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Abstract An analytical solution is presented for the displacement, strain and stress
of a three-dimensional poro-elastic model with three layers, where the three layers are
an underburden, a reservoir with a given fluid pressure, and an overburden. The fluid
pressure in the reservoir is assumed symmetrical around the z-axis and represented
by a Fourier cosine series. The poro-elastic solution is expressed as a superposition
of the solutions for each term in the Fourier series. It is shown that the bulk strain
in the reservoir layer is proportional to the fluid pressure and that the bulk strain in
the underburden and overburden is zero. Using these properties of the bulk strain,
a solution is derived for the three-layer model where the fluid flow and mechanics
are fully coupled. A particular aim of the model is to study the surface uplift from a
given reservoir pressure. The expansion of the reservoir and the uplift of the surface
are studied in terms of the wavelengths in the Fourier representation of the pressure.
It is shown that the surface uplift can be written in a similar form to the 1D vertical
expansion of the reservoir layer, but where the fluid pressure is based on the Fourier
series. It is shown that the amplitudes with average wavelengths longer than 2π times
the thickness of the reservoir give expansion of the reservoir, but average wavelengths
much shorter than this limit do not. Similarly, amplitudes with average wavelengths
much longer than 2π times the thickness of the overburden produce surface uplift, but
wavelengths much shorter do not. The stress in the overburden, which is generated
by the reservoir fluid pressure, is also analysed in terms of the wavelengths. A case is
givenwhere the analytical uplift is comparedwith the results of a numerical simulation
and the agreement is excellent.
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1 Introduction

The global annual emissions of CO2 were 32 Gt in 2016 (International Energy Agency
2016), and the concentration of CO2 in the atmosphere has increased from around
280 ppm in 1900 to more than 400 ppm in 2017. CO2 is a greenhouse gas and
its increasing concentration in the atmosphere has been found to be the reason for
global warming (Bryant 1997). The injection of large volumes of CO2 into aquifers or
depleted oil and gas reservoirs is considered a promising way to reduce CO2 emissions
and thereby reduce globalwarming (Bachu2008;Benson andCole 2008;Bickle 2009).

CO2 injection leads to a pressure build-up and an expansion of the reservoir, and
in turn to surface uplift. An example of subsurface CO2 injection and surface uplift
is the In Salah storage project, where 3.8 Mt has been injected since its start in 2004,
and where a total uplift of roughly 15 mm has been measured around three injection
wells (Rutqvist 2012). The uplift measured at In Salah has attracted a considerable
amount of scientific interest, and a number of modelling studies have been published
(Vasco et al. 2008; Rutqvist et al. 2010; Rutqvist 2012; Bissell et al. 2011; Verdon et al.
2011; Zhou et al. 2010; Shi et al. 2012; Rinaldi and Rutqvist 2013; Rucci et al. 2013;
White et al. 2014; Vilarrasa et al. 2015, 2017; Rinaldi et al. 2017). Similarly, seabed
uplift is expected over offshore CO2 sites, although it is more difficult to measure
than land uplift. Land-based water pumping from aquifers and land-based oil and gas
production are known to produce surface subsidence as the fluid pressure is lowered.

Geertsma (1973) developed an early model to compute land subsidence, which was
applied to theGroningen gas field. Themodel gives the poro-elastic subsidence above a
horizontal disk-shaped reservoir with a constant thickness and a constant pressure. The
reservoir is placed at a finite depth in the infinite half-space andhas a stress-free surface.
The model is based on the nucleus-of-strain concept in the half-space, which was
introduced byMindlin and Cheng (1950) and Sen (1950) as a method to solve thermo-
elastic problems.Aparticular feature of themodel ofGeertsma (1973) is that a constant
pressure reduction gives a maximum subsidence that is approximately 1.5 times larger
than the one-dimensional (vertical) compaction of the reservoir layer. Themodel gives
a maximum horizontal displacement (contraction) that is also approximately 1.5 times
the one-dimensional compaction.

The classical model of Geertsma (1973) has recently been modified by Tempone
et al. (2010): the infinite half-space was replaced by a rigid basement underneath
the reservoir. Tempone et al. (2010) compare the displacement, stress and strain of
their model with the classical Geertsma model (Geertsma 1973). The comparisons
show that a rigid basement close to the reservoir gives more uplift than the classical
model, because less of the reservoir compaction goes vertically downward into the
layer underneath the reservoir.

Another approach is taken by Fokker and Orlic (2006). They model the poro-elastic
subsidence by a semi-analytical approach, which allows for an arbitrary number of
layers. They use a numerical method to fit a set of analytical solutions to approximate
the boundary condition in an optimal manner.

Selvadurai (2009), Kim and Selvadurai (2015), Selvadurai and Kim (2016) and
Niu et al. (2017) have developed analytical models for different configurations of a
reservoir and a caprock. Selvadurai and Kim (2016) present analytical poro-elastic
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solutions for a storage aquifer with a caprock; the solutions are given by an integral
representation. Themodelwas used to studyhow the surface displacement is controlled
by the radius and the depth of the injection region. Finally, Chang and Segall (2016)
studied how fluid pressure variations from injection or production in reservoirs could
induce poroelastic stress changes and fault slip in the basement.

In the present article, a different approach is taken, by first solving the poro-elastic
equations for a three-dimensional model with three layers when the reservoir pressure
is just one term in a Fourier series. The same approach was taken by Wangen et al.
(2018) with a two-dimensional model of a reservoir with an overburden, but no under-
burden. The three layers in the present model are an overburden, a reservoir and an
underburden, where the underburden is placed on a rigid basement. Each layer in the
model is of infinite lateral extent and of constant thickness. A periodic pressure distri-
bution can be represented by a Fourier series, and the displacement, strain and stress
becomes the superposition of the effect of each term in the Fourier series. The model
has a stress-free surface, except for the shear stress xz and yz components, which turn
out to be negligible for normal configurations of the reservoir and the overburden.
The displacement field and the stress, except for the xx and yy stress components,
are continuous across the internal layer boundaries, which are the top and the base
of the reservoir. A particular feature of this model is that it allows a decoupling of
the equation for fluid flow from the equations of the displacement field. This decou-
pling simplifies considerably the derivation of analytical solutions of the fully coupled
problem of fluid flow and mechanics. This model is well suited for a study of how the
displacement, stress and uplift depend on the wavelengths of the reservoir pressure
and the layer thicknesses. ‘Short’ and ‘long’ wavelengths in the pressure distribution
produce different displacement fields and stresses, where ‘short’ and ‘long’ are with
respect to layer thicknesses.

The present paper is organized as follows: The poro-elastic assumption and notation
are introduced, and the expansion of the one-dimensional vertical poro-elastic layer
is established. The geometry of the three-layer model is explained, and the boundary
conditions are discussed. The solution for the displacement field is presented, and then
the limit as the wavelength goes to infinity is investigated. How the fluid pressure can
be decomposed in a double Fourier series is demonstrated before a Fourier solution for
the fully coupled problem of fluid flow and mechanics is derived. The uplift is studied
in terms of the wavelengths of the Fourier decomposition, and a special solution for
the displacement for a reservoir on top of a rigid basement is presented. The analytical
solution for the uplift is comparedwith a numerical finite element solution.An example
of the analytical solution is given, which demonstrates the displacement field and the
stress field. The stress in the caprock is investigated with respect to the wavelength of
the Fourier components in the reservoir pressure.

2 Poro-elasticity

The stress state σi j in the model is given by the sum of the initial stress σ
(0)
i j and the

change σ
(1)
i j in the poro-elastic stress caused by a change in the fluid pressure in the

reservoir
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σi j = σ
(0)
i j + σ

(1)
i j , (1)

where the indices i and j indicate the three spatial dimensions x = 1, y = 2 and
z = 3. The stress state σi j fulfills the equilibrium equations

∂σi j

∂x j
= ρgδi z, (2)

where ρ is the rock bulk density, g is the acceleration due to gravity, and δi z is the
Kronecker delta, that is, δi z = 1 for i = z and δi z = 0 for i �= z. Einstein’s summation
convention is used in the equilibrium Eq. (2), where summation is understood for each
pair of the same indices.

The initial stress state also fulfills the equilibrium Eq. (2), which implies that the
stress produced by poro-elastic changes fulfills an equilibrium equation without body
forces

∂σ
(1)
i j

∂x j
= 0. (3)

The effective stress can also be decomposed into the initial effective stress and the
effective stress produced by changes in the fluid pressure in the reservoir

τi j = τ
(0)
i j + τ

(1)
i j . (4)

The initial effective stress is given by

τ
(0)
i j = σ

(0)
i j + αp(0)δi j , (5)

where p(0) is the initial fluid pressure and α is the Biot coefficient. Similarly, the
difference in the poro-elastic effective stress is given by

τ
(1)
i j = σ

(1)
i j + αp(1)δi j , (6)

where p(1) is the change in the reservoir pressure. The change τ
(1)
i j in the effective

stress produces poro-elastic deformations

τ
(1)
i j = σ

(1)
i j + αp(1)δi j = Λεkkδi j + 2Gεi j , (7)

where Λ is the Lamé parameter, G is the shear modulus, εi j = 1
2 (ui, j + u j,i ) is the

strain tensor, and ui is the displacement vector (i = x, y, z). An upper case Λ is
used for the Lamé parameter, since the lower case λ will be used for the wavelength.
Notice that normal effective stress is positive when the rock is tensile and negative
when it is compressive. The elastic moduli are for drained conditions. The equations
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for the displacement field ui are obtained by inserting the stress from Eq. (7) into the
equilibrium Eq. (3), which yields

γ
∂2uk

∂xk∂xi
+ ∂2ui

∂x j∂x j
+ ∂2u j

∂xi∂x j
= α

G

∂ p(0)

∂xi
, (8)

where γ = Λ/G. For simplicity, the layers in the system are taken to have the same
geomechanical parametersΛ,G and α. The gradient of the pressure change appears as
an internal load on the left-hand side of the equilibrium equations. Therefore, Eq. (8)
gives the displacement field when the pressure is known. The displacement field has a
feedback on the pressure. The equation for the fluid pressure that includes poro-elastic
deformations is

(
φ

Kf
+ α − φ

Ks

)
∂p

∂t
− ∇

(
κ

μ
∇ p

)
= −α

∂ε

∂t
, (9)

where Kf is the modulus of fluid compressibility, Ks is the modulus of the solid
constituting the rock matrix, φ is the porosity, κ is the permeability, μ is the pore fluid
viscosity, ε = ∂ui/∂xi is the bulk strain and t is the time. The notation is simplified
by denoting the pressure change by p = p(0). The notation for the displacement field
is also simplified by writing u = ux , v = uy and w = uz . For instance, the bulk
strain can now be written ε = ∂ui/∂xi = ∂u/∂x + ∂v/∂y + ∂w/∂z, where it is noted
that summation is understood over pairs of equal indices. In the following, the fluid
overpressure is assumed known and the displacement equations are solved with the
given overpressure.

3 One-dimensional Vertical Uplift

The one-dimensional vertical poro-elastic expansion of a reservoir layer due to a
constant increase p0 in the overpressure is an important referencemodel. The equations
for the displacement field (8) become

(2G + Λ)
d2w

dz2
= α

dp

dz
, (10)

for one-dimensional vertical displacements, when u = 0 and v = 0. The vertical
displacement w(z) is obtained by integrating Eq. (10) twice

w(z) = αp0(z − z0)

2G + Λ
, (11)

where it is assumed that the base of the reservoir layer at z = z0 is fixed (w = 0). The
surface of the reservoir layer has a maximum displacement given by

w = αp0h

2G + Λ
, (12)
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Fig. 1 The three-layer model and the coefficients of the homogeneous solution for each layer. The base
layer is at z = 0, the base of the reservoir is at z = z1, the top of the reservoir is at z = z2 and the top
surface is at z = z3

where h is the thickness of the reservoir layer. In case the reservoir layer has an over-
burden, the overburden is uplifted by w when the base is fixed. The one-dimensional
reservoir expansion (12) turns out to be an important reference for the uplift.

4 The Three-Layer Model

The model consists of three layers of infinite extent, as shown in Fig. 1. The middle
layer is the reservoir and it has an overburden and an underburden. To simplify the
analytical solution for the displacement field, the three layers are assigned the same
mechanical properties. Only the reservoir layer is considered permeable and has a
change in the fluid pressure. The z-axis is positive upwards, and z = 0 is the base
of the model (the underburden). The base of the reservoir layer is at z = z1, the
top of the reservoir layer is at z = z2 and the top of the model (the surface) is at
z = z3. The thicknesses of the underburden, the reservoir and the overburden are h1,
h2 and h3, respectively, and the layer boundaries become z1 = h1, z2 = h1 + h2 and
z3 = h1 + h2 + h3.

5 Boundary Conditions

The layers are of infinite extent, and the boundary conditions are at the base and at the
top surface of the model. The base surface has zero vertical displacement, and the top
surface has zero lateral displacement. These boundary conditions can be written as

u(z = z3) = 0, v(z = z3) = 0 and w(z = 0) = 0. (13)
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The boundary condition w(z = 0) = 0 implies that the underburden is resting on
an absolutely rigid base. The top surface may move vertically, but it is prevented from
lateral displacements, since it is assumed that u(z = z3) = 0 and v(z = z3) = 0.
It will be seen that this boundary condition leads to an approximately stress-free top
surface when the overburden is much thicker than the reservoir. This approximation
works fine for ‘long’ wavelengths in the reservoir pressure, because they give locally
almost one-dimensional vertical surface deformations. Furthermore, it is seen that
‘short’ wavelengths in the reservoir pressure produce deformations that decrease to
almost zero towards the surface.

6 The Solution for the Displacement Field

The displacement field is first found for a periodic reservoir fluid overpressure of the
form

p = p0 cos(k1x) cos(k2y), (14)

which is one term in a Fourier representation of a fluid pressure that is symmetrical
around the z-axis. The overpressure (14) is independent of the depth inside the reser-
voir layer. The amplitude of the fluid pressure is p0, and the wavenumbers in the x-
and y-directions are k1 and k2, respectively. These wavenumbers correspond to the
wavelengths

λ1 = 2π

k1
and λ2 = 2π

k2
, (15)

respectively. The full solution for the displacement field of the three-layer model con-
sists of three parts: one for each of the three layers comprising the underburden, the
reservoir and the overburden. The solution gives a displacement field that is con-
tinuous across the layer boundaries. The derivation of the solution is presented in
the “Appendix”. The underburden (0 ≤ z ≤ z1) has the following solution for the
displacement field

u(x, y, z) = −k1
c2

D0 · p0 · F1 · cosh(cz) sin(k1x) cos(k2y), (16)

v(x, y, z) = −k2
c2

D0 · p0 · F1 · cosh(cz) cos(k1x) sin(k2y), (17)

w(x, y, z) = 1

c
D0 · p0 · F1 · sinh(cz) cos(k1x) cos(k2y), (18)

where the average wavenumber is

c = (k21 + k22)
1/2, (19)
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and where

D0 = α

2G + Λ
, (20)

and

F1 = cosh(cz3 − cz2) − cosh(cz3 − cz1)

cosh(cz3)
, (21)

are two coefficients. The reservoir (z1 ≤ z ≤ z2) has the displacement field

u(x, y, z) = k1
c2

D0 · p0 · (1 − F2(z)) sin(k1x) cos(k2y), (22)

v(x, y, z) = k2
c2

D0 · p0 · (1 − F2(z)) cos(k1x) sin(k2y), (23)

w(x, y, z) = 1

c
D0 · p0 · F3(z) · cos(k1x) cos(k2y), (24)

where

F2(z) = cosh(cz3 − cz2) cosh(cz) + sinh(cz1) sinh(cz3 − cz)

cosh(cz3)
, (25)

and

F3(z) = cosh(cz3 − cz2) sinh(cz) − sinh(cz1) cosh(cz3 − cz)

cosh(cz3)
, (26)

are two functions of z. Finally, the overburden (z2 ≤ z ≤ z3) has the solution

u(x, y, z) = k1
c2

D0 · p0 · F4 · sinh(cz3 − cz) sin(k1x) cos(k2y), (27)

v(x, y, z) = k2
c2

D0 · p0 · F4 · sinh(cz3 − cz) cos(k1x) sin(k2y), (28)

w(x, y, z) = 1

c
D0 · p0 · F4 · cosh(cz3 − cz) cos(k1x) cos(k2y), (29)

where

F4 = sinh(cz2) − sinh(cz1)

cosh(cz3)
, (30)

is a coefficient. It is seen that all parts of the displacement field are proportional to the
coefficient D0 and the pressure amplitude p0. Another observation is that the functions
F2(z) and F3(z) have the following properties

dF2
dz

= cF3(z) and
dF3
dz

= cF2(z). (31)
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These relations are useful in the expressions for the strain and for verifying that the
stress fulfills the equilibrium equations.

The strain εi j = 1
2 (ui, j +u j,i ) is straightforward to compute from the displacement

field, and the strain tensor for each layer is given in the “Appendix”. The effective stress
follows from the strain by Eq. (7) and the effective stress tensor τ

(1)
i j for each layer

is also given in the “Appendix”. The stress σ
(1)
i j is equal to the effective stress in the

overburden and the underburden where the fluid overpressure is zero. In the reservoir
layer, the normal stress is obtained from the effective stress by subtracting the reservoir
pressure multiplied by Biot’s coefficient; see Eq. (14). Finally, it is straightforward to
verify that the stress σ

(1)
i j fulfills the equilibrium Eq. (3).

It is also straightforward to verify that the displacement field (u, v, w) and the stress
components σ

(1)
zz , σ (1)

xz , σ
(1)
yz and σ

(1)
xy are continuous across the internal boundaries at

the base and at the top of the reservoir. In the same way, it can be seen that the stress
components σ

(1)
xx and σ

(1)
yy are discontinuous across the horizontal layer interfaces. The

stress is�σ
(1)
xx = �σ

(1)
yy = ΛD0 p0 cos(k1x) cos(k2y) larger in the reservoir than right

above in the caprock or right below in the underburden. The following two relations
are useful for showing the continuity of the stress field across the internal layers

F2(z1) − F1 · cosh(cz1) = 1 (32)

F2(z2) + F4 · sinh(cz3 − cz2) = 1, (33)

where the first relation applies to the base of the reservoir and the second to the top of
the reservoir.

7 The Limit as k1 → 0 and k2 → 0

An important aspect of the solution (16)–(29) is what happens in the limit as both
k1 → 0 and k2 → 0. This is the limit of infinite wavelengths in both the x- and y-
directions, where the pressure (14) becomes laterally constant with an amplitude p0.
Notice that the four functions F1 to F4 depend on the arguments cz1, cz2 and cz3, and
that c also goes to zero when both k1 and k2 do so. The limit k1 → 0 and k2 → 0 can
be studied by using k1 = k2 = k and c = √

2k, and letting the wavenumber k → 0.
A fixed value of x gives that

sin(kx), sinh(kx) ≈ kx, when k → 0, (34)

cos(kx), cosh(kx) ≈ 1, when k → 0, (35)

and similarly for fixed values of y and z. This implies that the factor k/c2 disappears
in all expressions for u(x, y, z) and v(x, y, z), which are Eqs. (16), (17), (22), (23),
(27) and (28). Next, it is seen that

F1 → 0 when c → 0, (36)

F2 → 1 when c → 0, (37)
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F3 → 0 when c → 0, (38)

F4 → 0 when c → 0, (39)

which implies that the lateral displacement field goes to zero in the limit k1, k2 → 0.
This is as expected for a constant pressure distribution, because it is a one-dimensional
verticalmodel. The same argument as above implies that the vertical displacement field
of the underburden goes to zero in the limit k1, k2 → 0.

The vertical displacement field of the reservoir depends on the function F3 in
the limit c → 0, and it can be seen that F3 → (cz − cz2). Therefore, the vertical
displacement field of the reservoir (24) has the limit w → D0 p0 · (z − z1) when
k1, k2 → 0,which is the solution for the one-dimensional vertical reservoir expansion.

In the overburden, the vertical displacement field depends on the function F4, which
has the limit (cz2 − cz1) when c → 0. Therefore, the vertical displacement of the
overburden has the limit w → D0 p0 · (z2 − z1), which is, as expected, the maximum
vertical expansion of the reservoir layer.

Furthermore, it follows that the strain and the effective stress tensors are zero in the
limit k1, k2 → 0 for all layers, with exceptions for the strain εzz = αp0/(Λ + 2G)

and effective stress τ
(1)
zz = αp0 for the reservoir layer.

8 Fourier Representation of the Reservoir Pressure

The reservoir pressure can be represented as a double Fourier cosine series, assuming
that the pressure is symmetrical around the z-axis

p(x, y) = 1

4
A0,0 + 1

2

N1∑
m=1

Am,0 cos(kmx) + 1

2

N2∑
n=1

A0,n cos(kn y)

+
N1∑
m=1

N2∑
n=1

Am,n cos(kmx) cos(kn y), (40)

where the Fourier coefficients are given by

Am,n = 4

L1L2

∫ L1

0

∫ L2

0
p f (x, y) cos(kmx) cos(kn y) dx dy, (41)

and where the wavenumbers for indices m and n are

km = mπ

L1
and kn = nπ

L2
, (42)

respectively; see Kreyszig (2011). The domain sizes in the x- and y-directions are L1
and L2, respectively. A Fourier series gives an exact representation of any periodic and
well-behaved function, with periods L1 and L2 in the x- and y-directions, respectively,
in the limit N1 → ∞ and N2 → ∞. The domain size is assumed sufficiently large
for the pressure to go to zero before the edges of the domain. A finite representation,
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where N1 and N2 are of order 100, normally gives an excellent approximation of the
reservoir overpressure. It is convenient to write the series (40) compactly as

p(x, y) =
N1∑
m=0

N2∑
n=0

A′
m,n cos(kmx) cos(kn y), (43)

where the coefficients A′
mn are given by A′

0,0 = 1
4 A0,0, A′

m,0 = 1
2 Am,0, A′

0,n = 1
2 A0,n

and A′
m,n = Am,n for m, n �= 0.

The displacement field is linear in the reservoir overpressure, which also implies
that the strain and the stress are linear in the overpressure. Since the model is linear,
the displacement, stress and strain from a pressure distribution written as a Fourier
series become the superposition of the displacement, stress and strain from each term
in the Fourier series. For instance, if S(x, y, z) is a property such as the displacement,
the stress or the strain, it implies that

S(x, y, z) =
N1∑
m=0

N2∑
n=0

A′
m,n S

′(kmx, kn y, cz) and c = (k2m + k2n)
1/2, (44)

where S′(kmx, kn y, cz) is the contribution to the property fromoneFourier component,
and where p0 is replaced by the pressure A′

m,n . The function S′(kmx, kn y, cz) is zero
for m = 0 and n = 0, except for a displacement w in the vertical direction, the strain
εzz and the effective stress τ

(1)
zz , as already shown.

9 Solution of the Coupled Biot Equations

The strain tensor in the underburden, reservoir and the overburden is straightforward
to compute from the displacement field; see the Appendix. It may be seen from the
Appendix that the bulk strain is zero in the underburden and the overburden. On
the other hand, the bulk strain in the reservoir layer is proportional to the pressure,
ε = D0 p, when the pressure is represented by a Fourier series. This allows for a
decoupling of the pressureEq. (9) from the displacementEq. (8). The pressure equation
for the reservoir layer can now be written as

1

Keff

∂p

∂t
− ∇

(
κ

μ
∇ p

)
= 0 where

1

Keff
= φ

Kf
+ α − φ

Ks
+ α2

2G + Λ
, (45)

in terms of the effective modulus Keff . The pressure Eq. (45) has a time-dependent
solution of the form

p(x, y, t) =
N1∑
m=0

N2∑
n=0

am,n exp(−t/tm,n) cos(kmx) cos(kn y), (46)
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where

tm,n = μ

(k2m + k2n)κKeff
, (47)

is the characteristic time associatedwith the averagewave lengthλ = 2π/(k2m+k2n)
1/2.

The Fourier coefficients in Eq. (46) give the initial condition, which decays to zero
with time. The solution (46) provides a Fourier series that solves for the case of fully
coupled fluid pressure and deformations.

10 Uplift as a Function of Wavelengths and Layer Thicknesses

A particular aim with this model is to study which wavelengths (wavenumbers) in
a Fourier series of the reservoir pressure give surface uplift. Therefore, the vertical
deformations are studied for one term in the Fourier series, as represented by the fluid
pressure (14). The surface uplift is given by the vertical displacement (29) for z = z3,
and it can be written as

wsurf = αp0h2
2G + Λ

· fsurf(ch1, ch2, ch3) · cos(k1x) cos(k2y), (48)

and where

fsurf(ch1, ch2, ch3) = sinh(ch1 + ch2) − sinh(ch1)

ch2 cosh(ch1 + ch2 + ch3)
. (49)

Thefirst of the three factors in the uplift (48) is the one-dimensional reservoir expansion
produced by a constant reservoir pressure p0. The second factor, fsurf , is a dimension-
less surface uplift: it turns out to be a number between 0 and 1. The dimensionless
function depends on the three parameters ch1, ch2 and ch3, where

c = (k21 + k22)
1/2 and λ = 2π

c
. (50)

are the averagewavenumber and the averagewavelength, respectively. The dimension-
less surface uplift fsurf describes how the uplift depends on the layer thicknesses and
the average wavenumber, or, alternatively, the average wavelength. Figure 2 shows the
dimensionless uplift as a function of ch1 and ch2 for the three different underburden
thicknesses given as ch1 = 0.1, 1 and 10. For all three cases, the uplift is close to
one for ch2 
 1 and ch3 
 1. Another way to state this condition is that the aver-
age wavelength must be larger than both the reservoir thickness and the overburden
thickness multiplied by 2π , i.e. λ � 2πh2 and λ � 2πh3. This is a generalization of
the condition for uplift found with the two-dimensional plain-strain model of Wangen
et al. (2018), which has a reservoir layer and an overburden, but no underburden. The
dimensionless uplift (49) gives exactly the same dimensionless uplift as in Wangen
et al. (2018) under plain strain conditions (k2 = 0) and with an underburden of zero
thickness (h1 = 0).
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Fig. 2 The dimensionless surface uplift (49) as a function of ch1, ch2 and ch3

The surface uplift comes from the expansion of the reservoir. Vertical movements
of the top and the base of the reservoir can be expressed in a similar way as the surface
uplift. The vertical displacement of the top reservoir is given by either Eqs. (24) or (29)
at z = z2, because the displacement field is continuous at the layer interfaces, and it
can be written as

wtop = αp0h2
2G + Λ

· ftop(ch1, ch2, ch3) · cos(k1x) cos(k2y), (51)

and where

ftop(ch1, ch2, ch3) = 1

ch2
(sinh(ch2) + w0 sinh(ch1 + ch2)) (52)

w0 = cosh(ch3) − cosh(ch2 + ch3)

cosh(ch1 + ch2 + ch3)
. (53)

Figure 3 shows the dimensionless uplift of the top reservoir, Eq. (52). It lies between
1/2 and 1 for ch2 
 1, or alternatively λ � 2πh2. When ch2 
 1 and ch3 
 1,
the dimensionless uplift is ≈ 1, and when ch2 
 1 and ch3 � 1, it is ≈ 1/2, unless
the overburden is ‘thin’, ch1 
 1, in which case it is ≈ 1. In the opposite regime,
ch2 � 1 (λ 
 2πh2), it is almost zero. Wavelengths much shorter than 2πh2 do not
produce an uplift of the top of the reservoir. The vertical movement of the base of the
reservoir is given by Eqs. (18) and (24) for z = z1 and can be expressed as
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Fig. 3 The dimensionless top reservoir uplift as a function of ch1, ch2 and ch3
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Fig. 4 The dimensionless base reservoir uplift as a function of ch1, ch2 and ch3

wbase = αp0h2
2G + Λ

· fbase(ch1, ch2, ch3) · cos(k1x) cos(k2y), (54)

where the dimensionless vertical displacement for the base of the reservoir is

fbase(ch1, ch2, ch3) = (cosh(ch3) − cosh(ch2 + ch3)) sinh(ch1)

ch2 cosh(ch1 + ch2 + ch3)
. (55)

The dimensionless displacement fbase is plotted in Fig. 4, which shows that the base
of the reservoir has a negative displacement. This means that it is pressed down into
the underburden. Figure 4a shows that the conditions ch2 
 1 and ch3 
 1 give
small negative displacements of the base reservoir. Furthermore, it can be seen from
Fig. 4 that the maximum downward displacement of the base of the reservoir takes
place for ch2 
 1 and ch1, ch3 � 1. This condition can also be written as λ � 2πh2
and λ 
 2πh1, 2πh3. The condition says that the average wavelength must be ‘long’
compared to the thickness of the reservoir and at the same time ‘short’ compared with
the thickness of the underburden and the overburden.

Finally, the dimensionless expansion of the reservoir is given by the difference
between the vertical displacements of its top and base

fdiff(ch1, ch2, ch3) = ftop(ch1, ch2, ch3) − fbase(ch1, ch2, ch3). (56)

The dimensionless expansion is plotted in Fig. 5. It can be seen that the condition for
expansion of the reservoir is that ch2 
 1 or, alternatively, that λ � 2πh2, regardless
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Fig. 5 The dimensionless reservoir expansion as a function of ch1, ch2 and ch3
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of the overburden and the underburden. Comparing the dimensionless reservoir expan-
sion of Fig. 5 with the dimensionless surface uplift of Fig. 2 shows that the expansion
of the reservoir reaches the surface only when ch3 
 1 or λ � 2πh3. Since the
overburden is normally much thicker than the reservoir, h3 � h2, the condition for
surface uplift becomes λ � 2πh3, in terms of the average wavelength.

11 Reservoir and Overburden Above a Rigid Basement

The model is simplified considerably if it is assumed that the reservoir rests on an
absolutely rigid basement. Then, the underburden thickness can be set to zero (h1 = 0).
In this case, the displacement field for the reservoir layer (0 ≤ z ≤ z2) becomes

u(x, y, z) = D0k1
c2

(
1 − cosh(ch3)

cosh(ch2 + ch3)
cosh(cz)

)
sin(k1x) cos(k2y),

v(x, y, z) = D0k2
c2

(
1 − cosh(ch3)

cosh(ch2 + ch3)
cosh(cz)

)
cos(k1x) sin(k2y),

w(x, y, z) = D0

c

cosh(ch3)

cosh(ch2 + ch3)
sinh(cz) cos(k1x) cos(k2y), (57)

and for the overburden (z2 ≤ z ≤ z3)

u(x, y, z) = D0k1
c2

sinh(ch2)

cosh(ch2 + ch3)
sinh(cz3 − cz) sin(k1x) cos(k2y),

v(x, y, z) = D0k2
c2

sinh(ch2)

cosh(ch2 + ch3)
sinh(cz3 − cz) cos(k1x) sin(k2y),

w(x, y, z) = D0

c

sinh(ch2)

cosh(ch2 + ch3)
cosh(cz3 − cz) cos(k1x) cos(k2y). (58)

The vertical displacement (58) gives the dimensionless uplift for this case:

fsurf(ch2, ch3) = sinh(ch2)

ch2 cosh(ch2 + ch3)
, (59)

which becomes the same as the dimensionless uplift reported for the two-layer plain-
strain model by Wangen et al. (2018) by setting either k1 = 0 or k2 = 0. It should be
noted that the dimensionless uplift is given by a different expression by Wangen et al.
(2018), but it is easily rewritten to be as in Eq. (59).

12 An Example of Surface Uplift from Reservoir Pressure

This section gives the uplift, at three different times, from a pressure plume that spreads
out from an injection well. The pressure plume is expressed by Theis’ equation (Theis
1935),
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p(r, t) = μQ

4πκh2
E1

(
φμr2

4κKeff t

)
, (60)

where Q is the injection rate, h2 is, as before, the thickness of the aquifer, r =
(x2 + y2)1/2 is the radius from the injection well and t is the time. The exam-
ple has a reservoir thickness h2 = 50 m, porosity φ = 0.1, fluid compressibility
1/Kf = 5 × 10−8 Pa−1, solid matrix compressibility 1/Ks = 0 Pa−1, aquifer per-
meability κ = 1 × 10−12 m2 and injection rate Q = 0.278 m3 s−1. The overburden
thickness is h3 = 1000 m, and the reservoir layer is placed on a rigid basement, which
gives h1 = 0 m. Young’s modulus is E = 15 GPa, and the Poisson ratio is ν = 0.2.
Since E � Kf , the fluid compressibility dominates the compressibility of the rock,
and the right-hand side of Eq. (9) can be ignored.

How the pressure plume spreads out from the origin is plotted in Fig. 6a by showing
the pressure at 10, 100 and 1000 days. In Fig. 6a, the solid curve shows the Theis
solution, and the markers show the pressure computed from the Fourier series. The
uplift for one Fourier component is expressed by Eq. (48). Since the model is linear,
the uplift becomes the superposition of uplift from each term in the Fourier series.
Therefore, the uplift from the pressure plume can be expressed as

wsurf = α h2 pup(x, y)

2G + Λ
, (61)

where pup(x, y), the uplift pressure, is defined by

pup =
N1∑
m=0

N2∑
n=0

fsurf(ch1, ch2, ch3) A
′
m,n cos(kmx) cos(kn y), (62)
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Fig. 6 a The overpressure plume at times 10, 100 and 1000 days. The solid line is the Theis solution, and
the circular markers show the overpressure from a Fourier series. b The surface uplift pressure given by
Eq. (62)
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Fig. 7 a The Fourier coefficients as functions of the wavenumber for the three overpressure plumes. b The
average wavelength as a function of average wavenumber. c The dimensional uplift fsurf , Eq. (49), as a
function of the wavenumber

where

c = (k2m + k2n)
1/2. (63)

The surface uplift (61) has the same form as the one-dimensional reservoir expan-
sion (12) when it is expressed using the uplift pressure (62). The uplift pressure is the
Fourier representation of the reservoir pressure filtered with the factor fsurf , which is
a number between 0 and 1. Figure 6b shows the uplift pressure corresponding to the
pressure plume in Fig. 6a. The uplift pressure is seen have roughly the same width as
the corresponding pressure plume, but it has much less height. These observations are
explained by the factor fsurf , which reduces ‘short’ wavelengths in the Fourier series.

The Fourier coefficients as a function of the average Fourier number, nav = (m2 +
n2)1/2, are plotted in Fig. 7a. Figure 7a shows that the first Fourier coefficients become
larger as the plume spreads out. The first three Fourier coefficients for the pressure
plume at 1000 days are considerably larger than the others.

Figure 7a shows that the largest Fourier coefficients are found for an average Fourier
number less than 2. These Fourier numbers correspond to an average wavelength that
is longer than 10 km, as seen from Fig. 7b. The pressure plumes at times 10 and
100 days are not wide enough to have noticeable Fourier coefficients for the lowest
Fourier numbers.

The Fourier coefficients are multiplied with the fsurf -function, which lies in the
range 0.8–1 for Fourier numbers up to 2. For Fourier numbers larger than 4, the fsurf -
function is less than 0.5, as it converges towards 0. The large Fourier coefficients of
large wavelengths, which dominate the pressure plume at time 1000 days, are not
reduced very much by the fsurf -function, and therefore they contribute to the surface
uplift.

The actual uplift at the three times is plotted in Fig. 8a–c. These curves show the
uplift computed by expression (62) (the red circles) and the results of a finite element
computation (the blue curve). The agreement between the analytical expression and
the numerical FE computation is excellent. Figure 8a–c also show the one-dimensional
reservoir expansion (12), when applied locally, as the green curve. The uplift from the
pressure plume approaches the one-dimensional reservoir expansion as it gets wider
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Fig. 8 a Surface uplift at time 10 days. b Surface uplift at time 100 days. c Surface uplift at time 1000 days

and therefore has Fourier components with longer wavelengths. The one-dimensional
reservoir expansion becomes a reasonable approximation for the surface uplift when
the width of the plume exceeds 2πh3 ≈ 6000 m.

Expressions similar to those for the surface uplift (61), where the uplift has the same
form as the one-dimensional reservoir expansion, can be made for the displacement
at the base of the reservoir and the top of the reservoir.

13 An Example of Displacement, Strain and Stress from Reservoir
Pressure

Another version of the preceding example is shown in Fig. 9. The reservoir layer with
the reservoir pressure and the overburden is the same, but a 2000 m underburden is
added. Figure 9 shows a two-dimensional xz-cross section of the model through the
z-axis. The fluid overpressure is limited to the reservoir layer, as seen from Fig. 9a,
and Fig. 9b shows that the displacement field u is symmetric around the origin. The
displacement field u is also restricted to the surroundings of the reservoir layer. Fig-
ure 9c shows the vertical displacement field w from the expansion of the reservoir
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Fig. 9 a The overpressure plume in a 50 m-thick reservoir above 1000 m-thick overburden. The under-
burden is 2000 m. b The displacement in the x-direction generated by the pressure plume. c The vertical
displacement field generated by the pressure plume
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Fig. 10 The stresses σ
(1)
xx , σ (1)

zz and σ
(1)
xz are shown by plots a–c, respectively

layer, which produces negative vertical displacements in the underburden and posi-
tive displacements in the overburden. The positive vertical displacements reach the
surface, where it produces an uplift.

Figure 10 shows the stress corresponding to the overpressure and the displacement
field in Fig. 9. Recall that the stress is the effective stress minus the pore pressure,
Eq. (6), and that it is the effective stress that is responsible for deformations, Eq. (7).
A negative value of σ

(1)
xx and σ

(1)
zz indicates compression. A positive pore pressure

acts to expand the rock, but there is a compressive stress that holds the expansion
back. Otherwise, the rock would have been maximally expanded and stress-free. The
deformations are much larger in the vertical direction than in the x-direction, which
implies that there is less compressive stress in the z-direction than in the x-direction.
The shear stressσ (1)

xz is located near the centre of the pressure plume in the underburden,
the reservoir and the overburden. The absolute value of the shear stress is also two
orders of magnitude less than the overpressure.

14 Stress in the Overburden

The surface of the model (z = z3) is stress-free, except for the shear stress components
σ

(1)
xz and σ

(1)
yz , as seen from Eqs. (178)–(182). It turns out that the coefficient F4 can

be used to obtain a condition for when these two shear stress components are close to
zero. The shear stress σ

(1)
xz at the surface (z = z3) can be constrained in the following

way,

∣∣∣∣∣
σ

(1)
xz

p0

∣∣∣∣∣ ≤ k1
c

· α

(2 + γ )
· F4 < F4, (64)

since k1/c ≤ 1, α ≤ 1 and γ > 0. How F4 = F4(ch1, ch2, ch3) depends on ch1,
ch2 and ch3 is shown in Fig. 11, where it can be seen that the shear stress σ

(1)
xz at the

surface is negligible if one of following two conditions is fulfilled. The first is that
ch3 � 1, and the second is that ch2 
 1 and ch3 � ch2. If it is assumed that the
overburden is much thicker than the reservoir layer, the second condition becomes just
ch2 
 1. These two inequalities can be rewritten in terms of the average wavelength
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Fig. 11 The coefficient F4 is plotted as a function of ch2 and ch3 for four values of ch1

as λ 
 2πh3 and 2πh2 
 λ. Since the overburden is assumed thicker than the
reservoir layer, these intervals overlap, and the condition for negligible shear stress at
the surface is fulfilled for all wavelengths. Exactly the same argument shows that σ (1)

yz
is close to zero at the surface.

The stress in the caprock, Eqs. (178)–(183), shows that all the components of
the stress tensor are proportional to the coefficient F4. The components of the stress
tensor depend on the z-position in the caprock by either the factor cosh(cz3 − cz) or
sinh(cz3 − cz). This implies that the stress increases nearly exponentially, from the
surface towards the base of the overburden, when ch3 � 1, because 0 ≤ cz3 − cz ≤
ch3. In the other regime, where ch3 
 1, these two factors can be approximated by
cosh(cz3−cz) ≈ 1 and sinh(cz3−cz) ≈ 0. It can therefore be concluded that the short
wavelengths in the fluid pressure, ch3 � 1 or λ 
 2πh3, produce stress in the caprock
that is maximal towards its base. Long wavelengths, ch3 
 1 or λ � 2πh3, produce
a weak stress in the caprock for normal basin configurations where the overburden is
much thicker than the reservoir (h2 
 h3).
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15 Conclusions

An analytical solution is presented for the displacement, strain and stress of the poro-
elastic equations for a three-dimensional model of three horizontal layers with the
same rock properties. The three layers are an underburden on a rigid basement, a
reservoir with a pore pressure change, and an overburden. The overburden and the
underburden are assumed impermeable with no fluid pressure change. The boundary
conditions are zero vertical displacement at the base of the underburden and zero
horizontal displacement at the top surface. It has been shown that the top surface is
stress-free, except for the shear stress components xz and yz, which are almost zero for
common basin configurations where the overburden is much thicker than the reservoir.

The pressure distribution in the reservoir is assumed symmetrical around the z-
axis, in which case the pressure can be represented by a double Fourier cosine series.
The model provides a solution for the displacement, the strain and the stress as a
superposition of contributions from each term in the Fourier series. It is shown that the
bulk strain in the overburden and the underburden is zero, and that the bulk strain in the
reservoir layer is proportional to the fluid overpressure. By means of this property of
the bulk strain, a Fourier series solution is derived where the fluid flow and mechanics
are fully coupled.

The contribution fromeach term in theFourier series is proportional to the amplitude
and a factor of proportionality that is a function of the average wavelength and the
layer thicknesses. These factors provide insight into how the fluid pressure deforms
the layers with respect to wavelengths and layer thicknesses. It is seen that only terms
in the Fourier series with average wavelengths larger than 2π times the thickness of the
reservoir (λ � 2πh2) produce an expansion of the reservoir. A second condition must
be fulfilled for the expansion of the reservoir to produce a surface uplift, which is that
the average wavelength must be larger than 2π times the thickness of the overburden
(λ � 2πh3). When the second condition is not fulfilled, the expansion of the reservoir
does not reach the surface. The expansion of the reservoir can also press down the
underburden in this case.

The surface uplift can be written in the same form as the one-dimensional vertical
reservoir expansion, where the fluid pressure is based on the Fourier series for the
reservoir pressure. This expression shows that the surface uplift in this model can
never be larger than the expansion of the reservoir. The analytical expressions for the
surface uplift are compared with the numerically computed surface uplift for a case
where the reservoir is resting on a rigid basement, and the match is excellent.

The model predicts a discontinuity in the xx and yy components of the stress tensor
at the top and the base of the reservoir. Furthermore, ‘short’ wavelengths (λ 
 2πh3)
in the Fourier series for the fluid pressure produce a stress at the base of the overburden
with nearly the same strength as the amplitude in the Fourier series, but the stress does
not extend far upwards into the overburden. Terms with ‘long’ average wavelengths
(λ � 2πh3) produce negligible stress in the overburden.

It remains to study how themodel eventually can be extended to layerswith different
mechanical properties.
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Appendix: Derivation of the Solution

For each of the three spatial directions, the equations for the displacement field (8)
can be written as follows

(2 + γ )
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
+ (1 + γ )

∂2v

∂x∂y
+ (1 + γ )

∂2w

∂x∂z
= Sx , (65)

∂2v

∂x2
+ (2 + γ )

∂2v

∂y2
+ ∂2v

∂z2
+ (1 + γ )

∂2u

∂y∂x
+ (1 + γ )

∂2w

∂y∂z
= Sy, (66)

∂2w

∂x2
+ ∂2w

∂y2
+ (2 + γ )

∂2w

∂z2
+ (1 + γ )

∂2u

∂z∂x
+ (1 + γ )

∂2v

∂z∂y
= 0, (67)

where the source terms on the right-hand side are

Sx = α

G

∂p

∂x
= −αp0

G
k1 sin(k1x) cos(k2y), (68)

Sy = α

G

∂p

∂y
= −αp0

G
k2 cos(k1x) sin(k2y), (69)

for the fluid pressure (14).

Homogeneous Solution

Equations (65)–(67) are solved for one layer, and the one-layer solution is used to build
a three-layer solution. The one-layer solution is the sum of a homogeneous solution
(Sx = Sy = 0) and a special solution with nonzero pressure terms. A homogeneous
solution for the displacement field has the form

u = u1 exp(cz) sin(k1x) cos(k2y), (70)

v = v1 exp(cz) cos(k1x) sin(k2y), (71)

w = w1 exp(cz) cos(k1x) cos(k2y). (72)

Inserting expressions (70–72) into equations (65–66) for the displacement field gives
a linear system of equations

A

⎡
⎣ u1

v1
w1

⎤
⎦ = 0, (73)
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where A is

A=
⎡
⎣− (2 + γ )k21 − k22 + c2 − (1 + γ )k1k2 − (1 + γ )k1c

− (1 + γ )k1k2 − k21 − (2 + γ )k22 + c2 − (1 + γ )k2c
− (1 + γ )k1c − (1 + γ )k2c − k21 − k22 + (2 + γ )c2

⎤
⎦ .

The system of linear Eq. (73) has a nonzero solution for the vector [u1, v1, w1] when
det(A) = 0. If the determinant of A is zero, then

c2 = k21 + k22, (74)

and the linear Eq. (73) implies that the coefficients u1, v1 and w1 are related by

k1u1 + k2v1 + cw1 = 0. (75)

The same procedure can be applied for a homogeneous solution of the displacement
field of the alternative form

u = u2 exp(−cz) sin(k1x) cos(k2y), (76)

v = v2 exp(−cz) cos(k1x) sin(k2y), (77)

w = w2 exp(−cz) cos(k1x) cos(k2y), (78)

where det(A) = 0 once more implies c2 = k21 + k22, and where

A

⎡
⎣ u2

v2
w2

⎤
⎦ = 0, (79)

now implies that

k1u2 + k2v2 − cw2 = 0. (80)

A Special Solution

A special solution of (65)–(67) is searched of the form

u = A sin(k1x) cos(k2y), (81)

v = B cos(k1x) sin(k2y), (82)

w = 0. (83)

Inserting the displacements (81)–(83) into equations (65)–(66) gives the following
equations for the unknowns A and B

(
(2 + γ )k21 + k22

)
A + (1 + γ )k1k2B = k1αp0

G
(84)
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(1 + γ )k1k2A +
(
(2 + γ )k22 + k21

)
B = k2αp0

G
, (85)

which have the solution

A = αp0
(2 + γ )G

· k1
c2

, (86)

B = αp0
(2 + γ )G

· k2
c2

. (87)

The General Three-Layer Solution

The full solution for the displacement field is built from one solution for each of the
three layers. The underburden (0 ≤ z ≤ z1) has the displacement field

u(x, y, z) = (u1 exp(cz) + u2 exp(−cz)) sin(k1x) cos(k2y), (88)

v(x, y, z) = (v1 exp(cz) + v2 exp(−cz)) cos(k1x) sin(k2y), (89)

w(x, y, z) = (w1 exp(cz) + w2 exp(−cz)) cos(k1x) cos(k2y), (90)

The reservoir layer (z1 ≤ z ≤ z2) with the fluid pressure (14) has the displacement
field

u(x, y, z) =
(
u3 exp(cz) + u4 exp(−cz) + D1

k1
c

)
sin(k1x) cos(k2y), (91)

v(x, y, z) =
(

v3 exp(cz) + v4 exp(−cz) + D1
k2
c

)
cos(k1x) sin(k2y), (92)

w(x, y, z) = (w3 exp(cz) + w4 exp(−cz)) cos(k1x) cos(k2y), (93)

where the coefficient

D1 = 1

c
· αp0
(2 + γ )G

, (94)

represents the change in fluid pressure (14). The overburden (z2 ≤ z ≤ z3) has the
solution

u(x, y, z) = (u5 exp(cz) + u6 exp(−cz)) sin(k1x) cos(k2y), (95)

v(x, y, z) = (v5 exp(cz) + v6 exp(−cz)) cos(k1x) sin(k2y), (96)

w(x, y, z) = (w5 exp(cz) + w6 exp(−cz)) cos(k1x) cos(k2y), (97)

There are 18 unknown coefficients ui , vi and wi for i = 1, . . . , 6 in the solu-
tion (88)–(97). These are found from the boundary conditions (13), the continuity
in the displacement field across the layer boundaries, and algebraic constraints, such
as Eqs. (75) and (80).
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The Solution for the Coefficients in the Three-Layer Solution

The coefficients in the three-layer solution are related by (75) and (80), and all six
relations for the three layers are

k1u1 + k2v1 + cw1 = 0, (Underburden) (98)

k1u2 + k2v2 − cw2 = 0, (Underburden) (99)

k1u3 + k2v3 + cw3 = 0, (Reservoir) (100)

k1u4 + k2v4 − cw4 = 0, (Reservoir) (101)

k1u5 + k2v5 + cw5 = 0, (Overburden) (102)

k1u6 + k2v6 − cw6 = 0, (Overburden) (103)

The boundary condition at the base, w(z = 0) = 0, implies that w1 = −w2. The
boundary conditions at the surface, u(z = z3) = 0 and v(z = z3) = 0, imply

u6 = − exp(2cz3)u5, (104)

v6 = − exp(2cz3)v5. (105)

These expressions for u6 and v6 are inserted into (103), and then,with the help of (102),
it gives

w6 = exp(2cz3)w5. (106)

The displacement field is continuous at the base and the top of the reservoir at the
vertical positions z = z1 and z = z2, respectively. The continuity at the top of the
reservoir layer gives

u3e
cz2 + u4e

−cz2 + D1
k1
c

=
(
ecz2 − e2cz3−cz2

)
u5, (107)

v3e
cz2 + v4e

−cz2 + D1
k2
c

=
(
ecz2 − e2cz3−cz2

)
v5, (108)

w3e
cz2 + w4e

−cz2 =
(
ecz2 − e2cz3−cz2

)
w5, (109)

and similarly, for the base of the reservoir

u3e
cz1 + u4e

−cz1 + D1
k1
c

= u1e
cz1 + u2e

−cz1 , (110)

v3e
cz1 + v4e

−cz1 + D1
k2
c

= v1e
cz1 + v2e

−cz1 , (111)

w3e
cz1 + w4e

−cz1 = w0 sinh(cz1), (112)

where w1, w2, u6, v6 and w6 are removed from the system. In order to simplify the
process of obtaining the unknown coefficients ui , vi and wi for i = 1, . . . , 6, the
following relations are conjectured
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u1 = k1Fa, v1 = k2Fa, (113)

u2 = k1Fb, v2 = k2Fb, (114)

u3 = k1Fc, v3 = k2Fc, (115)

u4 = k1Fd , v4 = k2Fd . (116)

Inserting the conjectures (113)–(114) into the relations (98)–(101), respectively, gives
that

Fa = −w0

2c
, Fb = −w0

2c
, Fc = −w3

c
and Fd = w4

c
, (117)

and it gives that

u1 = − k1
2c

w0, v1 = − k2
2c

w0, (118)

u2 = − k1
2c

w0, v2 = − k2
2c

w0, (119)

u3 = −k1
c

w3, v3 = −k2
c

w3, (120)

u4 = k1
c

w4, v4 = k2
c

w4. (121)

The coefficients for the lateral displacements are now expressed by coefficients for
the vertical displacement. The coefficients u5 and v5 follow from the interface rela-
tions (107) and (108), respectively.

Next, the interface relation (110) is multiplied by k1, and the interface relation (111)
ismultiplied by k2. These relations are then added together, and byusing relations (100)
and (101), it gives that

w3e
cz1 − w4e

−cz1 − D1 = cosh(cz1)w0. (122)

Similarly, the interface relations (107) and (108) are multiplied by k1 and k2, respec-
tively, then added, and once more by the relations (100) and (101) give that

w3e
cz2 − w4e

−cz2 − D1 =
(
ecz2 − e2cz3−cz2

)
w5. (123)

It gives four equations, the interface Eqs. (112) and (109), in addition to the two
Eqs. (122) and (123), for the four unknownsw0,w3,w4 andw5. The pair of Eqs. (112)
and (122) give that

w3 = 1

2
e−cz1D1 + 1

2
w0, (124)

w4 = −1

2
ecz1D1 − 1

2
w0, (125)
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and similarly, Eqs. (112) and (122) give that

w3 = 1

2
e−cz2D1 + w5, (126)

w4 = −1

2
ecz2D1 + e2cz3w5. (127)

These two pairs of expressions for w3 and w4 are useful in deriving these coefficients
from either w0 or w5. Finally, these two alternative expressions give that

w0 = cosh(cz3 − cz2) − cosh(cz3 − cz1)

cosh(cz3)
D1, (128)

w5 = sinh(cz2) − sinh(cz1)

1 + exp(2cz3)
D1. (129)

The coefficients w0 and w5 give w3 and w4 from the pair of equations (124)–(125) or
(126)–(127). Then, the coefficients ui and vi for i = 1, 2, 3, 4 are obtained from w3
andw4 using relations (118)–(121). The coefficients u5 and v5 are found from interface
relations (107) and (107), respectively, and finally, u6, v6 and w6 are obtained from
Eqs. (104)–(106), respectively.

Summary of the Coefficients

The 18 coefficients ui , vi and wi for i = 1, . . . , 6 for the three-layer model are listed
below.

w1 = cosh(cz3 − cz2) − cosh(cz3 − cz1)

2 cosh(cz3)
D1, (130)

w2 = −w1, (131)

w3 = 1

2
exp(−cz1)D1 + w1, (132)

w4 = −1

2
exp(cz1)D1 − w1, (133)

w5 = sinh(cz2) − sinh(cz1)

1 + exp(2cz3)
D1, (134)

w6 = exp(2cz3) w5, (135)

u1 = −k1
c

w1, (136)

u2 = −k1
c

w1, (137)

u3 = −k1
c

w3, (138)

u4 = k1
c

w4, (139)
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u5 = k1
c

exp(−cz3) (w3 exp(cz2) − w4 exp(−cz2) − D1)

2 sinh(cz3 − cz2)
, (140)

u6 = − exp(2cz3) u5, (141)

v1 = −k2
c

w1, (142)

v2 = −k2
c

w1, (143)

v3 = −k2
c

w3, (144)

v4 = k1
c

w4, (145)

v5 = k2
c

exp(−cz3) (w3 exp(cz2) − w4 exp(−cz2) − D1)

2 sinh(cz3 − cz2)
, (146)

v6 = − exp(2cz3) v5. (147)

It can be seen that some coefficients depend on the coefficients listed previously.
All coefficients can be traced backward to either w1 or w5. They are therefore all
proportional to the pressure perturbation, D1. The following form of the coefficients
is compact and very well suited for programming. It is straightforward to obtain the
solution in the form given in Sect. 10 using the coefficients (130)–(147).

Strain

The solution for the displacement field, Eqs. (16)–(29), gives the following expressions
for the strain εi j = 1

2 (ui, j + u j,i ).
The strain in the underburden (0 ≤ z ≤ z1) is

εxx = −k21
c2

D0 p0F1 cosh(cz) cos(k1x) cos(k2y), (148)

εyy = −k22
c2

D0 p0F1 cosh(cz) cos(k1x) cos(k2y), (149)

εzz = D0 p0F1 cosh(cz) cos(k1x) cos(k2y), (150)

εxy = k1k2
c2

D0 p0F1 cosh(cz) sin(k1x) sin(k2y), (151)

εyz = −k2
c
D0 p0F1 sinh(cz) cos(k1x) sin(k2y), (152)

εxz = −k1
c
D0 p0F1 sinh(cz) sin(k1x) cos(k2y). (153)

The strain in the reservoir layer (z1 ≤ z ≤ z2) with overpressure is

εxx = k21
c2

D0 p0 (1 − F2(z)) cos(k1x) cos(k2y), (154)
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εyy = k22
c2

D0 p0 (1 − F2(z)) cos(k1x) cos(k2y), (155)

εzz = D0 p0F2(z) cos(k1x) cos(k2y), (156)

εxy = −k1k2
c2

D0 p0 (1 − F2(z)) sin(k1x) sin(k2y), (157)

εyz = −k2
c
D0 p0F3(z) cos(k1x) sin(k2y), (158)

εxz = −k1
c
D0 p0F3(z) sin(k1x) cos(k2y). (159)

The strain in the overburden (z2 ≤ z ≤ z3) is

εxx = k21
c2

D0 p0F4 sinh(cz3 − cz) cos(k1x) cos(k2y), (160)

εyy = k22
c2

D0 p0F4 sinh(cz3 − cz) cos(k1x) cos(k2y), (161)

εzz = −D0 p0F4 sinh(cz3 − cz) cos(k1x) cos(k2y), (162)

εxy = −k1k2
c2

D0 p0F4 sinh(cz3 − cz) sin(k1x) sin(k2y), (163)

εyz = −k2
c
D0 p0F4 cosh(cz3 − cz) cos(k1x) sin(k2y), (164)

εxz = −k1
c
D0 p0F4 cosh(cz3 − cz) sin(k1x) cos(k2y). (165)

One observes that both the underburden and the overburden have zero bulk strain
ε = εxx + εyy + εzz = 0, and that the reservoir has a bulk strain proportional to the
pressure, ε = D0 p0 cos(k1x) cos(k2y).

Effective Stress

The effective stress follows from the strain computed in the preceding subsection
when inserted in the constitutive law (7). The fact that there is a zero bulk strain in the
overburden and the underburden simplifies the expressions for the effective stress in
these two layers.

The effective stress in the underburden (0 ≤ z ≤ z1) is

τ (1)
xx = −2

k21
c2

GD0 p0F1 cosh(cz) cos(k1x) cos(k2y), (166)

τ (1)
yy = −2

k22
c2

GD0 p0F1 cosh(cz) cos(k1x) cos(k2y), (167)

τ (1)
zz = 2GD0 p0F1 cosh(cz) cos(k1x) cos(k2y), (168)

τ (1)
xy = 2

k1k2
c2

GD0 p0F1 cosh(cz) sin(k1x) sin(k2y), (169)
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τ (1)
yz = −2

k2
c
GD0 p0F1 sinh(cz) cos(k1x) sin(k2y), (170)

τ (1)
xz = −2

k1
c
GD0 p0F1 sinh(cz) sin(k1x) cos(k2y). (171)

The effective stress in the reservoir (z1 ≤ z ≤ z2) is

τ (1)
xx =

(
Λ + 2G

k21
c2

(1 − F2(z))

)
D0 p0 cos(k1x) cos(k2y), (172)

τ (1)
yy =

(
Λ + 2G

k22
c2

(1 − F2(z))

)
D0 p0 cos(k1x) cos(k2y), (173)

τ (1)
zz = (Λ + 2GF2(z)) D0 p0 cos(k1x) cos(k2y), (174)

τ (1)
xy = −2

k1k2
c2

GD0 p0 (1 − F2(z)) sin(k1x) sin(k2y), (175)

τ (1)
yz = −2

k2
c
GD0 p0F3(z) cos(k1x) sin(k2y), (176)

τ (1)
xz = −2

k1
c
GD0 p0F3(z) sin(k1x) cos(k2y). (177)

The effective stress in the overburden (z2 ≤ z ≤ z3) is

τ (1)
xx = 2

k21
c2

GD0 p0F4 sinh(cz3 − cz) cos(k1x) cos(k2y), (178)

τ (1)
yy = 2

k22
c2

GD0 p0F4 sinh(cz3 − cz) cos(k1x) cos(k2y), (179)

τ (1)
zz = −2GD0 p0F4 sinh(cz3 − cz) cos(k1x) cos(k2y), (180)

τ (1)
xy = −2

k1k2
c2

GD0 p0F4 sinh(cz3 − cz) sin(k1x) sin(k2y), (181)

τ (1)
yz = −2

k2
c
GD0 p0F4 cosh(cz3 − cz) cos(k1x) sin(k2y), (182)

τ (1)
xz = −2

k1
c
GD0 p0F4 cosh(cz3 − cz) sin(k1x) cos(k2y). (183)

The stress is σ
(1)
i j = τ

(1)
i j in the underburden and the overburden, because three is no

change in the fluid pressure in these two layers. In the reservoir, the stress is obtained
from the definition of the effective stress, Eq. (6), as σ

(1)
i j = τ

(1)
i j −αp(1)δi j , where the

reservoir overpressure is given by (14). It is straightforward to check that the stress
σ

(1)
i j in each layer fulfills the equilibrium Eq. (3).
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