


1 Introduction

Vitrinite reflectance (VR) is a widely used thermal indicator in sedimentary basin
that is routinely measured in most exploration wells. The VR values can be
grouped into immature, oil generative, gas generative and exhausted, and they
are therefore used as a direct measurement of the degree of maturity of the rock.

VR is an expression of the impact of a temperature-history on the rock. Quartz
cementation is also a process that depends on the temperature history, (Walder-
haug 1994a, 1994b, Oelkerset al.1996, 2000, Bjørkum 1994, 1996). One would
therefore expect a relationship between the progress of quartz cementation and
VR, because both are functions of the time-temperature history. A connection
between porosity and VR has been studied in a series of papers by Schmoker
and co-workers, (Schmoker and Gautier 1988, 1989, Schmoker and Higley 1991,
Schmoker and Schenk 1994, Kopaska-Merkel and Schmoker 1994) and Hayes
(1991). Schmoker and co-workers have correlatedlog10 φ, (whereφ is the poros-
ity), with log10(TTI) andlog10(%Ro), where TTI is the time-temperature-integral
of Lopatin and %Ro is the vitrinite reflectance. This paper follows the idea of ex-
pressing the porosity as a function of TTI and %Ro. It is in particular the porosity
of sandstones that can be expressed as a function of TTI and %Ro using simple
models for quartz cementation.

Expressing sandstone porosity as a function of TTI and %Ro is an example of the
general problem of expressing the progress (φ) of one kind of process with the
progress (%Ro) of another process, where both processes are based on Arrhenius
kinetics. A modeling approach to the mapping of one kind of time-temperature
impact to another shows when we can expect such relations to exist, and what
such a relationship might be. The use of VR as a measure of the maturity stages
of hydrocarbon generation is an analogous application. Both VR and hydrocarbon
generation are processes modeled with Arrenhius kinetics, and where the progress
of VR is used as a measure of the progress of hydrocarbon generation.

It is important to point out that it is only the porosity reduction caused by quartz
cementation that is expressed as a function of VR. The mechanical compaction
of sand is controlled by the effective vertical stress, and is not a function of the
temperature-history, (Chuanet al. 2002). However, mechanical compaction be-
comes arrested when the sandstone is buried to a sufficient depth for quartz ce-
mentation to start, (Bjørkumet al. 1998, Bjørkum and Nadeau 1998).

The paper is organized as follows: A short review of models for VR and the model
for quartz cementation are first presented. Then follows how the porosity can be
expressed as a function of TTI and %Ro for constant heating rates. Examples
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with piecewise linear temperature histories are given, and it is shown how the
parameters in the specific surface area can be calibrated with a set of porosity and
VR observations. Two data sets are studied with the proposed model, before a
conclusion is given.

2 Time-temperature-integral and VR

There are various models that allow VR to be calculated from a given temperature
history, (Waples 1980, Larter 1989). The simplest approach is based on the time-
temperature integral (TTI) of Lopatin, (Lopatin 1971), as done by for instance
Waples (1980). Later models introduced by Burnham and Sweeny (1989), Larter
(1989) and Sweeny and Burnham (1990) are based on Arrhenius kinetics. These
models use multi-step Arrhenius kinetics to compute a transformation ratio, which
is converted to VR by use of an exponential function.

We will begin with TTI based VR because it allows for simple expressions of the
sandstone porosity as a function of the TTI and %Ro, when quartz cementation
controls the porosity reduction. The TTI for a given temperature history is

TTI =
∫ t1

t0
bI eaIT (t)dt (1)

whereT (t) is the temperature inoC, and wheret is the time in units s, (see ta-
ble 1). The parameteraI tells how TTI is related exponentially to the temperature,
and the parameterbI is a scaling factor, (Lopatin 1971). The TTI integral is an
expression of the observation made by Lopatin that the rate of hydrocarbon gen-
eration doubles for every temperature step of10 oC. The integral (1) for TTI is
rewritten using the base of the natural logarithm, which turns out to be convenient
in the following. The TTI can be computed exactly for a constant heating ratec
(oC Ma−1),

TTI =
bI

aI c

(
eaIT2 − eaIT1

)
(2)

whereT1 andT2 are the temperatures at the beginning and the end of the time in-
terval of heating, respectively, and where the heating rate isc = (T2−T1)/(t2−t1).
The temperature at the start of the heating becomes less important when the tem-
perature at the end of the heating interval is sufficiently high,exp(aI(T2 − T1)) À
1, because TTI can then be approximated as

TTI ≈ bI

aI c
eaIT2 (3)
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The time-temperature integral is converted to VR by the exponentiation

%Ro= exp
(
p ln(TTI) + q

)
(4)

wherep andq are parameters. It is seen that %Ro is proportional to TTI to the
power of the parameterp with eq as a scaling factor. There is no unique set of
p andq values, but several sets of parameters have been calibrated for different
wells and burial histories, (Morrow and Issler 1993).

3 Quartz cementation using Walderhaug’s precipi-
tation rate

Several different models have been suggested for the often large volume frac-
tions of quartz cement found in many deeply buried sandstones. An often used
explanation is fluid flow, where quartz is believed to have precipitated from su-
persaturated fluids flowing through the sandstones. It has been pointed out that
a very large volume of supersaturated fluid is needed to import all the observed
silica, and fluid flow is therefore not likely to be a general explanation, (Bjørlykke
1993, Bjørlykke,et al. 1988). It has been argued that thermal convection cells
could be a possible cause for the high fluid fluxes needed, where dissolution takes
place at one end of the circular current and where precipitation takes place at the
other end, (Wood and Hewett 1984). On the other hand, it turns out that the per-
meability, the layer thickness and thermal gradient needed for onset of thermal
convection is rarely met, (Bjørlykkeet al.1988, Wangen 1994).

A more likely explanation is an internal source for the silica. A commonly used
explanation is dissolution of quartz at grain contacts by pressure-solution. Pres-
sure solution leads to dissolution of quartz in the fluid film at the quartz grain con-
tacts, because the solubility of quartz is increasing with increasing pressure. The
dissolved silica at the grain contacts is transported by diffusion in the fluid film
towards the pore, where it precipitates as quartz cement, (Weyl 1955, Rutter 1983,
De Boer 1977, Tada and Siever 1989, Dystheet al. 2002). Although a physically
viable explanation petrographic studies of quartz cemented sandstone do not sup-
port the idea of pressure solution at quartz-quartz contacts, (Oelkers et al. 1996).
It is observed by cathodeluminicense that the detrial quartz grains remain intact
under the quartz overgrowth. The source for silica found as cement in the sand-
stones has instead been related to dissolution along stylolites or other quartz-mica
contacts, which are common features in most sandstones, (Heald 1959, Oelkers
et al. 1996). How mica enhances dissolution is studied both experimentally and
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theoretically, but it is not fully understood, (Weyl 1959, Tada and Siever 1989).
The silica dissolved at the stylolites is transported by diffusion into the pore space
in between the stylolites where it precipitates as cement, (Aaseet al.1996, Oelk-
ers et al. 1996, Walderhaug 1996). Petrographic studies show that precipitation is
the slowest step in the overall process of dissolution at the stylolites, transport of
silica by diffusion, and precipitation in the pore space. The silica supersaturation
between the stylolites is therefore almost constant, (Oelkers et al. 1996, 2000).

It has been possible to estimate the quartz cementation rates as a function of tem-
perature, (Walderhaug 1994a, 1994b). Walderhaug found that the rate of quartz
cementation as a function of temperature can be expressed as

r(T ) = bφ eaφT , (5)

in units mole m−2s−1, wherebφ = 1.98 ·10−18 mole m−2s−1 andaφ = 0.051 1/oC,
(see table 1). Walderhaug’s expression for the rate of quartz precipitation can be
turned into an expression for the rate of change of porosity,

dφ

dt
= −vqS(φ)r(T ) (6)

wherevq (m3mole−1) is the molar volume of quartz and whereS(φ) (m2/m3) is
the specific surface of the pore space as a function of the porosity. (The specific
surface is the effective surface area of the pore space divided by the volume of the
sample.) The specific surface will decrease as the pore space is filled with cement.
A function that tells how the specific surface depends on the porosity is required
in order to predict the porosity. A simple choice for specific surface as a function
of the porosity is

S(φ) = S0Ŝn(φ) and Ŝn(φ) =

(
φ− φc

φ0 − φc

)n

(7)

whereS0 is the specific surface at the onset of cementation. The functionŜn(φ)
is equal to one forφ = φ0, the porosity at the onset of cementation, and zero for
φc. The porosityφc is the minimum porosity where the pore space becomes dis-
connected. The exponentn controls how the specific surface decreases towards
zero with decreasing porosity. The specific surface function (7) is assumed to
represent pore space of a sandstone at a macroscopic scale, and it is therefore the
average specific surface for a sandstone. For this reason it may be different from
exact models of the specific surface for a homogeneous pore space with a con-
stant grain size. For example a straightforward scaling argument used by Lichtner
(1988) gives an exponentn = 2/3. The porosity modelling that has been car-
ried out by Bjørkum (1996), Oelkerset al. (1996, 2000) and Walderhaug (1996)
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is based on a linear function (7), (n = 1). Figure 1 shows the dimensionless
specific surfacêS for n = 1/2, 1, 2, 3 and4. There exist analytical relation-
ships between the specific surface and the porosity for different types of random
homogeneous porous media (Weissberg 1963) and random heterogeneous porous
media (Torquato 1991), and equation (7) can be considered a simple mean to ap-
proximate both exact and empirical relationships. The Fountainebleu sandstones
is an example of a sandstone where the specific surface area have been studied in
the laboratory during dissolution and fluid flow, (Kiefferet al. 1999, Joveet al.
2003).

Equation (6) can be integrated to an expression for the porosity as a function
of time or temperature when it is assumed that heating takes place at a constant
ratec (oC Ma−1), (Walderhaug 1996, Wangen1999, 2000). (See the appendix for
details.)

4 Porosity as a function ofTTI for constant heating
rates

Both TTI and the porosity during quartz cementation is given as exponential func-
tions of the temperature. There are unfortunately no general and simple way to
express the temperature dependence of porosity with the temperature dependence
of TTI, except when bothexp(aφ(T2 − T1)) À 1, exp(aI(T2 − T1)) À 1, and
when the heating rate is constant. (A generalization to piecewise linear temper-
ature histories follows later.) Given these assumptions there is an expression for
the porosity as a function of TTI, as shown by equations (25) and (26) in the ap-
pendix. It is seen from these equations that most parameters from both quartz
cementation and TTI are coming together in the (dimensionless) numberNφ, (see
the appendix). The exceptions are the initial porosity, minimum porosity and the
exponent in the specific surface function. An important observation is that the
heating rate is also present in the numberNφ. Ideally, we would like every aspect
of the temperature history to be represented only by TTI in the expressions (25)
and (26) for the porosity. The fact that the heating ratec turns up as an explicit
parameter in addition to TTI shows that TTI alone cannot be used to represent the
temperature history for quartz cementation. The relationship (27) shows that the
only exception is whenaφ = aI , i.e. when both processes have the same exponen-
tial rate dependence of temperature. The standard parameter values foraφ andaI

shows thataφ/aI ≈ 0.73, (see table 1), which is close to1, and the dependence
on the heating rate therefore turns out to be weak.
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It is convenient to plot the sandstone porosity as a function of ln(TTI), because
TTI grows to the power ofT . It follows from expression (25) that

ln(−ln φ̂) ≈ aφ

aI

ln(TTI) + ln(Nφ) (8)

whereφ̂ is the normalized porosity(φ− φc)/(φ0 − φc). The normalized porosity
φ̂ is 1 at the onset of cementation and decreases towards0 with increasing cemen-
tation. The porosity has to be represented asf1 = ln(−ln φ̂), for n = 1, in order
to become a straight line when plotted as a function of ln(TTI). A specific surface
exponent different from1 implies that the porosity has to be represented by

fn = ln

(
φ̂1−n − 1

(n− 1)

)
(9)

(The representationfn approachesf1 whenn → 1.) It is also seen that a con-
stant specific surface (independent of porosity) is given byn = 0, and that
f0 = ln(1 − φ̂) is linearly related to ln(TTI). These particular representations
of the porosity (f0, f1 andfn) are directly related to expression (7) for the specific
surface as a function of the porosity. A different relationship for the specific sur-
face than expression (7) implies another representation of the porosity in order to
have a linear relationship in ln(TTI). The expression forf in the case of a general
functionŜ(φ̂) for the specific surface as a function of the porosity is

f(φ̂) = ln

(∫ 1

φ̂

dφ̂

Ŝ(φ̂)

)
(10)

as shown in the appendix. (Equation (10) yields expressionsf0, f1 andfn.) This
is a hint about the importance the specific surface plays in porosity reduction
by quartz cementation. It is therefore the integral of the inverse specific surface
that becomes a straight line of ln(TTI). Under reasonable assumptions there will
always be a one-to-one relationship betweenf andφ, soφ can be mapped tof
and visa versa.

The straight line plotted as function of ln(TTI) has the steepness given by the
ratio aφ/aI , which is the temperature exponent for quartz cementation relative to
the exponent of TTI. The numberNφ gives the porosity in terms of af -value for
TTI = 1, where for examplêφ = e−Nφ for n = 1.

The porosity reduction by quartz cementation during constant heating is not only a
function of TTI, but also an explicit function of the heating rate. The dependence
on the heating rate is in the term ln(Nφ). That implies that the porosity develop-
ment for different heating rates becomes lines with the same steepness, but with
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different offset. The (dimensionless) numberNφ can be rewritten as

Nφ =

(
c

cp

)(aφ/aI)−1

(11)

in terms of the ratio of the heating rate and a reference heating rate. The reference
heating ratecp is defined by the relations (27) and (11). The porosity represented
asfn can then be plotted as

fn ≈ aφ

aI

ln(TTI) +
(aφ

aI

− 1
)
ln

( c

cp

)
(12)

which shows the heating rate dependence explicitly. The factor1 − (aφ/aI) =
0.27, which means that the dependence on the heating rate is weak, (since the
absolute value of the factor is close to zero). The straight lines for two heating
rates, where one is a factor2 higher than the other, are separated vertically by
0.27 ln(2) ≈ 0.19.

5 Porosity as a function of%Rofor constant heating
rates

Similar expressions to those for the porosity as a function of TTI and ln(TTI) can
be made using %Ro, because of the linear relationship (4) between the ln(TTI)
and ln(%Ro), (see equations (28) and (29) in the appendix). These expressions
can be written as

fn ≈
(

aφ

aIp

)
ln(%Ro) + ln(NR) (13)

in terms of ln(%Ro), (see appendix). All three expressions (28), (29) and (13)
are derived under the assumption of heating at a constant rate. It is the porosity
represented byfn, or the integral (10) in case of general specific surface function,
that becomes a straight line when plotted as a function of ln(%Ro). Although the
preceding derivations are carried out with empirical rate laws for quartz cementa-
tion and %Ro, it is reasonable to expect that these rate laws show real trends when
they are combined.

The straight line relationship (13) has two parameters, similar tofn as a function
of ln(TTI), which are the steepnessaφ/(aI p) and the offset ln(NR). It is seen that
the steepness of the line isaφ/(aIp) ≈ 4. with the parameter values from table 1.
The numberNR depends on the heating rate in a similar way to the numberNφ,
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which can be shown explicitly as

fn =

(
aφ

aIp

)
ln(%Ro) +

(
aφ

aI

− 1
)

ln
( c

cR

)
, (14)

where

NR =
(

c

cR

)(aφ/aI)−1

(15)

and where the reference heating ratecR is defined in terms ofNR using equa-
tion (30). The factor1 − (aφ/aI) = 0.27 is close to0 and the dependence on the
heating rate is therefore weak.

Another way to write the porosity representationfn is to emphasize the initial
specific surfaceS0 by writing

fn ≈
(

aφ

aIp

)
ln(%Ro) + ln

( S0

SR

)
(16)

where the reference specific surfaceSR is defined byNR = S0/SR. This may be
a convenient way to write the porosity (orfn) as a function of ln(%Ro) when the
initial specific surfaceS0 and the specific surface exponentn that are free tuning
parameters.

The porosity as a function of temperature for different constant heating rates are
plotted in figure 2a. The parameters used in figure 2a are given by table 1, except
for the heating rates. Heating is from0 oC to 180 oC for the four time intervals
260 Ma, 130 Ma, 65 Ma and32.5 Ma. It is seen from figure 2a that slow heating
to 180 oC lead to earlier porosity reduction than rapid heating. The same porosity
history is also plotted as a function VR in figure 2b. Slow heating rates leads to
larger VR values at the end temperature180 oC. When the latter plot is converted
to a plot off as a function ln(%Ro) then the curves become straight lines, as
shown in figure 2c. The vertical offset between the lines is(1− (aφ/aI))ln(2) =
0.2, because the different lines represent a doubling of the heating rate.

6 Piecewise linear temperature histories

The temperature history of a sandstone is rarely caused by heating at a constant
rate. A data set with porosity as a function VR from the same formation will
contain samples with different temperature histories. A large scatter in the VR-
values indicates that the temperature history has been different for the different
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samples. It turns out that the porosity plotted asf -values of ln(%Ro) follows ap-
proximately the same line for different temperature histories given that all other
parameters are the same. Figure 2c shows thatf -values of ln(%Ro) for four dif-
ferent heating rates are given by four closely spaced lines. The influence of the
temperature history is studied further in figures 3a to 3d. Figure 3a shows the
f -values as a function of ln(%Ro) for the different temperature histories shown
in figure 3b. Figure 3c shows the porosity as a function of %Ro and figure 3d
shows the porosity as a function of time. Figures 3a and 3c show that the porosity
follow roughly the same curve when plotted as a function of %Ro even for tem-
perature histories that are quite different. It is therefore possible to use heating
at a constant rate to reproduce a given linear relationship betweenf -values and
ln(%Ro)-values.

7 Calibration of the specific surface area

An observed linear relationship betweenf -values and ln(%Ro)-values can be re-
produced using heating at a constant rate, which means that a detailed knowledge
of the temperature history is not needed. This allows the average specific surface
of a formation to be estimated without the use of a detailed temperature history.
The parametersS0 andn in the specific surface function (7) are the only (free)
tuning parameters apart from a heating rate. The other parameters involved, like
the parameters for TTI, %Ro and quartz cementation, are given. It is the aver-
age specific surface that is obtained by matching the line (13) against a data set,
because different samples will most likely have a specific surface that is different
from the average of the full data set. The optimal values for the initial specific
surfaceS0 and the exponentn are therefore the parameters that best describes the
average specific surface for the entire sandstone formation.

A data set of porosity and VR measurements has to be converted into a corre-
sponding set offn and ln(%Ro)-values in order to be analyzed with relation-
ship (13). Thefn-values should then be distributed along a straight line when
plotted as a function of ln(%Ro). The optimal straight lineA ln(%Ro) + B that
fits a data set is found using least square minimization. The numbersA andB
from least square minimization must match the line (13). The steepnessA of this
line should be equal to the steepnessaφ/(aIp) of the line (13). The only way
to match theA-parameter is to tune the specific surface exponentn that controls
the fn values. In other words, the exponentn has to be tuned so thatA from
least square minimization of the data becomes the same as the (fixed) steepness
required by the line (13).
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Once the optimal exponentn is found, and the data fit a line with the given steep-
ness, it is the offsetB that has to match ln(NR) of the line (13). The expression for
the line (13) is based on heating at a constant rate. It is therefore no unique value
for S0 that makes ln(NR) = B, because there is no unique choice for a heating
rate. From the equality ln(NR) = B it follows that

S0 = exp
(
B +

qaφ

paI

)((φ0 − φc)aφ

vqbφ

)( bI

aI

)(aφ/aI)
c(aφ/aI)−1 (17)

whereS0 depends on the heating rate to the power of(aφ/aI)− 1 = −0.27. The
initial specific surfaceS0 is therefore increasing by one order of magnitude when
the heating rate is reduced by a factor5000. A reasonable guess for a heating rate
may therefore be used to obtain an order of magnitude estimate for the optimal
(average) initial specific surface.

8 Results

The calibration of the specific surface as a function of the porosity is demonstrated
on two data sets. The first data set is given by Schmoker and Higley (1991) for
the Lower Cretaceous J sandstone in the Denver basin of Colorado, and it covers
31 widely separated wells. The VR values from the same well are not expected to
vary much because the formation thickness does not exceed46 m, and it is gener-
ally less than30 m. Several core-plug porosity measurements were carried out for
each well, (with an average of 31 measurements per well), and the porosity mea-
surements are reported as histograms that show the 10th, 25th, 50th, 75th and 90th
percentile, (Schmoker and Higley, 1991). The geological setting, petrography and
the full data sets are found in Schmoker and Higley (1991), where they correlate
the porosity to VR with equationφ = a(%Ro)b using least square regression. The
data used here is taken from table 3 in Schmoker and Higley (1991), where the
50th percentile of the porosity is related to the VR-measurements. The J sand-
stone is treated as a single unit as was done by Schmoker and Higley (1991). The
50th percentile of the porosity represented asf -values is plotted as a function of
ln(%Ro) in figure 4. The optimal value of the exponent in the specific surface
function isn = 3.15 as seen from figure 5. Figure 5 shows the steepnessA of the
linear least square minimization as a function of the exponentn. The horizontal
line in figure 5 is the steepness required by the line of equation (13). The offset
from linear least square minimizationB was matched using the initial specific sur-
face of equation (17), with a constant heating rate10 oC/Ma. The initial specific
surface is thenS0 = 2.5 ·105 m2/m3. The porosity at the onset of the cementation
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was set toφ0 = 0.26 and the minimum porosity was set toφc = 0.03. There is a
trend in the data set although the J sandstone is not an ideal quartzose sandstone.

A similar calibration of the specific surface was carried out for the Upper Juras-
sic Norphlet Formation in southwestern Alabama, using data reported in a study
of porosity correlated to VR by Schmoker and Schenk (1994). The geological
setting, petrography, review of data preparation and an extensive reference to the
work done on the Norphlet formation is given in Schmoker and Schenk (1994).
The calibration of specific surface using the data in table 1 and 2 of in Schmoker
and Schenk (1994) is shown in figure 6. The data is plotted asfn-values of
ln(%Ro) for n = 3.5. The optimal exponentn is shown in figure 5, where the
steepnessA of the linear least square minimization is plotted for then in the in-
terval 0 to 6. The offsetB from linear least square minimization was matched
using the initial specific surface from equation (17) with a constant heating rate
c = 10 oC/Ma. The initial specific surface corresponding toB then becomes
S0 = 1.1 · 104 m2/m3. The initial specific surface for the Norphlet sandstone is
almost an order of magnitude less than the initial specific surface of the J sand-
stone, which is consistent with the observations of Schmoker and Schenk (1994)
that the Norphlet sandstone has a high average porosity compared with sandstone
formations in other basins with the same maturity.

These two sandstones are different with respect to the porosity, which is reflected
by the initial specific surface. However, the exponentn, which tells how the spe-
cific surface decrease with decreasing porosity, are comparable for the two differ-
ent sandstones, (3.15 for the J sandstone and3.5 for the Norphlet sandstone). An
exponent larger as large as3 is different from what could be expected from simple
models of porous media, which predict an exponent close to1, (Torquato 1991).
The reason for this difference is likely to be the heterogeneous nature of sand-
stones. A large exponentn also reflects the fact that the porosity approaches the
minimum porosity in a smooth manner with increasing temperature during burial,
(Wangen 1999, 2000). An exponentn less than one implies that the minimum
porosity will be reached at finite temperature, (Wangen 1999, 2000). But larger
data sets and several more calibrations have to be carried out in order to establish
that an exponentn as large as3 is a common behavior for the specific surface of
sandstones.

9 Conclusion

The porosity reduction caused by quartz cementation is related to the thermal
exposure of the rock expressed as VR. A simple relationship is derived between
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the porosity and VR for heating at a constant rate. The expression for porosity as
a function of VR is based on Walderhaug’s (Walderhaug 1994a, 1994b) empirical
expression for the rate of quartz cementation, and VR related to TTI. It is used that
the rate of change of TTI has the same form as the empirical rate law for quartz
cementation. The expression for the porosity as a function of VR for heating
at a constant rate shows that the heating rate appears explicitly. It is therefore
not possible to use quartz cementation as an equivalent measure of the thermal
exposure as VR, because the conversion of VR to volume fraction quartz cement
involves the heating rate, or in general the temperature history. However, the
dependence on the heating rate turns out to be weak, because the exponents in
the empirical rate law for quartz cementation and TTI are close. It is shown with
numerical examples that the porosity as a function of VR follows nearly the same
curve for very different temperature histories.

It is possible to represent the porosity by the inverse specific surface integrated
over the porosity. This representation of the porosity becomes a straight line when
plotted as a function of ln(%Ro) for heating at a constant rate. It is shown that dif-
ferent temperature histories yield nearly the same line as the one that results from
heating at a constant rate. This linear relationship between the representation of
the porosity and ln(%Ro) allows the function for the average specific surface to
be calibrated with a data set. The average specific surface function is taken to
be a proportional to an initial value for onset of cementation and to the porosity
to the power of a given exponent. It is shown how these two parameters in the
function for the average specific surface can be optimized using a data set of mea-
sured porosity and VR values. Two examples are given based on the data sets of
Schmoker and Higley (1991) and Schmoker and Schenk (1994), respectively. The
data sets have exponents in the specific surface function that are3.15 and3.5, re-
spectively. It might therefore be that the average specific surface does not depend
linearly on the porosity, but on the porosity to power of an exponent that is close
to 3.

Although the suggested relationship between porosity and VR is based on simple
models for quartz cementation and VR, it may serve as a useful method to calibrate
the average specific surface of a sandstone formation.
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10 Appendix

Equation (6) for the rate of change of porosity can be written as

dφ̂

Ŝ(φ̂)
= − vqS0bφ

φ0 − φc

eaφT (t) dt. (18)

This equation can be integrated as follows

∫ φ̂

1

dφ̂

Ŝ(φ̂)
= − vqS0bφ

(φ0 − φc)aφc

(
eaφT2 − eaφT1

)
(19)

for heating from the temperatureT1 to T2 in the time interval fromt1 to t2 with the
constant heating ratec = (T2 − T1)/(t2 − t1). The porosity isφ0 at the beginning
of the heating, which corresponds toφ̂ = 1. The right-hand-side of equation (19)
can be integrated in the case of the specific surface function (7), and the porosity
becomes

φ = φc + (φ0 − φc) exp
(
−Nb (eaφT2 − eaφT1)

)
(20)

for the specific surface exponentn = 1, and

φ = φc + (φ0 − φc)
(
1− (1− n)Nb (eaφT2 − eaφT1)

)1/(1−n)
(21)

for the specific surface exponentn 6= 1, where the numberNb is

Nb =
S0vqbφ

(φ0 − φc)aφc
(22)

We notice that most parameters involved in porosity reduction appear only once,
and that is as a factor in the numberNb.

Assuming thatexp(aφT2) À exp(aφT1) and that TTI can be approximated by
equation (3) we get that

∫ φ̂

1

dφ̂

Ŝ(φ̂)
≈ −Nφ TTI(aφ/aI) (23)

This equation can be written as

f =
aφ

aI

ln(TTI) + ln(Nφ) (24)

wheref is defined by equation (9). When the specific surface is given by equa-
tion (7), we get the following relationship between the porosity and the TTI,

φ ≈ φc + (φ0 − φc) exp
(
−Nφ TTI(aφ/aI)

)
(25)

14



for specific surface exponentn = 1, and

φ ≈ φc + (φ0 − φc)
(
1− (1− n)Nφ TTI(aφ/aI)

)1/(1−n)
(26)

for specific surface exponentn 6= 1, where

Nφ = Nb

(aIc

bI

)(aφ/aI)
(27)

The porosity can be related %Ro by use of the relationship (4) between %Ro and
TTI, which gives that

φ ≈ φc + (φ0 − φc) exp
(
−NR %Ro(aφ/aI p)

)
(28)

for specific surface exponentn = 1, and

φ ≈ φc + (φ0 − φc)
(
1− (1− n)NR %Ro(aφ/aI)

)1/(1−n)
(29)

for specific surface exponentn 6= 1, where

NR = exp
(
− qaφ

paI

)
Nφ (30)

The (dimensionless) numberNR includes the parameters for quartz cementation,
TTI and %Ro.
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13 Tables

Symbol Value Units
vq 2.4 · 10−5 m3mole−1

aI 0.069 oC−1

bI 2.19 · 10−17 s−1

aφ 0.051 oC−1

bφ 1.98 · 10−18 mole m−2s−1

p 0.175 -
q −0.732 -
φc 0.26 -
φ0 0.03 -
S0 5 · 104 m2/m3

n 1 -

Table 1: The rate of quartz cementation is given by Walderhaug (1994a) asr(T ) =
1.98 · 10−22 · 100.022T in units mole cm−2s−1, which becomesr(T ) = bφe

aφT in
units mole m−2s−1. The TTI-integral is TTI=

∫ t1
t0

2−10.5 · 20.1T dt with t in unit
Ma (McKenzie 1981), and it becomes TTI=

∫ t1
t0

bIe
aIT dt whent is in unit s.
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14 Captions

Figure 1: The dimensionless specific surfaceŜ(φ) is plotted as a function of the
porosity for different exponentsn.

Figure 2a: The porosity reduction from quartz cementation is plotted as a function
of temperature for different heating rates. Heating is from0 oC to 180 oC for the
time intervals a=260 Ma, b=130 Ma, c=65 Ma and d=32.5 Ma.

Figure 2b: The porosity as a function of temperature in figure 2a is plotted as a
function of %Ro.

Figure 2c: The porosity represented byf1-values (the inverse specific surface
integrated over porosity) is plotted as ln(%Ro) for the same heating rates as in
figure 1a.

Figure 3a: The porosity represented byf1-values (the inverse specific surface
integrated over porosity) is plotted as ln(%Ro) for the three different temperature
histories shown in figure 3b.

Figure 3b: Three different temperature histories.

Figure 3c: The porosity as a function of %Ro for the three different temperature
histories in figure 3b.

Figure 3d: The porosity as a function of time for the three different temperature
histories in figure 3b.

Figure 4: The steepness of a linear least square minimization is plotted for the J
sandstone and the Norphlet sandstone as a function of the exponents in the specific
surface function from0 to 6. The horizontal line is the steepness required by the
line (13).

Figure 5: The optimal match of the line (13) against the data set for the J sand-
stone, where data is taken from Schmoker and Higley (1991).

Figure 6: The optimal match of the line (13) against the data set for the Norphlet
sandstone, where the data is taken from Schmoker and Schenk (1994).
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