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 
Abstract—Surface passivation on silicon is one of the hot topics 

for research in the field of silicon solar cells. Single layers of 
silicon oxide prepared by thermal oxidation, O3 oxidation or 
chemical oxidation and the stack layer of silicon oxide combined 
with other dielectric layers as passivation layers have been widely 
used to reduce surface carrier recombination in silicon solar cells. 
This paper provides a new method for preparing silicon oxide that 
realizes an excellent passivation effect, in which 
perhydropolysilazane was used as a spin-coating precursor. The 
effective minority carrier lifetime for n-type silicon passivated by 
a SiOx layer increases with SiOx thickness and can reach 1 ms 
when thickness is up to 100 nm. Moreover, when SiOx layers with 
a thickness of 100 nm or more were capped by an AlOx or SiNx 
layer, the effective minority carrier lifetime could get a value 
above 2 ms, which is much higher than the value for single SiNx or 
AlOx (approximately 500–750 μs). This may result from the high 
positive fixed charge in the SiOx layer and high hydrogenation of 
silicon surface induced by H diffusion from AlOx or SiNx to SiOx 
and stored in it. 

Index Terms—interface fixed charge, passivation, 
perhydropolysilazane, silicon oxide 

I. INTRODUCTION 
At the silicon solar cell surface, due to the destruction of 

the crystal periodic structure, dangling bonds are generated, 
forming defect levels in the forbidden band, which seriously 
affect the minority carrier lifetime[1]. With the thickness of 
silicon solar cells continuing to decrease in order to save cost, 
the diffusion length of minority carriers may be close to or even 
larger than the thickness of the wafer; so, some carriers will 
diffuse to the surface to recombine, leading to surface 
passivation on silicon more important than before. Surface 
recombination is realized by a combination of the electric field 
effect and chemical components[2]. The fixed charge ܳ௙ in the 
passivation film forms an electric field on the surface of the 
substrate, causing the energy band to bend and inhibit the 
movement of the minority carrier to the surface, thus leading to 
the field-effect passivation; however, the dangling bonds can be 
saturated by hydrogen atoms during the preparation and 
annealing of the passivation layers, reducing the interface state 
density D௜௧ and increasing the minority carrier lifetime. SiNx, 
AlOx and SiOx are widely used as passivation materials [3-5]. 
Additionally, Si–SiO2 has a lattice-matched interface and 
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positive ܳ௙  to provide chemical passivation and field-effect 
passivation, respectively [6, 7]. Most of the silicon solar cells 
adopt a multi-layer film structure to ensure both the passivation 
and anti-reflection in practical applications. 

 The most popular preparation methods of silicon oxide 
include thermal oxidation, wet chemical oxidation, 
plasma-enhanced chemical vapor deposition (PECVD), and 
plasma oxidation [8-10]. Thermal oxidation requires high 
temperature at 900–1200 °C; silicon atoms on the silicon 
surface are oxidized to SiO2 in different atmospheres. However, 
the thermal oxidation requires large energy consumption, and 
the oxidation of the silicon wafer generates self-gap silicon 
atoms and form bulk defects. Wet chemical oxidation mainly 
includes H2O2, H2SO4, and HNO3 oxidants[11]. The low 
growth rate of the wet chemical oxidation layer limits its 
application range, and using oxidants such as HNO3 requires 
treatment of the waste, which increases the cost and could be 
harmful to the ecological environment. PECVD uses SiHସ and 
NଶO or Oଶ as a precursor to grow silicon oxide on the substrate, 
which requires a vacuum environment and a complicated 
process. In this paper, we use perhydropolysilazane (PHPS) as 
the spin-coating precursor to prepare a silicon oxide film, it is a 
low-temperature and uncomplicated process. 

PHPS is mainly composed of Si–N and Si–H. It is mainly 
used for ceramic precursors, ceramic matrix composites and 
coating materials[12]. PHPS can be cured in an ultraviolet 
environment, and the –(SiH2–NH)– unit undergoes a 
hydrolysis reaction to form ammonia gas and Si(OH)4 as an 
intermediate state[13]. During the subsequent heat treatment, 
portions of O and H overflow such that Si(OH)4 forms a SiOx 
grid. The principle of hydrolysis reaction is as follows[12]: 
—(SiH2–NH)n— + 4nH2O → nSi(OH)4 + 2nH2 + nNH3 .  (1) 
It can also be cured at appropriate temperature and form SiOx 
directly with oxygen in the atmosphere: 

—(SiH2-NH) n— + nxO → nSiOx + nNH3.    (2) 
Nagayoshi introduced a 100 nm SiOx film which was 

made from the PHPS precursor into TiO2 back reflector to 
promote the surface passivation on silicon[14], but that film is 
seldom used in solar cells. In this work, we explore the spin 
coating of a SiOx film from a precursor of PHPS for surface 
passivation. We have studied the effect of annealing 
temperature and thickness of SiOx films on the chemical 
component. In addition, the contribution of a single SiOx layer 
on silicon surface passivation has been discussed. Finally, 
double layers of SiOx/AlOx:H, or SiNx/SiOx:H made by 
capping the SiOx layer with plasma-enhanced atomic layer 
deposition (PE-ALD) AlOx and PECVD SiNx layers were 
investigated. The result shows that improvements were 
observed in the two stacks compared to the single passivation 
layer of SiOx, AlOx, and SiNx. 
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IV. CONCLUSIONS 
In conclusion, we have studied a new method for 

preparing silicon oxide by spin-coating PHPS film with some 
heat treatments. During PHPS films are annealed, the Si–O 
bonds are formed, and N and H are released to the outside to 
form a SiOx film. The new SiOx shows excellent passivation 
properties: the effective minority carrier lifetime increases with 
SiOx thickness and can reach 1 ms when thickness is up to 100 
nm. Moreover, when 100 nm or thicker SiOx layers were 
capped by a AlOx or SiNx layer, the effective minority carrier 
lifetime could get the value above 2 ms, which is much higher 
than the value for single SiNx or AlOx (approximately 500–750 
μs). The large density of positive fixed charge provides good 
field effect passivation and the diffusion of H from the AlO୶ or 
SiNx layer toward the silicon surface provides chemical 
passivation. The new SiOx has quite a simple preparation 
process and requires low temperature compared with traditional 
ways. These advantages on preparation and performance 
provide good development potential and application prospects. 
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