s law. Efficient absorption is an 
important feature for solar cells: an efficiency increase is obtained when 
a large number of the incoming light rays can be trapped in the solar cell 
and be effectively absorbed by the cell before they leave it [1–3]. 

In systems with structures that are of the same size as the wavelength 
of the incoming light, wave resonance phenomena occur. Examples of 
such systems are optically thin solar cells, such as thin film solar cells, as 
well as solar cells made from epitaxially grown thin silicon foils. Since 
wave resonance phenomena are due to the wave nature of light, a simple 
geometrical ray-optics approach is not sufficient to model them. In the 
field of quantum chaos, an approach based on classical trajectories and 

rays in the corresponding classical systems has been used extensively to 
study and explain wave properties of quantum systems. Especially in the 
area of quantum chaos, where the phase space of the corresponding 
classical systems shows chaotic behavior, ray models have been used for 
understanding the inherent properties of the systems. Remarkably, the 
ray models of quantum chaos systems can explain quantum (wave) 
properties of the systems [4,5]. In order to include the wave properties 
of the system in the ray model, each ray is assigned a phase in analogy to 
the Feynman formulation of quantum physics [6]. One-dimensional 
quantum problems can be described exactly by such ray models [7–9]. 
For two- and three-dimensional systems that show chaotic behavior, 
approximation formulas have been calculated based on semi-classical 
formulas that take into account special trajectories and rays of the sys
tems including phase properties of the rays. For example, for so-called 
quantum ray-splitting billiards, the density of states can be calculated 
taking the phenomenon of ray-splitting fully into account [10–14]. 

When an electromagnetic wave front of a plane wave is perpendic
ularly incident on a plane ray-splitting surface, such as the surface of a 
solar cell or a ray-splitting boundary between layers in solar cells, we 
can consider the system as an effectively one-dimensional system. We 

* Corresponding author. 
E-mail address: maren.brandsrud@nmbu.no (M.A. Brandsrud).  

Contents lists available at ScienceDirect 

Physica E: Low-dimensional Systems and Nanostructures 

journal homepage: http://www.elsevier.com/locate/physe 

https://doi.org/10.1016/j.physe.2020.114374 
Received 21 April 2020; Received in revised form 7 July 2020; Accepted 13 July 2020   

mailto:maren.brandsrud@nmbu.no
www.sciencedirect.com/science/journal/13869477
https://http://www.elsevier.com/locate/physe
https://doi.org/10.1016/j.physe.2020.114374
https://doi.org/10.1016/j.physe.2020.114374
https://doi.org/10.1016/j.physe.2020.114374
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2020.114374&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Physica E: Low-dimensional Systems and Nanostructures 126 (2021) 114374

2

have recently presented an exact ray model for the perpendicular inci
dence of electromagnetic radiation on a system of ray-splitting bound
aries. Our ray model takes into account the phases and describes exactly 
the wave properties of the light in effectively one-dimensional systems, 
i.e. layered optically thin solar cells with perpendicular incidence [15]. 
The ray model describes the interference properties and the absorption 
efficiency of layered systems, such as layered solar cells, exactly. We 
presented an approach for calculating the optical generation rate of 
layered solar cells analytically and numerically for any layered system 
with perpendicular incidence. 

The description of three-dimensional electromagnetic wave propa
gation in layered surfaces for the general case of oblique incidence is of 
high interest. Planar optical structures can be exactly described by 
electromagnetic wave theory or by the transfer matrix (S-matrix) 
method [15–19]. Ray simulations are frequently used to evaluate the 
efficiency of solar cells, and oblique incidence is the generic case for 
most solar cells under most operating conditions. In the paper at hand, 
we present a ray model that describes exactly the absorption and reso
nance properties for the situation when a plane wave is incident on a 
three-dimensional layered system with plane surfaces and with an 
arbitrary angle of incidence. This three-dimensional system is transla
tionally invariant in one dimension and can thus be simplified to a 
two-dimensional problem. The proposed model is an extension of the ray 
theory presented in Ref. [15], i.e., a ray theory for one-dimensional 
systems, which is equivalent with a three-dimensional system that is 
translationally invariant in two directions, with absorption. The model 
presented in this paper is valid for flat, three-dimensional, optically thin 
solar cells, where a plane wave propagates toward the system from an 
arbitrary incoming direction. Since the ray picture is frequently used to 
describe interference properties in physics text books, we take the op
portunity to highlight general aspects related to the derivation of reso
nance patterns in thin films with oblique incidence that are often 
overlooked in physics text books. 

In Section 2, we briefly review our theory of normal incident light in 
order to set the stage for our main topic, the case of oblique incident 
light. We discuss this case in two stages. In Section 3, we treat the case of 
real index of refraction (no absorption), followed by the case of complex 
index of refraction (absorption included), discussed in Section 4. Section 
5 discusses absorption in the case of a Gaussian beam. In Section 6, we 
validate our ray model by comparison with measured data. 

2. Ray theory for describing normal incident light 

In the following, we develop a ray model for the general case of 
oblique incidence. To introduce the reader to the concept of a ray model 
that can describe wave properties of an optical system, we start the 
discussion by considering perpendicular incidence. As model systems we 
use the systems shown in Fig. 1. The model systems consist of (a) a single 

film with a mirror on the backside of the film and (b) a single film 
without a mirror. A ray model for perpendicular incidence is an effec
tively one-dimensional problem and can be described exactly by a scalar 
wave equation [15]. The scalar wave equation is equivalent to exact 
three-dimensional electromagnetic theory and independent of polari
zation since both polarization directions are equivalent for normal 
incident light. For system (a) the reflection amplitude, r1dfm, can be 
calculated exactly as 

r1dfm = −
ncos(nka) + isin(nka)
ncos(nka) − isin(nka)

, (1)  

where n is the complex refractive index of the film, k is the angular wave 
number of the incoming plane wave, and a is the thickness of the film. 
The mirror is assumed to be perfect. 

For the system in Fig. 1b, the reflection and transmission amplitudes, 
r1df and t1df, respectively, can be calculated exactly as 

r1df =
i(n2 − 1)sin nka

2ncos nka − i(n2 + 1)sin nka
, (2a)  

t1df =
2ne− inka

2ncos nka − i(n2 + 1)sin nka
, (2b)  

where n is the complex refractive index of the film, k is the angular wave 
number of the incoming plane wave, and a is the thickness of the film. 
We have previously shown that the reflection amplitude, r, of Eq. (1), i. 
e., for a plane wave propagating towards a system as shown in Fig. 1a 
with perpendicular incidence, can be evaluated exactly by a sum of rays, 
taking into account all possible rays of the system as shown in Fig. 2a, 
according to 

r1dfm = rl + tltreiπe2inka
∑∞

ν=0
(eiπrre2inka)

ν
, (3)  

where rl, tl, rr, and tr are the amplitudes of the respective rays that are 
reflected or transmitted at the boundary between air and film. The 
amplitudes depend only on the refractive index of the film. The sub
scripts of the amplitudes indicate if the respective rays are approaching 
the boundary from the left (l) or from the right (r). The exact expressions 
for the amplitudes are given in Ref. [15]. The factor eiπ represents the 
phase that a ray acquires by reflection at the mirror, n is the refractive 
index of the film, k is the angular wave number, and a is the thickness of 
the film. The model shown in Eq. (3) is called a ray model since it is built 
on the summation of all possible rays in the system. While Eq. (3) is exact 
and equivalent to Eq. (1), its analytical strength lies in the fact that each 
ray contribution can be read directly from it. 

Fig. 1. (a) When a plane wave is propagating towards a single film with a 
mirror behind all of the light will be reflected in case of a non-absorptive film. 
In the case of an absorptive film, the light is partly absorbed and partly re
flected. (b) In the case where there is no mirror behind the film, the light is 
partly reflected at the surface and partly transmitted. If the film is absorptive, a 
part of the light is absorbed by the film as well. For both situations, the 
refractive index outside of the film is n0 and the refractive index of the film is n, 
where n > n0. 

Fig. 2. Frame (a) shows the three simplest rays that contribute to the reflection 
amplitude in Fig. 1a. Frame (b) shows the three simplest rays that contribute to 
the transmission and reflection amplitude for the system shown in Fig. 1b. 
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In [15] we have shown that the inclusion of phases in the ray model 
is essential for describing the interference properties of the material. 
Interference properties lead to absorption resonances in the material 
when the film thickness matches multiples of the wavelength. 

The same procedure can be used to establish a ray model for a single 
film without mirror, as shown in Fig. 1b, by summing up all possible rays 
that contribute to the total reflected and transmitted rays, respectively. 
The corresponding reflection and transmission amplitudes are given by 

r1df = rl + tltrrre2inka
∑∞

ν=0
(r2

r e2inka)
ν
, (4a)  

t1df =

(

tltreinka
∑∞

ν=0
(r2

r e2inka)
ν
)

e− ika, (4b)  

where rl, tl, rr, and tr are the amplitudes as described above. n is the 
complex refractive index of the film with thickness a, and k is the wave 
number. The factor e− ika outside the parentheses in Eq. (4b) is included 
to remove the phase the ray would have obtained if it had passed the film 
without the mirror. The three simplest rays that contribute to the sums 
for the reflection and transmission amplitudes given in Eq. (4b) are 
shown in Fig. 2b. 

Absorption properties of materials are taken into account by the 
imaginary part of the complex refractive index n = nr + ini. Thus n ac
counts for both the refraction and absorption properties of the material. 
In Ref. [15] it is shown that only a few rays are sufficient to describe 
system properties with high accuracy. 

3. Exact ray theory for oblique incidence without absorption 

Our ray model can be extended to a three-dimensional model for 
planar films. We consider the situation illustrated in Fig. 3, where a 
plane electromagnetic wave propagates towards a planar film. Reflec
tion and transmission amplitudes can be obtained by solving the 
respective electromagnetic problem [16], taking into account the po
larization of the incident radiation. 

3.1. Exact electromagnetic description of the system 

Fig. 4 illustrates how the coordinate system and angles are chosen in 
order to evaluate the system by exact electromagnetic theory. The 
incoming wave is a plane wave with wavelength λ. The angular wave 
number of the wave outside the material is given by k0 = 2π

λ and can be 
decomposed into x- and y-components according to 

kx,0 = k0cos θ0, (5a)  

ky,0 = k0sin θ0, (5b)  

where θ0 is the angle of incidence as shown in Fig. 4. 
The absolute value of the angular wavenumber inside the film is 

given by k = nk0, where n is the refractive index of the film. Since the y- 
component of k is constant through the boundary, the components of the 
angular wavenumbers inside the film are given by 

ky = ky,0 = k0sin θ0 = ksin θ (6)  

and 

kx = kcos θ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2 − k2
y

√

= k0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n2 − sin2θ0

√

(7)  

for kx and ky, respectively, where θ is the angle of refraction as shown in 
Fig. 4. Snell’s law can be derived from Eq. (6) [16]. 

For a detailed presentation of the derivation of the expressions for 
the reflection amplitudes for oblique incidence on a plane surface, we 
refer to textbooks on electromagnetic theory such as [16]. By setting the 
surface charge to zero, the expressions for the transmission and reflec
tion amplitude for the two polarizations for the system presented in 
Fig. 3 are given in Table 1. 

Fig. 5 shows how the reflection and transmission probability, R = |r|2 

and T = |t|2, change as the angle of incidence equal to 0◦, 30◦ and 45◦ for 
a film with thickness of 500 nm and a refractive index of 1.84. We chose 
the refractive index as n = 1.84 since it corresponds to the refractive 
index of the SiNx-film at 630 nm used for the measurements presented 
and discussed in Sec. 6. 

We observe that the positions of the maxima depend on the angle of 
incidence of the incoming plane wave. The dependence on the angle of 

Fig. 3. A plane wave is propagating with an arbitrary angle of incidence to
wards a single film. The wave is partly reflected at the first surface and partly 
transmitted through the film. The refractive index of the film is n and the 
refractive index of the area outside is n0 = 1. 

Fig. 4. The model system consists of a single film with thickness a. The 
refractive index of the film is n. In front of the film, the refractive index is n0 =

1, i.e. vacuum. A plane wave is propagating towards the film in the xy-plane 
with an angle of incidence θ0. The angle of reflection, θR, is equal to θ0. The 
angle of refraction, θ, can be found by Snell’s law. For the transmitted ray 
behind the film, the direction of the angle of the transmitted ray is θt = θ0. 

Table 1 
According to electromagnetic theory [16], the reflection and transmission 
amplitudes can be found for parallel and perpendicular polarized light for 
the system shown in Fig. 4. kx,0 and kx are given in Eqs. (5a) and (7). n is the 
refractive index of the film and a is the thickness of the film.   

Parallel polarization 

r‖ (kx + n2kx,0)
[(

n2kx,0 − kx) + e2ikxa(kx − n2kx,0)
]

(kx + n2kx,0)
2
− e2ikxa(kx − n2kx,0)

2  

t‖ 4n2kx,0kxei(kx − kx,0)a

(kx + n2kx,0)
2
− e2ikxa(kx − n2kx,0)

2   

Perpendicular polarization 

r⊥ (kx + kx,0)
[(

kx,0 − kx) + e2ikxa(kx − kx,0)
]

(kx + kx,0)
2
− e2ikxa(kx − kx,0)

2  

t⊥ 4kx,0kxei(kx − kx,0)a

(kx + kx,0)
2
− e2ikxa(kx − kx,0)

2   
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incidence can be seen in the expressions of the amplitudes for perpen
dicular and parallel polarized light in Table 1. As shown in Eqs. (5a) and 
(7), kx,0 and kx depend on the angle of incidence. 

3.2. Ray model for oblique incident light - started inside the film 

In order to build a ray model to describe the system, we need to add 
up all possible rays that contribute to the reflected and transmitted rays 
as shown in Fig. 6. In order to accomplish this, we study in this section a 
ray model that is suggested in two well-known text books [20,21]. 
Implementing this model and comparing it with the results of exact E&M 
calculations, we will show at the end of this section that the model 
suggested in these two text books is not correct. 

If we hypothesize that we can calculate the Eqs. (5a) and (7) for the 
reflection coefficient for oblique incidence based on a ray model, we 
would expect that not only the x-components of the rays contribute. We 
would expect that rays contribute according to their travelled path in
side the film as in the case described in Sec. 2. 

To illustrate this, we consider Fig. 6. We start by evaluating how the 
reflection amplitude can be described by rays. The simplest ray that 
contributes to the reflected ray is the one that only reflects at the first 
boundary between air and the material. This ray is named Ray 0 in 
Fig. 6. The shortest possible ray that contributes to the reflected ray that 
transmits into the film and back travels a distance of d = 2l through the 
film, where l = a

cos θ and θ is the angle of refraction. The phase and 
attenuation collected inside the film by this ray (called Ray 1 in Fig. 6), is 
given in Table 2 in the table entry for Ray 1. In order to develop a ray 
formula for oblique incidence, we have to take into account all possible 
rays. The four simplest rays are shown in Fig. 6. All rays are listed in 
Table 2. rl, rr, tl and tr are the amplitudes for reflection and transmission 
at the boundary and are given by Fresnel’s equations [16]. They are 
shown in Table 3 for parallel and perpendicular polarized electromag
netic radiation. 

In analogy to how the amplitudes for the reflected rays are found (see 
Table 2), the amplitudes of the transmitted rays can be found. We need 
to include all possible rays that contribute to the transmitted ray. It is 

important to notice that we also need to multiply the sum with the phase 
e− ik0 l. This phase corresponds to the phase the ray would obtain by 
passing through the region of the film as if the film were not there. The 
explicit expression is given by 

t =

[

tltreikl
∑∞

ν=0
(r2

r e2ikl)
ν
]

e− ik0 l. (8) 

With the help of the expressions for r and t, the reflection and 
transmission probabilities can be found. Fig. 7 shows R and T for a 
system as in Fig. 3, where the angle of incidence is 30◦ and the angle of 
refraction is 2.5. Frames 3a and b show the results for R and T for parallel 
polarized light, while Frames 3c and d show the results for perpendic
ular polarized light. In all frames we compare the exact E&M results 
(blue solid line) for the reflection and transmission probabilities with the 
results obtained by the ray model suggested in Refs. [20,21] (red solid 
line). 

Fig. 5. The reflection and transmission probability, R = |r|2 ((a) and (c)) and T 
= |t|2 ((b) and (d)), as a function of wavelength, λ, for a system as shown in 
Fig. 3. The angle of incidence is set to 0◦, 30◦ and 45◦. The incoming light is 
parallel polarized in (a) and (b) and perpendicular polarized in (c) and (d). r 
and t are found by the equations in Table 1. The thickness of the film is 500 nm 
and the refractive index of the film is n = 1.84. 

Fig. 6. Schematic illustration of the ray model for the thin-film system of Fig. 3. 
By adding up the amplitudes from all possible rays that contribute to the re
flected and transmitted ray, the reflection and reflection probability can be 
found. The path length of contribution to the reflection probability from Ray1 
which transmitting through the front of the film and is reflected at the backside 
of the film is d = 2l = 2a

cos θ. θ is the angle of refraction (see Fig. 3). 

Table 2 
The contribution to the reflected ray from the four simplest rays as 
illustrated in Fig. 6. Assuming that the rays are attenuated according 
to the actual travelled distance inside of the film turns out to give an 
incorrect description of the absorption properties of the system. The 
amplitudes rl, rr, tl, and tr can be found in Table 3, k is the angular 
wave number in the film, and 2l is the path length the ray travels 
during one reflection inside the film, as illustrated in Fig. 6.  

Ray 0 rl 

Ray 1 tltrrre2ikl 

Ray 2 tltrr3
r e4ikl  

Ray 3 tltrr5
r e6ikl  

Ray N tltrr2N− 1
r e2Nikl  

Sum of all rays rl + tltrrre2ikl∑∞
ν=0(r2

r e2ikl)
ν   
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We observe that the results obtained from the exact calculations 
(blue solid lines) do not agree with the results obtained from the ray 
model suggested in Refs. [20,21]. For instance, the maxima and minima 
in all frames of Fig. 3 occur at different wavelength locations. While 
Fig. 3 shows the results for a specific incident angle of 30◦, additional 
calculations show that the difference increases as the angle of incidence 
increases. Another remarkable observation is that for the exact E&M 
calculations the maxima and minima shift towards shorter wavelengths 
as we increase the angle of incidence. For the ray model implemented 
according to Refs. [20,21] the opposite happens: the maxima and 
minima shift towards larger wavelengths. This shows that the ray theory 
suggested in Refs. [20,21] is not viable as a method for obtaining an 

exact ray model. The correct procedure for obtaining an exact ray model 
is presented in the following section. 

3.3. Ray model for oblique incident light - started according to the wave 
front 

Correcting the ray model discussed in the previous section, we 
demonstrate in this section that we need to consider the phase difference 
of rays with respect to the wave front of the incoming and outgoing 
plane waves in order to obtain an exact ray model, i.e., a ray model that 
reproduces the exact electromagnetic results for oblique incidence. This 
procedure is in agreement with theory presented, e.g., by Fowles [22] 
and Hecht [23]. 

Let us consider the wave front of a plane wave as illustrated by the 
red dashed line in Fig. 8. When comparing the two incoming rays (Ray 1 
and Ray 0) that merge into the same outgoing ray in Fig. 8, we find the 
path difference Δx due to the shorter propagation distance of ray 
0 outside the film. Therefore, the difference in optical path length be
tween Ray 1 and Ray 0, as shown in in Fig. 8, is 

2nl − Δx, (9) 

where n is the refractive index of the film and l is the geometrical 
length the ray travels inside the film. Compared to the ray model pre
sented in the previous section, where we only took into account the path 
length inside the film, we obtain an additional term Δx by which the 
path difference is reduced. 

By evaluating the contribution to the phase and the attenuation of 
the radiation caused by the difference in the travelled distance, simple 
geometrical considerations give an additional phase to Ray 1 in Fig. 8 
equal to 

eik0(2nl− Δx) = e2ink0acos θ = e2ikxa, (10) 

where k0 is the angular wave number in vacuum and kx is the x- 
component of the angular wave number in the film described by Eq. (7). 

Table 3 
In general, when light propagates towards the surface of a material, part of the 
incoming radiation is transmitted and part of the incoming radiation is reflected 
at the boundary between the two materials. The transmitted amplitude, t, and 
the reflected amplitude, r, are given by Fresnel’s equations [16,22] and depend 
on the angle of incidence, θ0, the angle of refraction, θ, and the polarization of 
the light. The amplitudes also depend on the refractive index of the material, 
which, in our case, is n0 = 1 for air and n for the film, as shown in Fig. 4. The 
subscripts of the amplitudes indicate if the respective rays are approaching the 
boundary from the left (l) or from the right (r).   

Parallel polarization Perpendicular polarization 

rl cos θ − ncos θ0

cos θ + ncos θ0  

cos θ0 − ncos θ
cos θ0 + ncos θ  

tl 2cos θ0

cos θ + ncos θ0  

2cos θ0

cos θ0 + ncos θ  
rr ncos θ0 − cos θ

cos θ + ncos θ0  

ncos θ − cos θ0

cos θ0 + ncos θ  
tr 2ncos θ

ncos θ0 + cos θ  
2ncos θ

ncos θ + cos θ0   

Fig. 7. The reflection and transmission probabilities, R = |r|2 and T = |t|2, 
found by exact electromagnetic theory (blue solid lines) compared with R and T 
found by the incorrect ray model presented in Sec. 3.2 (red dashed line). The 
positions of the minima and maxima are not in agreement between the two 
models. The refractive index of the film is 1.84, and the thickness is 500 nm. 
The angle of incidence is 30◦. (a) and (b) show R and T for parallel polarized 
light and (c) and (d) for perpendicular polarized light. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 8. Three incoming rays (Ray 0, Ray 1 and Ray 2) that exit the system at the 
same position and contribute to the reflected ray. Two rays (Ray 1 and Ray 2) 
zig-zag in the interior of the film, exit at the same position, and contribute to 
the transmitted ray. n0 and n are the refractive indexes of air and the material in 
the film, respectively. a is the film thickness and l is the geometrical path length 
the rays travel from the front surface to the back surface of the film. Δx is the 
path length difference that Ray 0 and Ray 1 (Ray 1 and Ray 2, respectively) 
travel outside of the film. 
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The quantities l, a, and θ are illustrated in Figs. 4 and 8. They are the 
geometrical path length inside the film, the thickness of the film, and the 
angle of refraction, respectively. Equation (10) shows that by evaluating 
the rays correctly, it turns out that the total reflection amplitude, as 
described by our ray theory, should only depend on the x-component of 
the wave number. 

Therefore, a ray model that takes into account the phase difference 
collected by considering only the x-components of rays inside the film is 
equivalent to the exact ray model that uses the phase differences with 
respect to the incoming and outgoing wave fronts. The expressions for 
the four simplest rays and the Nth ray of the exact ray model are listed in 
Table 4. 

The transmission amplitudes are found in analogy to the reflection 
amplitudes (see Table 4). Multiplying the factors in the ray sum by the 
phase e− ikx,0a, corrects for the phase the ray would have gained in the 
absence of a film. The sum of all possible rays that contribute to the 
transmission amplitude is therefore given by 

t =

[

tltreikxa
∑∞

ν=0
(r2

r e2ikax)
ν
]

e− ikx,0a. (11) 

It can be shown that the sum of all possible rays in Table 4 and the 
sum given in Eq. (11) are in fact identical with the expressions in 
Table 1. This equivalence is obtained by performing the sum over the 
infinitely many rays using the summation formula for geometric series 
and by including the correct expressions for rl, tl, rr, and tr. 

Fig. 9 shows that, contrary to the incorrect ray model discussed in 
Sec. 3.2, the ray model presented in this section agrees completely with 
the results of exact electromagnetic theory and yields the same reso
nance structure. The system underlying the results in Fig. 9 consists of a 
film of thickness 500 nm and a refractive index equal to 1.84. The angle 
of incidence is 30◦. To produce the results in Fig. 9 it was necessary to 
include only 10 rays in the ray sum. Based on this fact, we conclude that, 
in general, only a few rays are needed to describe the system with close 
to perfect accuracy. This is in agreement with the observations for the 
one-dimensional ray model [15]. 

4. Exact ray theory for oblique incidence with absorption 

When the film is absorptive, part of the light entering the film is 
absorbed. In order to construct a ray model for an absorptive film, a 
system as in Fig. 10 is considered. The system consists of a film with a 
perfect mirror behind it. In this case, no light is transmitted. In the 
absence of absorption this system would have reflection probability 
equal to 1. 

In order to evaluate how the system behaves in this case, we consider 
how reflection and refraction are described at a boundary of an 
absorptive medium. The approach presented by Fowles [22] describes 
how a plane wave behaves at a boundary. 

For an absorptive material, the refractive index is a complex number 
given by 

n = nr + ini. (12) 

In addition, the wave propagation vector inside the film is also 
complex and given by 

k
→

= kr
→

+ i ki
→
. (13) 

The plane wave inside the material with amplitude A is denoted by 

Aei k→⋅ r→ = Ae− ki
→⋅ r→ei kr

→⋅ r→. (14) 

Table 4 
The contribution to the reflected ray from the four simplest rays as 
illustrated in Fig. 6. The phase collected according to the travelled 
distance is found by Eq. (10), which starts the ray at the wave front 
(see Fig. 8). rl, rr, tl and tr can be found in Table 3, kx is the x- 
component of the angular wave number in the film given by Eq. (7), 
and a is the thickness of the film.  

Ray 0 rl 

Ray 1 tltrrre2ikxa  

Ray 2 tltrr3
r e4ikxa  

Ray 3 tltrr5
r e6ikxa  

Ray N tltrr2N− 1
r e2Nikxa  

Sum of all rays rl + tltrrre2ikxa∑∞
ν=0(r2

r e2ikxa)
ν   

Fig. 9. The reflection and transmission probabilities, R = |r|2 and T = |t|2, 
found by exact electromagnetic theory (blue solid line), compared with R and T 
found by the ray model presented in Sec. 3.3 (red dotted line). Both models 
yield identical spectra for R and T. The refractive index of the film is 1.84, and 
the thickness is 500 nm. The angle of incidence is 30◦. (a) and (b) show R and T 
for parallel polarized light, and (c) and (d) for perpendicular polarized light. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 10. Oblique incident radiation is propagating from air, with refractive 
index n0 = 1, towards a material with refractive index n. When the material is 
absorptive, i.e., n ∈ C, a part of the radiation is absorbed by the material, while 
the rest is back-reflected. 
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For a film infinitely extended in the y direction, the field needs to be 

translationally invariant along the boundary. From this it follows that kr
→

and ki
→

have different directions. The wave is said to be inhomogeneous. 

ki
→

is normal to the boundary. From this it follows that the wave is 
attenuated in the same direction. 

From the argumentation in Fowles [22] it follows that the compo
nents of the wave vector are given by 

kx = k0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n2 − sin2θ0

√

, (15a)  

ky = ky,0 = k0sin θ0. (15b) 

The equations stated above are identical to the expressions for the 
components given in Sec. 3 (Eqs. (7) and (6), respectively). When ab
sorption is present, kx is complex. 

The exact expression for the reflection amplitude can be found by 
electromagnetic theory. By setting the surface charge to zero, and the 
free surface current to zero, the reflection amplitude for a plane wave 
that is propagating with an oblique angle of incidence is given by 

rperp = −
kx + ikx,0tan(kxa)
kx − ikx,0tan(kxa)

, (16)  

for perpendicular polarized light, and by 

rpar = −
n2kx,0 + ikxtan(kxa)
n2kx,0 − ikxtan(kxa)

, (17)  

for parallel polarized light, where n is the complex refractive index of the 
film, a is the thickness of the film and kx,0 and kx are the x-components of 
the angular wave numbers in air and inside the material, respectively. 

Naïvely, according to Beer-Lambert’s law, one would expect the rays 
to lose intensity along their trajectory. However, it turns out, by 
following the argumentation in Sec. 3.3, that only the x-component of 
the wave vector is needed in order to evaluate the system in terms of 
rays. 

By summing over all rays that contribute to the reflected ray, as 
shown in Fig. 11, we can build an exact ray model that includes ab
sorption in analogy to the way we built a ray model without absorption 
in Sec. 3.3. 

In Table 5 the expressions for the four simplest rays and the Nth ray 
of the exact ray model, including absorption, are listed. 

Summing over all rays, we obtain an expression for the reflection 
amplitude as 

r = rl + tltreiπe2ikxa
∑∞

ν=0
(eiπrre2ikxa)

ν
, (18) 

where rl, tl, rr and tr are the amplitudes (computed according to 
Fresnel’s equations given in Table 3) that the rays incur along their paths 
due to reflection or transmission at the boundary between air and film. 
The term eiπ is the phase caused by reflection at the mirror, and e2ikxa is 
the phase collected according to the travelled distance for the different 
rays. 

It can be shown that Eq. (18) is in fact identical with the expressions 
in Eqs. (16) and (17). This equivalence is obtained by performing the 
sum over the infinitely many rays using the summation formula for 
geometric series and by including the correct expressions for rl, tl, rr, and 
tr. 

5. Beams absorb according to Beer-Lambert law 

In order to simulate a beam, we used the COMSOL Multiphysics 
{\textregistered} software to perform the modelling [24]. A Gaussian 
beam was sent towards a single film as in Fig. 3 with different angles of 
incidence (0◦-50◦). The spot radius of the beam is 5.0 μm, where the 
beam radius is defined as the distance from the center of the beam with 

maximum value E0 to where the value of the electric field has dropped to 
E0
e or ~ 0.37E0 [23]. The beam has an energy corresponding to a 
wavelength of 500 nm. We compared two film thicknesses for the same 
width of the beam spot: In the first case the thickness of the film is 
chosen to be of the same size as the film, in the second case the thickness 
of the film is much larger than the width of the beam spot. The real part 
of refractive index of the film is set to 1.84. 

Fig. 12 shows the Gaussian beam in case of a non-absorptive film. In 
case of a thin film (5 μm), the standing waves that are created are par
allel to the film boundary. For the thicker film (75 μm), we observe that 
the beam behaves as we would expect for a classical ray, except for the 
interference pattern in front of boundaries where the waves corre
sponding to an incoming and a reflected ray interfere. 

In order to evaluate how radiation is absorbed inside the film as a 
function of the path, we evaluate the absorbance. The absorbance is 
given by 

Fig. 11. Schematic illustration of the ray model for the thin-film system of 
Fig. 4. By adding up the amplitudes from all possible rays that contribute to the 
outgoing ray, the absorption cross section can be found. The path length of the 
shortest ray that is transmitting through the front of the film and is reflected at 
the mirror on the backside of the film is d = 2l = 2a

cos θ. θ is the angle of 
refraction as shown in Fig. 4. 

Table 5 
The exact absorption cross section for oblique incidence can be found by 
taking into account the phases and the attenuation of rays that start in 
the incoming wave front and end in the outgoing wave front. This is 
equivalent to considering only the x-components of the rays inside the 
film. rl, rr, tl, and tr are the amplitudes for reflection and transmission at 
the boundary at x = 0 according to whether the ray is approaching the 
boundary from the left or the right, respectively. The amplitudes can be 
found by use of Fresnel equations [16] and are shown in Table 3. eiπ is the 
phase shift caused by reflection at the mirror.  

Ray 0 rl 

Ray 1 tltre2ikxaeiπ  

Ray 2 tltrrre4ikxae2iπ  

Ray 3 tltrr2
r e6ikxae3iπ  

Ray N tltrrN− 1
r e2NikxaeNiπ  

Sum of all rays rl + tltre2ikxaeiπ∑∞
ν=0(rre2ikxaeiπ)ν   
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A = − log10(Tf ), (19)  

where Tf = I
I0. I0 is the intensity of the beam when it enters the film and I 

is the intensity after a given path length [25]. Tf can also be found by 

Tf =
|E|2

|E0|
2 = e− 2knil, (20)  

where E0 and E are the electric fields when the beam enters the film and 
after a given path length, l, respectively; k is the angular wave number 
and ni is the imaginary part of the refractive index [16]. The absorbance 
can therefore be found analytically by 

A = 2knillog10(e). (21)  

Therefore, the loss of energy is expected to follow Beer-Lambert’s law 
(Fig. 13). 

Let us first consider Beer-Lamberts law in the case of a thick film. 
Fig. 13 shows the intensity of the electric field along the center of the 
beam as a function of path length. Fig. 13a shows that the intensity 
decreases exponentially and Fig. 13b shows the trend by means of a 
logarithmic y-axis. 

Fig. 13c shows the absorbance, computed according to Eq. (19), for 
the five angles of incidence in Fig. 13a. The black, dashed line is the 
fitted line through the absorbance values for the five angles of incidence, 
resulting in ni = 0.00103, according Eq. (21). Therefore, unlike in the 

case of oblique plane-wave incidence, where we saw that absorption 
only happens in x-direction, the simulation of the beam predicts that, in 
accordance with Beer-Lambert’s law, the absorption is along the path of 
the beam. 

The situation is different for a thin film. The behavior of the electric 
field in a thin film is shown in Fig. 12a. Locally, in the center of the 
beam, the electric field behaves as a plane wave and the standing waves 
are normal to the boundary. In Fig. 14a the absolute square of the 
electric field is plotted inside of the film as a function of the distance 
along the normal of the boundary at the center of the beam shown in 
Fig. 12a. 

In Fig. 14b, the solid line is the trend of the absolute square of the 
electric field, |E|2, in the center of the beam as a function of the distance 
along the normal of the boundary, plotted with a logarithmic y-axis. The 
dashed lines in Fig. 14b indicate how we would expect the absorption to 
take place as described in Sec.4. 

Fig. 14c shows the trend (blue solid line) and the expected absorption 
(red dashed line) in the case of an angle of incidence equal to 50◦. The 
yellow solid line indicates how |E|2 decays if we assume that the ab
sorption decreases as a function of the full path length of the classical 
ray. For comparison this decrease is projected on the x-component. We 
see that the absorption actually decreases along the x-component for a 
thin film. We observe further that the deviation increases as x increases. 

In Fig. 14d, |E|2 is plotted together with the exact description of |E|2 

in the case where an infinite plane wave hits the film. The angle of 
incidence is 50◦. We observe that the resonances occur at the same x- 
positions for both models. 

It is straightforward to explain this result. In the case of plane-wave 
incidence, the system, which includes the incident, reflected, and 
transmitted waves, as well as the film itself, is translationally invariant 
in the y-direction. Therefore, there is no possibility of absorption in the 
y-direction, since any exponential decay in y-direction would break 
translational invariance. 

In addition to this mathematical explanation, there is a physical 
explanation: In a situation with a plane incident wave on an infinitely 
extended film in the y-direction, the y direction is continuously fed by 
incoming radiation with components in the y-direction, all along the 
boundary of the film. Therefore, because of this continuous power input 
along the boundary, decay in the direction of the boundary cannot 
happen. This is very different for a beam with a beam spot that is small 
with respect to the film thickness. In this case, from the perspective of 
the beam, the material looks homogeneous, which means that absorp
tion also happens in the y-direction. Since the beam breaks the trans
lational symmetry in the y-direction, there is also no formal symmetry 
argument that would prevent dissipation in y-direction. In other words, 
because of the localization of the beam, and unlike in the incident plane- 
wave situation, energy dissipated in the y-direction is not replenished. 
Therefore, absorption happens in both x- and y-directions, i.e., along the 
path of the beam, in accordance with Beer-Lambert’s law. 

The above arguments also give rise to the prediction of a transition 
from pure x-absorption in the case of incident plane waves to pure Beer- 
Lambert’s law in the case of thin, sharply localized beams: If the beam 
waist is much smaller than the film thickness, then we expect Beer- 
Lambert’s law to hold. In the opposite case, where the beam waist is 
much larger than the film thickness, we expect the case of pure x-ab
sorption to hold. Since optically thin solar-cell structures are typically of 
the order of the wavelengths of the incident light, and since the widths, i. 
e., the illumination areas of solar cells are typically much larger than a 
wavelength, we expect the case of pure x-absorption to be the relevant 
case for optically thin solar cells in practical applications. 

6. Resonances in an optically thin SiNx film 

In order to demonstrate experimentally how the resonance structures 
change as a function of the angle of oblique incidence, we measured the 
reflection probability R as a function of the angle of incidence for a thin, 

Fig. 12. A Gaussian beam of spot radius 5 μm is sent from the left towards a 
film of thickness (a) 5 μm and (b) 75 μm. The angle of incidence is 50◦ in both 
cases. The film is non-absorptive and has a refractive index of 1.84. Both 
frames, (a) and (b), show the norm of the electric field. In case (a) (thin film), 
the standing waves inside the film are parallel to the film boundary. Frame (b) 
(thick film) shows that the beam is reflected several times inside the film. We 
observe an interference pattern in areas where an incoming beam meets a re
flected beam. 
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layered film. We fabricated a sample consisting of a thin layer of SiNx on 
top of a 270-nm-thick aluminum layer. The SiNx/Al stack was prepared 
on top of a 273-μm-thick, mechanically polished (i.e. co-planar), single- 
crystalline Si substrate. SiNx can be used as an anti-reflection coating 
layer for solar cells. The thickness of the SiNx layer was ~ 400 nm, as 
determined by ellipsometry measurements carried out on a SiNx film 
deposited on bare Si substrate using a VASE ellipsometer from J. A. 
Woollam Co., Inc. The SiNx film was prepared by plasma-enhanced 
chemical vapor deposition (PECVD) in an Oxford Plasmalab 133 sys
tem. The Al film was sputter-deposited on Si substrate in an inline 
sputter-coating system from Leybold Optics (model A550V7). 

Although the complex index of refraction n of SiNx is wavelength 
dependent, for our purposes it can be assumed to be constant. Moreover, 
since n was not specifically measured for our particular sample (SiNx/ 
Al/Si), but to be able to compare the measured resonance structures 
qualitatively with our theoretical ray models, we assume a generic, 
constant value for the complex index of refraction of n = 1.84 + 0.012i 
[26]. The reflection probability R was measured using a home-built 
spectral response measurement system consisting of a Newport Oriel 
Apex illuminator with a Cornerstone 260 monochromator, a set of 
collimating and focusing lenses, and an integrating sphere with 
center-mounted sample holder from Labsphere (model RTC-060-SF). An 
achromatic depolarizer (Thorlabs model DPU-25) was used to convert 
the beam of light from the monochromator into a pseudo-random 
polarized beam of light. The reflected beam from the sample was 
collected by a silicon photodiode detector (Hamamatsu model 
S1336-5BQ). The measurements were performed with an angle of inci
dence equal to 10◦, 20◦, 30◦, 40◦, and 50◦. The sample was illuminated 
by a partly coherent, monochromatic light. The exact bandwidth 
(spectral resolution) of the monochromatic light in our experiment was 
not explicitly measured, but according to the specifications for this 
monochromator with a slit width manually set at 1.002 mm in the Oriel 
TracQ basic software, the bandwidth typically varies from Δλ = 3.2 nm 
and 3.1 nm at blaze wavelengths of 350 nm and 750 nm, respectively, to 
Δλ = 6.4 nm at blaze wavelength of 1000 nm in the spectral range of 
interest in our experiment, i.e., 350–1100 nm. Thus, the coherence 

length, lc, of our light source/monochromator combination can be found 
according to 

lc =
λ2

Δλ
, (22)  

where λ is the wavelength and Δλ is the bandwidth [22]. Thus, the 
coherence length in our experiments is at least (350 nm)2/3.2 nm ≈ 38 
μm, which, compared to the thickness of our film, is large. Therefore, we 
can assume that our sample is irradiated by a coherent light source that 
allows us to see resonance structures in the reflection probability R as a 
function of λ. 

Fig. 15a shows the measured reflection probability R as a function of 
the wavelength. In Fig. 15c we trace the position of an absorption 
resonance, i.e., a dip in the R, in our measured data (squares in Fig. 15c) 
as a function of the angle of incidence. At 10◦ this resonance occurs at 
approximately 600 nm and, as shown in Fig. 15c, shifts toward lower 
wavelengths as a function of increasing angle of incidence. The pre
dictions of our correct ray theory (presented in Seg. 3.3), stars in 
Fig. 15c, follow this trend. The predictions of the incorrect ray theory, 
discussed in Sec. 3.2, show an incorrect upward trend and strongly 
disagree with both our measured results and our exact ray model. Thus, 
from this three-way comparison, we conclude that a ray model built on 
only considering rays inside the film, gives wrong predictions of the 
wavelengths at which film resonances will occur. As shown in Fig. 15c), 
the error increases as the angle of incidence increases. 

There are many instances where a resonance structure such as the 
one illustrated in Fig. 15a, can be observed directly in nature. An 
example is the colorful pattern that can be seen in thin oil films floating 
on top of water puddles or on the surface of soap bubbles. If the angle of 
illumination changes, the color changes. The color change is caused by 
the change in the position of the resonances as illustrated in Fig. 15a. In 
summary, as we showed in this section, constructing a ray model that 
describes the positions of resonances quantitatively and accurately 
needs to be build on rays that are started in the wave front. 

Fig. 13. Intensity of the electric field |E|2 along the path 
of the ray inside the film. The refractive index of the film is 
1.84 + 0.001i. The thickness of the film is 75 μm. Frame 
(a) shows how the intensity decreases along the central 
line of the beam inside the film from the point of entry into 
the film to a distance l inside of the film, terminating at l ≈
30 μm. This termination point is chosen to avoid areas 
with strong interference inside of the film. Frame (b) 
shows a log-plot of the average intensity inside of the film. 
Frame (c) shows the absorbance calculated by COMSOL 
for five different angles of incidence as shown in (a) and 
(b). The dashed line is the fitted line through the absor
bance values for the five angles of incidence, resulting in 
an imaginary part of the refractive index of 0.00103, ac
cording to Eq. (21).   
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7. Discussion 

Basic physics textbooks (see, e.g. Refs. [20,21]) describe and eval
uate the resonance structures of thin-film wave systems on the basis of 
rays. We have earlier showed the importance of associating phases with 
the rays [15]. If this is done correctly, the rays will also describe the 
resonances caused by the wave nature of light. Several basic textbooks 
base their ray models on evaluating the path differences inside the film 
only (see, e.g., Refs. [20,21]). A ray model which is based on this set-up 
is presented in Sec. 3.2. As Fig. 7 shows, this approach gives an incorrect 
description of the system. The ray model presented in Sec. 3.3 shows 
how we also have to include the travelled distance outside the film when 
we evaluate how different rays contribute to an outgoing ray. We need 
to evaluate the rays from one common ray front as shown in Fig. 8. In the 
present paper we have shown that an exact description of the absorption 
cross section can be obtained by summing all possible rays in a wave 

front that are propagating with oblique incidence through boundaries. 
We have shown that it is important to compute the phases of contrib
uting rays with respect to the incoming wave front. 

The ray model for the general case of oblique incidence is expected to 
be valid for any situation where the ray splitting surfaces are planar; 
they do not need to be parallel. Corners and edges are expected to 
introduce small errors. The strategy for a general situation where the ray 
model is used is to consider an incoming wave front and a defined 
outgoing direction. The Fresnel equations are used to calculate the 
reflection and transmission amplitudes each time rays hit a boundary 
between two materials and are split into a transmitting and reflecting 
ray. Additional phases collected by the rays along their paths need to be 
taken into account and the phases collected by reflection at a mirror. 

Ray tracing is a frequently used approach for estimating the ab
sorption efficiency of solar cells. Ray models that describe solar cells are 
often used to investigate systems where the system dimensions are much 

Fig. 14. Frame (a) shows the absolute 
square of the electric field, |E|2, in the center 
of the beam along the normal of the bound
ary of the film. In frame (b), the solid line 
shows the trend of |E|2 (without the reso
nances) with a logarithmic y-axis. The 
dashed lines in (b) indicates the expected 
absorption in the case of absorption along 
the normal of the film, as described in Sec. 4. 
Frame (c) shows the trend of |E|2 in the case 
of an angle of incidence equal to 50◦. The 
blue solid line is the trend as shown in (b), 
the red dashed line is the expected absorp
tion as in frame (b). The yellow solid line is 
the absorption along the classical path of the 
Gaussian beam as a function of x. (x = l cos 
(θ), where l is the travelled length along the 
classical path and θ is the refraction angle.) 
The blue line in frame (d) shows |E|2 along 
the normal of the boundary in the center of 
the beam. The red line indicates the exact 
behavior of |E|2 for a plane wave with a 
wavelength of 500 nm along the normal. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the Web version of this article.)   
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larger than the wavelength of the incident radiation [2,27–31]. In these 
cases the phases are not included in the models at all. However, some 
models have already been presented that use the phases of rays, but they 
are not taking the wave front into account [32]. 

Only a few simple rays are necessary to describe the absorption 
properties of the investigated system. This is an advantage of our ray 
theory compared with time consuming numerical calculations of the 
electric field of the systems. As the complexity of the system increases, it 
is expected that more rays need to be included [15]. The system inves
tigated is a single film with mirror. This system can be extended to a 
system consisting of several layers using the hierarchical summation 
scheme (HSS) [15]. HSS needs to be applied in conjunction with the 
angle-dependent Fresnel equations and the x-components of the angular 
wave number. HSS is summing up the contributing rays in the correct 
order. A further adjustment of the presented ray theory and the HSS 
method makes it possible to use the ray theory to include the investi
gation of surface-structured systems. 

In the way of additional support for our exact ray model, we pre
sented experimental measurements of R for a SiNx-layer with a thickness 
of 400 nm. We obtained excellent agreement between our exact ray 
theory and the experiments, but noted a marked deviation of the results 
of the incorrect ray theory presented in some text books. This shows that 
the phase corrections that distinguish our exact theory from alternative, 
inexact theories are not small effects, but are sizable effects that can 
easily be observed in practice. Since ray methods are frequently used for 
designing better solar-cell geometries for improved light trapping, using 
an incorrect ray method may result in a failed solar-cell design and thus 
has practical consequences. Thus, in summary, we conclude that both in 
view of theoretical and practical considerations, it is important for the 
construction of exact ray models to evaluate the optical path lengths of 
rays starting from the wave front in order to obtain a correct results that 
agree with exact electromagnetic theory, in particular to obtain the 
correct positions of resonances in optically thin solar cells. 

8. Conclusion 

In this paper we presented an extension of the ray theory that is 
capable of describing the exact absorption properties for a film system 

where a plane wave is propagating towards the system with an arbitrary 
angle of incidence. This is done by summing up all possible rays that are 
contributing to an outgoing ray. Fresnel’s equations are used to deter
mine the reflection and transmission amplitudes for each ray splitting. 
The extended ray theory works for both perpendicular and parallel 
polarized light. We showed that it is important to carefully include the 
phases of the rays based on their travelled distances, and to include both 
travelled distance inside and outside of the film. If this is not done 
correctly, one obtains incorrect results for solar-cell properties, such as 
reflection probabilities and resonance structures. On the other hand, a 
correct ray description, as shown in this paper, provides a powerful ray- 
based tool that in some applications, for instance in solar-cell design, 
may rival equivalent E&M-based wave simulations in computational 
efficiency. 
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