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ABSTRACT: Monitoring solutions for commercial photovoltaic (PV) systems are becoming increasingly widespread, 

but often performs poorly, especially in locations with varying weather conditions. In this work two standard 

performance metrics commonly used in PV system monitoring, temperature corrected performance ratio and specific 

yield, have been calculated and evaluated for real-world conditions. The data is collected from eight inverters of 13-18 

kWp each, installed at a commercial large-scale PV system in Norway. The results show that naïve use of the tested 

performance metrics give unreliable monitoring with high variation in the PV system performance estimation, often 

resulting in false alarms. Very low solar elevation and irradiance, snow and technical irregularities in the installation 

are the primary causes of false alarms in the monitoring. It is shown that for certain climates standard filtering 

approaches are not sufficient to solve these problems, and that site-specific filtering of data gives more stable 

monitoring output, entailing more data and less variation. 
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1 INTRODUCTION 

 

 With the recent year’s increased focus on operation 

and maintenance of photovoltaic (PV) systems, an 

extensive number of algorithms and performance metrics 

have been proposed to improve the PV system monitoring 

solutions [1]. From very basic to more advanced – the aim 

of the algorithms is to detect when the PV system is 

deviating from normal operation and identify faults. The 

more advanced solutions are also targeting failure 

diagnosis. Despite that the demand for PV monitoring 

solutions is growing rapidly, the algorithms are still not 

sufficiently sophisticated to handle the noise and 

variations in real-world data in a satisfactory manner, 

resulting in noise also in the monitoring output. The noise 

originates from different issues that are difficult to capture 

in generalized algorithms, like certain weather conditions 

and differences in e.g. installation configurations, data 

quality and measurement availability. Consequently, 

analysis and estimations based on real-world data in 

commercial systems often conceal faults and degradation, 

and lead to frequent false alarms when used in monitoring. 

From an operational point of view, false alarms are just as 

problematic as undetected faults, as it reduces the trust in 

the monitoring system. 

 Common approaches to handle the noise in PV system 

performance estimates are filtering, such as clear sky 

filtering or irradiance value filtering [2–5], or lowering the 

time resolution. Although this can be useful for some 

applications, information which may be necessary to do 

advanced fault diagnosis (e.g. detecting faults impacting 

the low light performance of the PV modules [6]) or day 

to day monitoring in areas with challenging weather 

conditions may be lost. Lowering the time resolution by 

aggregating over longer periods of time introduce 

unknown uncertainties and increase the reaction time of 

the algorithm.  

 In this work, we evaluate two standard performance 

metrics commonly used in PV system monitoring: 

temperature corrected performance ratio (PRTC) and 

specific yield (Yf) inverter comparison. This is done by 

testing the methods on data from a commercial PV system 

located in Norway, where the PV modules are exposed to 

diverse types of challenging weather conditions (e.g. 

snow, high frequency of cloudy weather), and large 

variations in irradiation conditions throughout the year. 

The evaluation is conducted by calculating the metrics and 

assessing the periods where there are large deviations from 

the expected constant values. The effect of removing the 

main issues identified in the evaluation of the unstable 

periods is compared to standard filtering approaches. To 

efficiently remove the main issues, a new snow detection 

method was developed. As discussed in our previous work 

[7], there is a lack of methods for robust data-based snow 

detection in PV systems in periods with partial melting.  

 The aim of the described analysis is to improve the 

monitoring methods for commercial PV systems. This is 

done by providing an understanding of the current 

limitations, particularly with respect to noise and 

applicability in climates with large variations in weather. 

The evaluation allows for a further assessment of how 

these methods can be improved, and how they eventually 

should be modified for different types of PV installations 

in different climates to work more efficiently. This lays a 

foundation and identify a direction for the development of 

improved methods and efficient filtering strategies in 

performance analysis and fault detection for PV systems.  

 

 

2 METHODS 

 

2.1 Dataset 

 The data is collected from a 135 kWp PV system, 

located in the South-Eastern part of Norway (59.9 °N / 

10.8 °E). The PV modules are East oriented, with an 

azimuth of 112° and a tilt of around 10°, and they are 

installed on an approximate flat roof. The roof has a tilt of 

1-2° in the North-South direction, meaning half of the PV 

modules has the same tilt North, and the other half has the 

same tilt South. The module type is IBC Solar PolySol 250 

CS. The PV modules are connected to eight different 

inverters, and the PV capacity for each inverter varies from 

13 to 18 kWp. Plane of array (POA) irradiance is measured 

by a crystalline silicon reference cell. The temperature of 

the reference cell is measured, and it is used as an estimate 

of the PV module temperature. 

 Data from September 2014 to April 2018 is used, 

logged with 5 minutes averages. Night time values, i.e. 

logged values of 0 for current or irradiance, are not 

included in the analysis.   
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2.2 Performance metrics 

 Two basic performance metrics commonly used in 

monitoring are tested: Specific yield (Yf) inverter 

comparison:  

 

𝑌𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 = 𝑌𝑓𝐷𝐶 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑥  𝑌𝑓𝐷𝐶 𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑙𝑙 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑠 ⁄  

 

and temperature corrected performance ratio (PRTC): 

 

𝑃𝑅𝑇𝐶 =  (𝑌𝑓𝐷𝐶 (1 + 𝛾(𝑇𝑚𝑜𝑑 − 𝑇𝑆𝑇𝐶)))⁄   𝑌𝑟⁄    

 

Yf is the specific yield – the energy generated in a given 

time interval, divided by the rated power of the system.  Yr 

is the POA insolation in the same time interval divided by 

the reference irradiance 1000 W/m2 [8]. γ is the material 

dependent maximum power temperature coefficient. For 

the given technology this coefficient is -0.43%/ °C. Tmod is 

the estimated PV module temperature, and TSTC is the 

reference temperature 25°C. In the specific yield 

comparison, the inverter energy output is compared to the 

median inverter energy. In this way, weather conditions 

are inherently accounted for, and sensor data quality is not 

an issue. Using the median instead of the mean reduces the 

influence of faulty inverters in the comparison, should 

there be any. 

 

2.3 Evaluation of performance metrics 

 The performance metrics are tested on the dataset by 

calculating the parameters on an hourly basis. Hourly 

averaged performance parameters are commonly used to 

provide a balance between resolution and stability. Here it 

is also used to enable separation between different effects 

influencing the behavior of the performance metrics. The 

assumption is that the metrics are stable under normal 

operation, while changes in the performance will lead to a 

decrease. However, this is not always a correct 

assumption: In some periods the metrics are unstable, 

giving very varying or unexpected results that are not 

caused by faults. These periods are qualitatively assessed 

to explain the large variations.  

 The standard deviation (𝜎) of the performance metrics 

can be used to quantify the variation in the metric under 

normal operation for a given system, as discussed in our 

previous work [9]. With lower variation in the metrics 

during normal operation conditions, the performance 

metric has a higher sensitivity for detecting abnormal 

situations. The standard deviation can hence be used to 

measure the stability and accuracy of the performance 

metrics.  

 To quantify the impact of the different effects causing 

periods with large variation in the hourly performance 

metrics, the standard deviation in the metrics is calculated 

before and after filtering out the effects. This is compared 

to the change in standard deviation after applying standard 

filtering to the metrics. The standard filtering approaches 

used is low irradiance and clear sky filter. The clear sky 

detection algorithm described in [10] as implemented in 

pvlib [11] is used for clear sky filtering. The python 

version of pvlib is also used in the estimation of the POA 

clear sky irradiance used in the clear sky detection 

algorithm, and for the estimation of solar elevation.  

 To evaluate if there are any differences in irradiance 

conditions between the inverter strings and between the 

inverter strings and the irradiance sensor due to e.g. 

slightly different installation angles or hard shadowing, the 

clear sky signal was estimated for the irradiance sensor and 

for each string using the statistical clear sky fitting 

algorithm proposed by [12]. Using this algorithm, the clear 

sky current and irradiance for each day through the year 

was estimated using the measured current and irradiance 

data. For the inverters, the current values were used instead 

of the power values to focus on the irradiance signal and 

exclude temperature effects.  

  

 

3 RESULTS AND DISCUSSION 

 

3.1 Performance evaluation using unprocessed data 

 The specific yield inverter comparison and the 

temperature corrected performance ratio for one inverter, 

using unfiltered hourly data, are presented in Figure 1. The 

trends are similar for all the inverters. The variation in the 

specific yield comparison and the temperature corrected 

performance ratio is large, both relatively (Figure 1) and 

absolutely (Figure 2). The average standard deviation of 

the Yf inverter comparison of the 8 inverters is 0.38. For 

PRTC it is 0.25. These large variations in the estimation of 

the normal state of the PV system challenge efficient use 

of these performance metrics for fault detection and 

performance evaluation. Fault detection is normally based 

on detecting when a system is operating outside normal 

conditions, such large variations will hence produce false 

alarms and result in low sensitivity [9].  

 

 

 
 

Figure 1: Variation during normal operation in Yf 

comparison (top) and in PRTC (bottom) using hourly data 

from one inverter. 

 

3.2 Performance evaluation using standard filtering 

 To reduce the variation and increase the accuracy in 

PV performance analysis, it is common to filter out the low 

irradiance and/or applying a clear sky filter. In [2] a low 

irradiance threshold of 200 W/m2 and a clear sky filter is 

proposed to remove time periods of poor or variable solar 

resource conditions to get a stable degradation estimate. 

The same irradiance threshold is also applied by [3] for 
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fault detection, and also in this work it is observed that 

clear sky days have lower variation in the estimates of the 

current and power under normal conditions. The average 

standard deviation for all the inverters and the remaining 

data after applying the same irradiance threshold and a 

clear sky filter on the calculated Yf comparison and the 

PRTC, are given in Table I. The filtered results for the PRTC 

are also visualized in Figure 3. 

 Filtering the data with the standard approach reduces 

the standard deviation of the data. However, the number of 

data points are also drastically reduced and not all large 

variations are removed. Adding the clear sky filter in 

addition to the low irradiance threshold increases the 

variation due to the large reduction in data points – also 

the ones that are stable. Hence, naïve filtering is not a 

global solution for all monitoring. Here the methods are 

both imprecise and too strict, leaving too little data to base 

the monitoring on.  

 

  

 
Figure 2: Absolute comparison between the inverter Yf 

and the median Yf (top) and between Yf TC and Yr (bottom). 

 

 

Table I: The average standard deviation (𝜎)  of the two 

metrics for all inverters, without filters, and after 

consecutively removing low irradiance (< 200 W/m2) and 

cloudy periods [11]. Remaining data after filtering is also 

given. 

 

                          Avg 𝜎 Yf           Avg σ       Remaining 

                                comparison       PRTC             data 

Raw data                     0.38               0.25            100 % 

Low irradiance            0.16               0.17            38 % 

Cloudy periods            0.21               0.21            6 % 

 

 
Figure 3: PRTC using hourly data from one inverter, after 

consecutively removing (top) low irradiance (< 200 W/m2) 

and (bottom) cloudy periods. 

 

3.3 Evaluation of time periods with large variations 

 To better understand when the monitoring methods do 

not work, the time periods with large variations have been 

analyzed. The explanations for the largest variations can 

be divided into three major categories, discussed in the 

following subsections. 

 

3.3.1 Snow 

 Snow is a well-known challenge in PV system 

monitoring in Northern climates. For the tested 

performance metrics, a full snow cover is unproblematic. 

With zero production, there are no variation between the 

inverters and consequently no variations in relative 

inverter performance. When the irradiance sensor is 

covered in snow, no low PR values will be calculated. The 

main challenge in PV system monitoring, is the melting 

period. When the snow is melting, the inverters and the 

irradiance sensor might receive different irradiance. 

Additionally, the inverters might have partial snow covers, 

giving signatures similar to faults. 

 To remove data from periods with snow covered PV 

modules, a new snow detection method was developed. 

Using local snow depth estimation from the Norwegian 

Water Resources and Energy Directorate [13], and power 

and irradiance data for the system, the variation in DC 

voltage for the system under normal conditions and for 

snow melting periods was found. In periods with partial 

snow cover, the DC voltage of each string has increased 

variation compared to normal operation, and there is larger 

variation between different inverters. A threshold for DC 

voltage variation was determined empirically. The periods 

with full snow cover and partial snow cover was 

accordingly removed based on a combination of snow 

depth data and the DC voltage variation limit for normal 

operating conditions. 
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3.3.2  Morning/evening effects 

 As expected, there were large relative variations in Yf 

and PRTC in the morning and evening. One of the main 

explanations for this is variations in low light behavior of 

the PV modules and inverters. Both the low irradiance and 

the increased share of diffuse light in the morning and 

evening will influence variation in PV module behavior. 

Additionally, small variations in PV module tilts, as 

discussed in depth in the next section, can lead to 

significant differences in the angle of incidence of the 

incoming light, and consequently a variation in reflected 

and received irradiance. By relating the Yf and PRTC to 

irradiance level and solar elevation, it was found that for 

this specific system, these effects were most prominent for 

irradiance values < 50 W/m2 and solar elevation < 10°. A 

general algorithm for estimating the optimal filtering 

threshold of these values for different locations is 

proposed in [9]. 

 

3.3.3 Physical irregularities in the installation  

 Due to physical limitations in PV system installations 

such as variations in roof inclination, topography, objects 

shadowing the PV modules, different PV modules/inverter 

strings might receive different irradiance, resulting in 

different energy output. This can also affect the irradiance 

sensor. Also, other technical irregularities in the 

installation and variations in local climate can lead to 

variation for a PV system in e.g. temperature and soiling 

patterns. For this system, particularly two installation 

specific irregularities influence the monitoring output: the 

modules in one of the strings had a different tilt angle from 

the rest, and there was a difference in the tilt of the 

modules and the POA irradiance sensor. The effect of each 

of these aspects of the installation are explained in the 

following. 

 The variation in received irradiance on the different 

inverter strings are illustrated in Figure 4, using the DC 

current. As shown in this figure, inverter 6 has a current 

curve with a clearly different shape than the other 

inverters. This is due to the 1-2° tilt in the North and the 

South direction of the roof (while the PV modules are 

faced East). Where the rest of the inverters have PV 

modules that is both tilted slightly towards South and 

North, inverter 6 has only South tilted modules. This leads 

to significant variation in irradiance conditions, also on an 

hourly basis, between inverter 6 and the rest of the 

inverters and weakens the basis for comparison. 

 

 
Figure 4: The DC current for each inverter during one 

clear day (5 minute averages), illustrating the variation in 

received irradiance for the inverter strings. 

For the PRTC values, it was observed especially high values 

in the morning, and very low values in the afternoon. This 

was found to be because of the tilt of the reference cell, 

which was 1-2° lower than the average tilt of PV-modules. 

Additionally, it had a 1-2° tilt towards South. 

Consequently, there are several hours the reference cell is 

not measuring a representative irradiance for the PV 

system. Difference in tilt between reference cell and the 

PV modules is an issue that will influence most irradiance 

based performance metrics. 

 These effects were filtered out based on deviations 

between the estimated clear sky behavior [12] for each 

inverter and between the inverters and the reference cell. 

 

3.4 Effect of the identified issues on the performance 

metric variation 

 The effect of consecutively removing the issues 

identified and described in Section 3.3, are shown for each 

inverter in Figure 5, and for the average of all the inverters 

in Table II. The percentage of remaining data after 

removing the effects is also given in the table.  

 

 
 

 
Figure 5: The standard deviation of the two metrics for 

each inverter, where the effects leading to unstable periods 

are consecutively removed. 

 

Compared to the results of the standard filtering approach 

presented in Table I, the variation is significantly 

decreased and at the same time less data is removed. In the 

comparison of the specific yield, removing periods where 

there were large variations in incoming irradiance because 

of physical deviations was only relevant for inverter 6, as 
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this is the only inverter that has significantly different 

installation configurations compared to the other inverters. 

For the PRTC, removing this effect influence the variation 

for all the inverters because the irradiance sensor has 

different tilt angles than all the PV module strings. 

 

Table II: The average standard deviation of the two 

metrics for all inverters, where the effects leading to 

unstable periods are consecutively removed. Remaining 

data after filtering is also given. 

 

                          Avg 𝜎 Yf           Avg σ       Remaining 

                                comparison       PRTC             data 

Raw data                      0.38               0.25            100 % 

Snow                            0.21               0.19            84 %  

Low solar elevation     0.08               0.09             63 % 

Very low irradiance     0.04               0.08             58 % 

Physical irregularities  0.03               0.04          Inverter 

                                                                            specific 

 

 

4 CONCLUSIONS 

 

 The results show that naive use of standard 

performance metrics such as specific yield and 

temperature corrected performance ratio in a monitoring 

system for PV installations, give unreliable results with 

high variation in the PV system performance estimation. 

This will both reduce the sensitivity and the fault detection 

ability of the monitoring system and typically result in 

false alarms. Very low solar elevation and irradiance, 

snow and technical irregularities in the installation are the 

primary causes of the high variation in the monitoring 

output. It is shown that for certain climates standard 

filtering is not sufficient to solve these problems, and that 

site-specific filtering of data gives more stable monitoring 

output, entailing more data and less variation. 

 

 

REFERENCES 

 

[1] A. Triki-Lahiani, A.B.-B. Abdelghani, I. Slama-

Belkhodja, Fault detection and monitoring 

systems for photovoltaic installations: A review, 

Renew. Sustain. Energy Rev. (2017). 

doi:https://doi.org/10.1016/j.rser.2017.09.101. 

[2] D.C. Jordan, C. Deline, S.R. Kurtz, G.M. Kimball, M. 

Anderson, Robust PV Degradation Methodology 

and Application, IEEE J. Photovoltaics. (2017) 

1–7. doi:10.1109/JPHOTOV.2017.2779779. 

[3] S. Silvestre, L. Mora-López, S. Kichou, F. Sánchez-

Pacheco, M. Dominguez-Pumar, Remote 

supervision and fault detection on OPC 

monitored PV systems, Sol. Energy. 137 (2016) 

424–433. doi:10.1016/j.solener.2016.08.030. 

[4] G. Belluardo, P. Ingenhoven, W. Sparber, J. Wagner, 

P. Weihs, D. Moser, Novel method for the 

improvement in the evaluation of outdoor 

performance loss rate in different PV 

technologies and comparison with two other 

methods, Sol. Energy. 117 (2015) 139–152. 

doi:10.1016/j.solener.2015.04.030. 

[5] K. Kiefer, D. Dirnberger, B. Müller, W. Heydenreich, 

A. Kröger-Vodde, A Degradation Analysis of PV 

Power Plants, Proc. 25th Eur. Photovolt. Sol. 

Energy Conf. (2010) 5032–5037. 

doi:10.4229/25thEUPVSEC2010-5BV.4.26. 

[6] D.C. Jordan, S.R. Kurtz, The dark horse of evaluating 

long-term field performance-Data filtering, IEEE 

J. Photovoltaics. 4 (2014) 317–323. 

doi:10.1109/JPHOTOV.2013.2282741. 

[7] M.B. Øgaard, H. Haug, J. Selj, Methods for Quality 

Control of Monitoring Data from Commercial PV 

Systems, in: Eur. Photovolt. Sol. Energy Conf. 

Exhib. METHODS, 2018: pp. 2083–2088. 

doi:10.1093/annonc/mdy039/4835470. 

[8] B. Marion, J. Adelstein, K. Boyle, H. Hayden, B. 

Hammond, T. Fletcher, D. Narang, A. Kimber, L. 

Mitchell, S. Richter, Performance parameters for 

grid-connected PV systems, Photovolt. Spec. 

Conf. 2005. Conf. Rec. Thirty-First IEEE. 31 

(2005) 1601–1606. 

doi:10.1109/PVSC.2005.1488451. 

[9] Å. Skomedal, M.B. Øgaard, J. Selj, H. Haug, E.S. 

Marstein, General, robust, and scalable methods 

for string level monitoring in utility scale PV 

systems, 36th Eur. Photovolt. Sol. Energy Conf. 

Exhib. (2019). 

[10] M.J. Reno, C.W. Hansen, Identification of 

periods of clear sky irradiance in time series of 

GHI measurements, Renew. Energy. 90 (2016) 

520–531. doi:10.1016/j.renene.2015.12.031. 

[11] W. F. Holmgren, C. W. Hansen, M. A. Mikofski, 

pvlib python: a python package for modeling 

solar energy systems, J. Open Source Softw. 

(2018). doi:10.21105/joss.00884. 

[12] B. Meyers, M. Tabone, E.C. Kara, Statistical 

Clear Sky Fitting Algorithm, Conf. Rec. IEEE 

Photovolt. Spec. Conf. (2018) 1–6. 

http://www.wcpec7.org/eWCPEC/manuscripts/

MeWCPEC930_0521112519.pdf. 

[13] NVE, seNorge, (n.d.). www.senorge.no 

(accessed September 1, 2019). 

 

36th European Photovoltaic Solar Energy Conference and Exhibition

1636


