
IFE/KR/E-2009/005

PROgRammINg sTaNdaRds
FOR IFEFEm aNd dERIvEd

aPPlIcaTIONs

Contents

Introduction 1

Naming conventions 2
Application and library names..2
Program names ...3
Module names ..3
Procedure and operator names..3
Derived data type definition names..5
Named constants...6
Variable names ...7

Fortran 90/95 coding style and syntax 10
Style conventions..11

1.1.1 Source form...11
1.1.2 Fortran 90/95 keywords and intrinsic procedures11
1.1.3 Entity names..11
1.1.4 Precompiler ...12
1.1.5 Indentation...12
1.1.6 Tab characters ...12
1.1.7 Source code administration ...12

Syntax conventions...13
1.1.8 Declaration of named entities..13
1.1.9 Complete function definition ..13
1.1.10 Complete form of end statement ...14
1.1.11 Relational operators ..14
1.1.12 Control statements...14
1.1.13 Character strings..15

Banned features ..15
General recommendations ..16

1.1.14 Pointers..16
1.1.15 Array syntax ..17
1.1.16 Intrinsic procedures...17
1.1.17 Parameterization of intrinsic types..17
1.1.18 Derived data types...17
1.1.19 Internal and recursive procedures ...17
1.1.20 Procedures whit optional dummy arguments18
1.1.21 Dynamic memory..18

Module recommendations ..19

Templates 22
Program units..22

1.1.22 Program...22
1.1.23 Module ..23
1.1.24 Subroutine ...25
1.1.25 Function...27

Operators ..28

 ii

1.1.26 Assignment..28
1.1.27 General ..30

Examples ..31
1.1.28 Program...31
1.1.29 Module ..34

Documentation 51
External...51
Internal..52

API Documentation tools 53
F90toHTML ...53

1.1.30 Usage...54
1.1.31 Example...55

F90toDOC ..55
1.1.32 Source code comments..55
1.1.33 Formatting in f90toDOC comments..56

Error condition handling 58

The IfeFEM 3.0 Directory Structure 59
1.1.34 8.1 The source directory...59

The lib directory ..60
The standards directory..60
The tools directory ...60

Programming, conversion and documentation tools 61
F90ppr...61
Gnu make..61
TeX2HTML..61
Listings and lgrid..61

Quality assurance 61

References 62

Index (showing section) 63

Introduction

The materials modelling group at Institute For Energy Technology has been using
Fortran 77 exclusively as their programming language since its arrival. The advent of
Fortran 90/95 allows a change towards a modern programming style, but at the same
time preserves our investment in Fortran 77 code. This quality alone makes Fortran
90/95 the obvious choice compared to competing programming languages. A
considerable gain will also be realized by the fact that it is much simpler to learn the
new features of Fortran 90/95 than to make a complete transition to another
programming language like C++. Fortran 90/95 can offer data hiding and an object
based programming style, but not a truly object oriented programming style.

When we introduce a new programming language we have a unique opportunity to
define a local programming standard. But what should the concern of a local
programming standard for Fortran 90/95 be? In this document we take the view that a
local standard for Fortran 90/95 should be concerned with the following issues:

 Restrict the alternative syntax possibilities.
 Make recommendations with respect to the use of new features.
 Definition of a naming convention for Fortran 90/95 entities.
 Documentation of Fortran 90/95 program units.

The main purpose of this document is to define a programming and programmers
interface documentation standard for the IfeFEM 3.0 project coded in the Fortran 90/95
language. It is our ambition that the programming style used in the Fortran 90/95
version of IfeFEM 3.0 will be based on the conventions, recommendations and naming
conventions defined in this document. The IfeFEM 3.0 project will benefit in a number
of ways from the introduction of a programming and documentation standard.

 A unified programming style improves the legibility of the code
 An automated and unified style of documentation will make it easier to keep the

documentation updated.
 The introduction of a new documentation format, HTML, will simplify

maintenance and reuse of code.
 A programming standard simplifies the introduction of new people into the

project.
 The quality of the code will improve and thus the reliability of IfeFEM 3.0 as a

tool for the development of high quality finite element code.

In the present form this document should be considered as a working document and will
be subject to revisions. We start the standard document by defining a general naming
convention for the Fortran 90/95 entity names.

 2

Naming conventions

A source code is simpler to read when a well defined naming convention is used. The
main qualities of a naming convention are to make the named entities in the program
recognizable and their meaning more easily understood. By recognizable we mean:

 Recognizing the scope of the entity - local or global
 Recognizing the type of the entity - program, module, procedure, assignment

operator subroutine, operator function, operator or variable (intrinsic, derived
type).

 Recognizing from what application the entity originates.

To accommodate this we introduce a general definition of a Fortran 90/95 entity name.

Definition 1 A Fortran 90/95 entity name shall have the general form:

 [prefix]word1[sep][word2][sep][word3]

The prefix shall consist of letters and possibly underscore, _, characters. The prefix
is used to make the entity name recognizable. As separator, sep, we shall use the
underscore character. word1, word2 and word3 are the components of the entity name
and shall consist of letters and numerals. The first character of a component shall be a
letter. The components shall define the meaning of the entity name.

As an example of the use of this definition we will make a name for a subroutine that
calculates the row sum of an matrix. One suggestion would be:

 subRow_Sum

Here we identify sub as the prefix, the underscore as the separator and Row and Sum as
the components word1 and word2 respectively. We refer to the entity name as a
construction if it consists of more than one component. The part of the entity name
consisting of the components and separators only is referred to as the basename . The
basename is formed by disregarding the prefix. In the example above the basename is
Row_Sum.

We now use this definition to give a naming convention for the different entities in the
Fortran 90/95 programming language.

Application and library names

To easily recognize where a Fortran 90/95 entity name originates we define a unique
prefix. To simplify the construction of a unique prefix we introduce the application
acronym. The term application acronym will also be associated with a library. For the
application acronym we introduce the convention:

 3

Naming convention 1 Application acronym: An application or library shall have a
unique acronym of no more than two letters based on the name of the application or
library. The acronym shall consist of small letters only.

Particularly for the IfeFEM 3.0 library we introduce the convention:

Naming convention 2 The IfeFEM 3.0 library shall have the application acronym f.
Derived applications shall use a different acronym.

In the examples below we will use IfeFEM 3.0 's application acronym.

Program names

The name of a program should be easily distinguishable from other entities. We have
therefore introduced the following naming convention for it.

Naming convention 3 Program: Shall have a prefix consisting of p appended with the
application acronym. The components shall start with a capital letter and for the
remaining part have lower case letters and numerals and no separators.

Example : pfProgramName

Module names

The name of a module should be easily distinguishable from other entities. We have
therefore introduced the following naming convention for it.

Naming convention 4 Module: Shall have a prefix consisting of m appended with the
application acronym. The components shall start with a capital letter and for the
remaining part have lower case letters and numerals and no separators.

Example : mfModuleName

To accommodate the construction of unique module data and procedure names we
introduce the the module acronym .

Naming convention 5 Module acronym: A module name shall have a unique acronym
of no more than six letters based on the module name components. The acronym shall
consist of capital letters and numerals only.

In the examples below we will use the module acronym GRID.

Procedure and operator names

Procedures discussed here are all module procedures. There is no inherent difference
between module procedures. However, we find it useful to make the following
distinction:

 4

 Subroutine's defining assignment operators. We will refer to them as assignment
operator subroutines. The assignment operator subroutines shall be private. The
assignment operator, (=), shall be public if the associated derived data type is
public.

 Function's defining operators. We will refer to them as operator functions. The
operator functions shall be private. The name of the associated operator shall be
public if the associated derived data type is public.

 Procedures that are not assignment operator subroutines or operator functions.
These will again be split in three.

o An internal procedure with respect to a module procedure will be
referred to as a local procedure.

o A private or local procedure with respect to a module will be referred to
as a module local procedure.

o A public or global procedure with respect to a module will be referred to
as a module global procedure.

We now introduce a naming convention for each type of procedure as defined above.

Naming convention 6 Assignment operator subroutine: Shall have the prefix a.
The components shall start with a capital letter and for the remaining part have lower
case letters and numerals and no separators.

Example : aAssignmentSubroutineName

Naming convention 7 Operator function: Shall have the prefix fo appended with a
character identifying the result data type of the function, i for integer type, r for real
type, z for complex type, l for logical type, c for character type and t for a derived data
type. The components shall start with a capital letter and for the remaining part have
lower case letters and numerals and no separators.

Example : fotOperatorFunctionName

Naming convention 8 Local procedure: A subroutine shall have no prefix. A
function shall have a prefix consisting of f appended with a character identifying the
result data type of the function, i for integer type, r for real type, z for complex type, l
for logical type, c for character type and t for a derived data type and an underscore
character. The components shall consist of lower case letters and numerals. Separators
shall be used in constructions.

Example : subroutine_name, fr_function_name

Naming convention 9 Module local procedure: A subroutine shall have no prefix.
A function shall have a prefix consisting of f appended with a character identifying the
result data type of the function, i for integer type, r for real type, z for complex type, l
for logical type, c for character type and t for a derived data type. The components
shall start with a capital letter and for the remaining part have lower case letters and
numerals and no separators.

 5

Example : SubroutineName, frFunctionName

Naming convention 10 Module global procedure: A subroutine shall have a prefix
consisting of the module acronym appended with an underscore character and the
application acronym. A function shall have a prefix consisting of the module acronym
appended with an underscore character, f, a character identifying the result data type
of the function, i for integer type, r for real type, z for complex type, l for logical type,
c for character type and t for a derived data type and the application acronym. The
components shall start with a capital letter and for the remaining part have lower case
letters and numerals and no separators.

Example : MODEX_fSubroutineName, MODEX_frfFunctionName

Closely associated with the operator function is the name of the operator (user defined
operator). Operators may be categorized according to their scope as follows:

 Local with respect to the module. The scope of the operator is the module. We
will refer to this operator as a local operator.

 Global with respect to the module. The scope of the operator is potentially all
modules. We will refer to this operator as a global operator.

We now introduce a naming convention for each type of operator defined above:

Naming convention 11 Local operator name: Shall have the prefix o. The
components shall start with a capital letter and for the remaining part have lower case
letters and numerals and no separators.

Example : oOperatorName

Naming convention 12 Global operator name: Shall have a prefix consisting of the
module acronym appended with an underscore character, o, and the application
acronym. The components shall start with a capital letter and for the remaining part
have lower case letters and numerals and no separators.

Example : MODEX_ofOperatorName

Derived data type definition names

Derived data type definitions may be categorized according to their scope as follows:

 Local with respect to the module. The scope of the derived data type is the
module. We will refer to this derived type as local derived data type definition.

 Global with respect to the module. The scope of the derived data type is
potentially all modules. We will refer to this derived type as global derived data
type definition.

We introduce a naming convention for each of the derived data type definitions defined
above.

 6

Naming convention 13 Local derived data type definition: Shall have the
prefix d. The components shall start with a capital letter and for the remaining part
have lower case letters and numerals and no separators.

Example : dDerivedDataTypeDefinitionName

Naming convention 14 Global derived data type definition: Shall have a
prefix consisting of the module acronym appended with an underscore character, the
letter d and the application acronym. The components shall start with a capital letter
and for the remaining part have lower case letters and numerals and no separators.

Example : MODEX_dfDerivedDataTypeDefinitionName

In the definition of derived data types we use intrinsic and derived data types as
components. We will refer to these as the derived data type components. Their scope is
simply the derived type definition. We introduce the following naming convention:

Naming convention 15 Derived data type component: Shall have a one character
prefix identifying the data type of the variable, i for integer type, r for real type, z for
complex type, l for logical type, c for character type and t for a derived data type. The
components shall start with a capital letter and for the remaining part have lower case
letters and numerals and no separators.

Example : zDerivedDataTypeComponentName

Named constants

Named constants or parameters may be categorized according to their scope as follows:

 Local with respect to a procedure. The scope of this named constant is the
procedure and possibly local procedures. We will refer to this type of named
constant as a procedure local parameter.

 Local with respect to a local procedure. The scope of this named constant is the
local procedure. We will refer to this type of named constant as a local
procedure local parameter.

 Local with respect to a module. The scope of this named constant is the module
or the procedure. We will refer to this type of named constant as a local
parameter.

 Global with respect to a module. The scope of this named constant is potentially
all modules. We refer to this type of named constant as a global parameter.

We now introduce a naming convention for each type of named constants defined
above.

Naming convention 16 Procedure local parameter: Shall have a one character
prefix identifying the data type of the parameter, i for integer type, r for real type, z for
complex type, l for logical type, c for character type and t for a derived data type

 7

appended with the underscore character. The components shall consist of capitalized
letters and numerals. The components shall be separated by a separator character.

Example : l_PARAMETER_NAME

Naming convention 17 Local procedure local parameter: Shall have a one
character prefix identifying the data type of the parameter, i for integer type, r for real
type, z for complex type, l for logical type, c for character type and t for a derived data
type appended with two underscore characters. The components shall consist of
capitalized letters and numerals. The components shall be separated by a separator
character.

Example : l__PARAMETER_NAME

Naming convention 18 Local parameter: Shall have a one character prefix
identifying the data type of the parameter, i for integer type, r for real type, z for
complex type, l for logical type, c for character type and t for a derived data type. The
components shall consist of capitalized letters and numerals. The components shall be
separated by a separator character.

Example : lPARAMETER_NAME

Naming convention 19 Global parameter: Shall have a prefix consisting of the
module acronym appended with an underscore character, a character identifying the
data type of the parameter, i for integer type, r for real type, z for complex type, l for
logical type, c for character type and t for a derived data type, and the application
acronym. The components shall consist of capitalized letters and numerals. The
components shall be separated by a separator character.

Example : MODEX_lfPARAMETER_NAME

Variable names

Variables may be categorized according to their scope as follows:

 Local with respect to a procedure or local procedure. The scope of this variable
is the procedure, but not a dummy argument. We make a further distinction
between variables of this type.

o A variable used for indexing purposes is referred to as an index variable
or local index variable respectively. An index variable have no particular
meaning, in relation to the algorithm, other than being an auxiliary
enumeration variable. The type of an index variable is integer.

o A variable used to express an entity in an algorithm are referred to as a
procedure local variable or local procedure local variable respectively.

 Global with respect to a procedure. The scope of this variable is the procedure
and the interface of the procedure. We will refer to this type of variable as a
dummy argument or local dummy argument respectively.

 8

 Local with respect to a module. The scope of this variable is the module. We
will refer to this type of variable as a local variable.

 Global with respect to a module. The scope of this variable is potentially all
modules. We refer to this type of variable as a global variable.

There is also another property of a variable that should be readily detectable, thus we
introduce a categorization of variables independent of scope, as follows:

 Variable is a scalar.
 Variable is an array.

We now introduce a naming convention for each type of variable as defined above.

Naming convention 20 Index variable: Shall have no prefix. The components shall
have lower case letters and numerals. Separators shall be used in constructions.

Example : index_name

Naming convention 21 Local index variable: Shall have no prefix. The
components shall have lower case letters and numerals. Separators shall be used in
constructions and it shall have a suffix consisting of two underscore characters.

Example : index_name__

Naming convention 22 Procedure local variable: Shall have a one character
prefix identifying the data type of the variable, i for integer type, r for real type, z for
complex type, l for logical type, c for character type and t for a derived data type
appended with the underscore character. The components shall have lower case letters
and numerals. Separators shall be used in constructions.

Example : i_variable_name

Naming convention 23 Local procedure local variable: Shall have a one
character prefix identifying the data type of the variable, i for integer type, r for real
type, z for complex type, l for logical type, c for character type and t for a derived data
type appended with two underscore characters. The components shall have lower case
letters and numerals. Separators shall be used in constructions and it shall have a suffix
consisting of two underscore characters.

Example : i__variable_name

Naming convention 24 Dummy argument: Shall have a one character prefix
identifying the data type of the variable, i for integer type, r for real type, z for complex
type, l for logical type, c for character type, t for a derived data type and p for
procedure type appended with the underscore character. The components shall start
with a capital letter and for the remaining have lower case letters and numerals and no
separators.

 9

Example : i_VariableName

Naming convention 25 Local dummy argument: Shall have a one character prefix
identifying the data type of the variable, i for integer type, r for real type, z for complex
type, l for logical type, c for character type, t for a derived data type and p for
procedure type appended with two underscore characters. The components shall start
with a capital letter and for the remaining have lower case letters and numerals and no
separators and it shall have a suffix consisting of two underscore characters.

Example : i__VariableName

Naming convention 26 Local variable: Shall have a one character prefix
identifying the data type of the variable, i for integer type, r for real type, z for complex
type, l for logical type, c for character type and t for a derived data type. The
components shall start with a capital letter and for the remaining part have lower case
letters and numerals and no separators.

Example : iVariableName

We note that the local variable and the derived data type component are defined
identically. Since the derived data type component is always associated with a derived
data type no uniqueness problem is anticipated.

Naming convention 27 Global variable: Shall have a prefix consisting of the
module acronym appended with an underscore character and a character identifying
the data type of the variable, i for integer type, r for real type, z for complex type , c
for character type and t for a derived data type appended with the application
acronym. The components shall start with a capital letter and for the remaining part
have lower case letters and numerals and no separators.

Example : MODEX_ifVariableName

Naming convention 28 Scalar or array type variable and function

(procedure): If the variable or function result is scalar no suffix shall be used (local
index variables is the one exception). If the variable or function is an array a _
(underscore) suffix shall be used. This convention shall apply to all variables
independent of scope.

Example : i_scalar, i_array_, fr_scalar_valued_function, fr_array_valued_function_

 10

Fortran 90/95 coding style and syntax

In the IfeFEM 3.0 project we standardize to the Fortran 90/95 programming language in
a strict sense. In Fortran 90/95 a number of new language features and alternative
syntax have been added for a number of statements. To introduce a unified
programming style in IfeFEM 3.0 we make restrictions with respect to alternative
syntax. We denote these restrictions as syntax conventions. Furthermore we make
recommendations concerning the use of new language features. There will always be
conflicting concerns when making such decisions. To resolve such conflicts we have
used the following priority list:

1. Modular code:

A modular code is characterized by a subdivision of a problem into well defined
subtasks with well defined interfaces. A design based on this criterion may be
realized by the use of modules, see section 3.5. The interface is defined through
module procedures. New applications may rapidly be implemented by using
modules. The risk of making errors is greatly reduced and the productivity will
increase.

2. Scalable code:

A software code is referred to as scalable when it can be applied on any sized
problem. This property simplifies the use of a procedure library like IfeFEM 3.0.
It also eliminates the source of numerous errors.

3. Legible code:

Write the code in such a way that it may be understood by others. Use
indentation, see section 9.1, comments and a naming convention, see section 2.

4. Efficient code:

Reduce the computation times. Use the best algorithms.

5. Compact code:

Reduce the number of source lines to edit. The use of array syntax, see section
3.4.2, will result in compact code. Multiple statements on one source line is
advised against.

However, in the first section we introduce the style conventions that define the layout of
the Fortran 90/95 source code. In the next section we make an attempt to reduce the
Fortran 90/95 syntax redundancy by introducing syntax conventions. Then we have
devoted a section to general recommendations concerning the new features in Fortran
90/95. The single most important new feature in Fortran 90/95 for the IfeFEM 3.0
project is the module concept. A section is used for recommendations for coding a
module according to the principles of data hiding and rudimentary object orientation. In
the last section we present the features that have been banned in Fortran 90/95.

 11

Style conventions

To produce legible source code we introduce conventions regarding the layout of the
code. We will refer to these conventions as style conventions.

1.1.1 Source form

With Fortran 90/95 we have a choice between two source forms - fixed form (Fortran
77) and free form (Fortran 90/95). The free form format offers a number of
improvements. For details see [1]. To make use of this we adopt the convention:

Style convention 1 We shall use the free form source format. The maximum source line
length permitted is 132 characters.

Fortran 90/95 allows a line length of up to 132 characters, however this could cause
problems when viewed on older terminals, or if print outs have to be obtained on A4
paper. In the free form source format multiple Fortran 90/95 statements per source line
is allowed. The Fortran 90/95 statements must be separated by ; - semicolon. This leads
to compressed code, but reduces legibility. Since legibility has a higher priority we
adopt the convention:

Style convention 2 There shall be only one Fortran 90/95 statement per source line.
Thus, in any Fortran 90/95 project the use of ; - semicolon is advised against.

1.1.2 Fortran 90/95 keywords and intrinsic procedures

To ease the reading of programming code it is a good practice to emphasize the
language keywords. This is particularly important with Fortran 90/95 since the
keywords here are not protected. We also take a stand with respect to obsolecent and
redundant features. To accommodate this in the IfeFEM 3.0 project we adopt the
following convention:

Style convention 3 Fortran keywords and intrinsic procedures shall be written in
capital letters. We avoid the use of obsolescent and redundant features.

1.1.3 Entity names

A source code is easier to read if the Fortran 90/95 entities such as variable names,
procedure names, type names and module names have meaningful names. Thus we
introduce the convention:

Style convention 4 Named Fortran 90/95 entities shall have meaningful names in
English. Recognized abbreviations are acceptable as a means of preventing entity
names getting too long.

To simplify and unify the named entities in Fortran 90/95 a strict naming convention
has been introduced, see section 2. To enforce this we introduce the convention:

 12

Style convention 5 Names for Fortran 90/95 entities shall be given according to the
naming convention defined in section 2.

1.1.4 Precompiler

A precompiler or preprocessor is a tool that simplifies source code maintenance. The
precompiler is capable of macro substitution, conditional compilation and inclusion of
named files. Precompiler directives to accomplish these tasks must be included in the
source file. To produce a valid Fortran 90/95 source file we must filter it through the
precompiler. A number of precompilers may be used. The standard C preprocessor
would be a candidate. However, the C processor is not completely standardized across
the different platforms. f90ppr is a public domain Fortran 90/95 precompiler, see
section 9.1. With the source code available we can compile a version of f90ppr for the
platforms of interest. In this way we ensure that the precompiler is completely
standardized. A further advantage with f90ppr is that it may also be used as a source
code formatter. Based on these observation we introduce the convention:

Style convention 6 We shall use f90ppr as our precompiler. We shall use the
precompiler directives defined in the f90ppr documentation. Source code files
containing precompiler directives shall have the extension .fpp.

1.1.5 Indentation

To improve the legibility of the source code we use indentation. The Fortran 90/95
precompiler f90ppr , see section 9.1, is also a pretty printer. The precompiler f90ppr
produce a well balanced indentation. Thus, to enforce identical indentation for all source
files we introduce the convention:

Style convention 7 The source code shall be run through the precompiler f90ppr to
produce a standardized indentation in the source code.

1.1.6 Tab characters

The use of tab characters may easily ruin the source code when ported to another
platform. The editor on the new platform may interpret the tab characters differently. To
avoid this potential problem we introduce the convention:

Style convention 8 We shall not use tab characters in any source file.

1.1.7 Source code administration

As a general rule we adopt the convention:

Style convention 9 Each program unit shall be stored in a separate file.

However, source files may become impractically large to work with in a text editor. In
practice this is most likely to happen with modules containing a large number of module
procedures. To avoid this problem we adopt the convention:

 13

Style convention 10 Module procedures with more than 100 lines of source may be
stored in a separate file. We use the Fortran 90/95 INCLUDE statement to include the
module procedure in the module source file.

Where files shall be located in the IfeFEM 3.0 directory hierarchy is explained in
section 8.

Syntax conventions

Fortran 90/95 introduces an alternative syntax for a number of features in the language.
Where the new syntax is considered better (by us) we restrict ourselves to this syntax.
Many new features have been added to the language. For a complete list of the new
features see [1]. We encourage the use of the new features where these improve either
legibility, efficiency , modularity , data hiding or object oriented design possibilities.

1.1.8 Declaration of named entities

In Fortran 90/95 variables and dummy arguments may have attributes. To reflect this
new and powerful feature we have adopted the following convention:

Syntax convention 1 In the declaration of named entities of type INTEGER, REAL,
COMPLEX, CHARACTER, LOGICAL and TYPE(type-name) we shall use the syntax:

 type, attribute :: entity-list

For detailed definitions of type, attribute and entity-list see [1]. With the
exception of PUBLIC and PRIVATE, we shall not use the statement form of type
attributes. The PUBLIC and PRIVATE statements will be used to define the accessibility
of module procedures and operators.

Accepting syntax convection 1 we have two alternatives when declaring arrays. We
may do it with the attribute DIMENSION or directly by appending the rank to the variable
name. The latter choice will result in more compact code with no reduction in legibility.
Thus we prefer this and introduce the convention:

Syntax convention 2 Declaration of arrays shall be done by appending the shape/rank
definition to the variable name, and not by the use of the DIMENSION attribute

1.1.9 Complete function definition

The definition of a FUNCTION in Fortran 90/95 may have different forms. A new syntax
is required in the definition of a recursive FUNCTION. Due to this we will only accept the
new syntax in the definition of a FUNCTION. Thus we adopt the following convention:

Syntax convention 3 We shall use the following syntax in the definition of a FUNCTION.

 14

 [prefix] FUNCTION function-name([dummy-argument-list])
 RESULT(result-name)

The only prefix allowed is RECURSIVE. The type of the FUNCTION is determined by the
type definition of result-name. We define the type of result-name first and then the
dummy-argument-list.

1.1.10 Complete form of end statement

The END statement in the definition of a program , module , procedure and derived data
type has alternative forms. We only allow the complete form and thus introduce the
convention:

Syntax convention 4 We shall use the complete form of the END statement. The
complete form of the END has the following syntax:

 END entity entity-name

entity is one of PROGRAM, MODULE, SUBROUTINE, FUNCTION and TYPE. The name of the
entity is referenced by entity-name. In the Fortran 90/95 standard no entity-name is
allowed for INTERFACE. In the Fortran 95 standard this restriction is removed.

1.1.11 Relational operators

An alternative set of relational operators have been introduced in Fortran 90/95. Since
this set increases the readability we adopt the convention:

Syntax convention 5 We shall use the relational operators <, <=, ==, /=, > and >=
instead of .LT., .LE., .EQ., .NE., .GT., .GE..

1.1.12 Control statements

The SELECT CASE construct is new to the language. This construct improves legibility
and is more efficient than an alternative IF THEN ELSE construct would be. The SELECT
CASE construct is restricted to INTEGER and CHARACTER options. For these situations we
adopt the convention:

Syntax convention 6 We shall use the SELECT CASE construct to express a multiple
choice situation involving an INTEGER or CHARACTER option.

A general while loop has been introduced in Fortran 90/95. The loop control statements
CYCLE and EXIT may be used with this loop construct. These new statements has made
the DO WHILE statement redundant. We therefore introduce the convention:

Syntax convention 7 We shall not use the DO WHILE loop. We use the more general
while loop instead:

 15

 DO
 IF (logical_expression) EXIT
 .
 .
 END DO

In Fortran 90/95 it is possible to assign a name to a DO loop. This is a feature that may
be used to enhance the legibility. We therefore introduce the conventions:

Syntax convention 8 We shall assign a name to any large and complicated loops to
clarify which statements are associated with the loop.

Syntax convention 9 Assign names to all nested loops so that they will be easier to
understand and debug

Syntax convention 10 We shall use loop names with CYCLE or EXIT statements to make
sure that the statement affect the proper loop.

1.1.13 Character strings

A new delimiter, ", for character strings has been introduced in Fortran 90/95. Since this
is more visible, we prefer the use of it.

Syntax convention 11 We shall use the token " to delimit character strings.

Banned features

We ban Fortran 90/95 features based on the following criteria:

1. Features advised against in the Fortran 90/95 standard.
2. Features made redundant by the Fortran 90/95 standard.
3. Features whose use is deemed to be bad programming practice as they can

degrade the maintainability of code.

Based on these criteria we introduce the following convention:

Syntax convention 12 Explicitly banned features are:

1. COMMON blocks - use MODULE's instead.
2. EQUIVALENCE - use POINTERS or derived data types instead.
3. Assigned and computed GO TO's - use the CASE construct instead.
4. DO WHILE loops - use the general while loop DO instead.
5. Arithmetic IF statements - use the block IF construct instead.
6. Labels (only one allowed use).

o Labelled DO constructs - use End DO instead.
o I/O routine's END = and ERR = use IOSTAT instead.

 16

o FORMAT statements: use Character parameters or explicit format
specifiers inside the Read or Write statement instead.

o GO TO
o The only recognized use of GO TO, indeed of labels, is to jump to the

error handling section at the end of a routine on detection of an error.
The jump must be to a CONTINUE statement and the label used must be
9999. Evens so, it is recommended that this practice be avoided.

o Any other use of GO TO can probably be avoided by making use of IF,
CASE, DO, EXIT or CYCLE statements. If a GO TO really has to be used,
then clearly comment it to explain what is going on and terminate the
jump on a similarly commented CONTINUE statement.

7. PAUSE
8. ENTRY statements: - a subprogram may only have one entry point.
9. Functions with side effects i.e. functions that alter variables in their argument

list or in modules used by the function; or one that performs I/O operations. This
is very common in C programming, but can be confusing. Also, efficiencies can
be made if the compiler knows that functions have no side effects. High
Performance Fortran, a variant of Fortran 90/95 designed for massively
parallel computers, will allow such instructions.

10. Implicitly changing the shape of an array when passing it into a subroutine.
Although actually forbidden in the standard it was very common practice in
Fortran 77 to pass 'n' dimensional arrays into a subroutine where they would,
say, be treated as a 1 dimensional array. This practice, though banned in
Fortran 90/95, is still possible with external routines for which no INTERFACE
block has been supplied. This only works because of assumptions made about
how the data is stored: it is therefore unlikely to work on a massively parallel
computer. Hence the practice is banned.

General recommendations

So far we have limited experience with the new features of Fortran 90/95. However, we
have enough to make some general recommendations on their use.

1.1.14 Pointers

Pointers are a new and powerful feature of Fortran 90/95. However, there is one subtlety
associated with pointers in Fortran 90/95. Their initial (after declaration) state is
undefined. Undefined pointers are not allowed in the ASSOCIATED intrinsic function.
Thus, to always be able to inquire the state of a pointer makes sure to initialize
(NULLIFY) it. Based on this we make the following recommendation:

Recommendation 1 Pointers should always be initialized with the intrinsic functions
NULLIFY or NULL.

 17

1.1.15 Array syntax

Array syntax is one of the most powerful new features of Fortran 90/95. Using array
syntax in the implementation of algorithms makes the code compact and more legible.
We therefore introduce the convention:

Recommendation 2 We use array syntax whenever possible.

1.1.16 Intrinsic procedures

A number of new intrinsic procedures have been specified and added to Fortran 90/95,
for a complete list see [1]. Many of them are useful in numerical modelling work, such
as the vector and matrix multiplication functions and the numeric inquiry functions.
There also exists commercially available libraries with optimized and parallel versions
of some of them (DOT_PRODUCT and MATMUL). A code using intrinsic procedures will be
regarded as standard conforming. To encourage the use of the intrinsic procedures we
introduce the convention:

Recommendation 3 We use intrinsic procedures whenever possible

1.1.17 Parameterization of intrinsic types

Parameterized intrinsic types is a new feature in Fortran 90/95 that permits processors to
support short integers, very large character sets, more than two precisions for real and
complex and packed logicals. This is a very attractive feature since we no longer need to
maintain a REAL and DOUBLE PRECISION version of a program separately. Taking full
use of this feature the conditional compilation overhead is reduced. Thus we introduce
the convention:

Recommendation 4 We make use of the possibility to parameterize the intrinsic types.

1.1.18 Derived data types

To express algorithms naturally we often need more advanced data types than the
intrinsic types. With the introduction of derived data types in Fortran 90/95 we can
ourselves construct the data types which we find suitable. The use of derived data types
enhances the modularity and simplifies the maintenance of a program. We therefore
adopt the convention:

Recommendation 5 We use user derived data types whenever they serve a purpose.

User derived types with dynamic size components can only be implemented with the
POINTER attribute in Fortran 90/95. This may have a serious performance penalty.
This restriction is removed in FORTRAN 2003.

1.1.19 Internal and recursive procedures

Internal procedures are a generalization of the statement functions in Fortran 77. Since
their use produce more readable code we encourage their use instead of statement

 18

functions. Recursive procedures are a new feature in Fortran 90/95. We use this feature
to implement algorithms including either direct or indirect recursion.

Recommendation 6 We use internal procedures instead of statement functions, and we
use recursive procedures in the implementation of recursive algorithms.

1.1.20 Procedures whit optional dummy arguments

Sometimes dummy argument lists become large and contain arguments that are not
required. In this situation the use of OPTIONAL arguments may be useful. We will not
encourage extensive use of this feature. Rather, we encourage the use of derived types
to shorten the argument lists. It is therefore natural to introduce the convention:

Recommendation 7 We use optional arguments where this is natural.

1.1.21 Dynamic memory

Dynamic storage is a new feature in Fortran 90/95. It makes the task of conserving
memory much simpler. In the potentially memory hungry applications we are aiming
for this is particularly good news. One of the most serious problems with previous
versions of IfeFEM has been the lack of scalability. With dynamic memory scalability
(at least up to hardware memory limits) can be achieved. This calls for the following
recommendation:

Recommendation 8 We make use of dynamic memory to enforce scalability of any
Fortran 90/95 application.

Care must be taken, however, as there is potential for inefficient memory usage,
particularly in parallelized code. For example heap fragmentation can occur if space is
allocated by a lower level routine and then not freed before control is passed back up the
calling tree. There are three ways of obtaining dynamic memory in Fortran 90/95:

Automatic arrays:

These are arrays initially declared within a subprogram whose extents depend
upon variables known at runtime e.g. variables passed into the subprogram via
its argument list.

Pointer arrays:

Array variables declared with the POINTER attribute may be allocated space at
run time by using the ALLOCATE command.

Allocatable arrays:

Array variables declared with the ALLOCATABLE attribute may be allocated
space at run time by using the ALLOCATE command. However, unlike
pointers, allocatables are not allowed inside derived data types.

 19

We introduce the following recommendations for the safe use of dynamic memory:

Recommendation 9

 Use automatic arrays in preference to the other forms of dynamic memory
allocation when arrays are of smaller size (1-100 array elements).

 Space allocated by pointers and allocatable arrays must be explicitly freed using
the DEALLOCATE statement.

 In a given program unit do not repeatedly ALLOCATE space, DEALLOCATE it
and then ALLOCATE a larger block of space. This will almost certainly
generate large amounts of unusable memory.

 Always test the allocation state of a varaiable before allocating space with
ALLOCATE. Use ALLOCATED (inquiry intrinsic function) for allocatable
arrays and ASSOCIATED (inquiry intrinsic function) for pointer arrays.

 Always test the success of a dynamic memory allocation and deallocation. The
ALLOCATE and DEALLOCATE statements have an optional argument to let
you do this.

Module recommendations

The module is a new feature in Fortran 90/95. Due to its potential usefulness in the
IfeFEM 3.0 project we treat it separately. The module is a new program unit which
generalizes and outdates the use of COMMON . It is the Fortran 90/95 parallel to the C++
class concept. Within the scope of the module the user may define global and local data
and procedures processing this data. The intended use of modules was for the
construction of procedure libraries. Thus the module is precisely the building block we
need in the IfeFEM 3.0 project. Since IfeFEM 3.0 is meant to be a procedure library we
make the recommendation:

Recommendation 10 We use the module as the basic building block in our Fortran
90/95 applications.

In the module head we specify the data needed by the module. The default access to this
data is PUBLIC. This means that it may be accessed by procedures in the module, other
modules, external procedures and the main program by so called use association. This
default access may have some undesirable consequences.

 Unnecessary reduction of the name space.
 The access to module data outside the module is a potential problem. The

maintenance is no longer restricted to the module itself. The state of the module
may be changed from the outside. Thus, the protection of the module data is lost.

 Indirect use association.

To reduce the maintenance costs of the module it should be self-contained and the
exchange of module data should be done through module procedures with a well
defined interface. Thus, to be in accordance with the modern principle of data hiding or
data encapsulation we make the following recommendation:

 20

Recommendation 11 The default accessibility of module variables, data type
definitions, procedures and operators should be declared explicitly. The default access
of any module should be private.

In the implementation part of the module (CONTAINS part) we define the module
procedures. Module procedures have access to all the data defined in the module head.
The access to the module procedures may be limited in the same way as the data in the
module head. With default access private the module procedures needed outside the
module must be explicitly declared public. This calls for the recommendation:

Recommendation 12 Entities in any module with a global scope should be declared
public explicitly.

Public entities from other modules can be made accessible in a current module by USE
association. It is good practice to restrict the accessibility to only those entities needed
by the current module. This may be accomplished by using the ONLY keyword with the
USE statement. Based on this comment we introduce the recommendation:

Recommendation 13 We should use the USE,ONLY statement to specify which
variables, data type definitions, procedures and operators defined in the module are to
be accessible in the USE’ing module.

To allow module data to be shared between program units by use association they must
have the SAVE attribute. Thus we introduce the recommendation:

Recommendation 14 Shared module data must be declared with the SAVE attribute.

To enforce strong typing of module data and in all module procedures we introduce the
recommendation:

Recommendation 15 The head of any module should contain the IMPLICIT NONE
statement.

If the intent of dummy arguments in module procedures are defined, the compiler will
provide better optimization. We therefore recommend:

Recommendation 16 The INTENT of dummy arguments in any module procedures
should be defined if possible. In the case of POINTER arguments the intent may not be
defined.

The module is also the natural place for definitions of extended assignment operators,
overloaded operators, general operators and generic procedures. Some general
comments may be appropriate when the module contains derived type definitions.

To provide proper memory allocation and initialization of the derived type with
basename Type we should supply a constructor. The purpose of the constructor is to
allocate memory, initialize derived type components etc. We introduce the
recommendation:

 21

Recommendation 17 A constructor for a derived type should be provided. The
constructor shall be implemented as a subroutine. The first dummy argument of the
subroutine shall be a pointer to the derived type Type. The constructor shall have the
basename New. If more derived types are defined, the basename of the constructors
should be New appended with the basename of the derived type. To be in accordance
with a single constructor per module we provide a generic constructor with the
basename New. If the derived type Type is public the constructor, New, must be public.

To provide proper memory deallocation of the derived type Type we should provide a
destructor . The purpose of the destructor is to deallocate memory etc. We introduce the
recommendation:

Recommendation 18 A destructor for a derived type should be provided. The
destructor shall be implemented as a subroutine. The first dummy argument of the
subroutine shall be a pointer to the derived type Type. The destructor shall have the
basename Delete. If more derived types are defined, the basename of the destructors
should be Delete appended with the basename of the derived type. To be in accordance
with a single destructor per module we provide a generic destructor with the basename
Delete. If the derived type Type is public the destructor, Delete, must be public.

Fortran 90/95 doesn't support automatic printing of derived data types. This calls for the
inclusion of a print function for the derived type. Such a function is very handy in a
debug situation. Based on this comment we make the recommendation:

Recommendation 19 A print subroutine for a derived type should be provided. The
first dummy argument of the print subroutine shall be a pointer to the derived type
Type. The print subroutine shall have the basename Print. If more derived types are
defined, the basename of the print subroutine shall be Print appended with the
basename of the derived type. To be in accordance with a single print function per
module we provide a generic print function with the basename Print. If the derived
type Type is public the print function, Print, must be public.

When a derived type, with basename Type, has pointer components the generic
assignment operator may not have the desired effect. The generic assignment operator
for derived data types implies pointer assignment for pointer components. If you
actually need the assignment operator to produce a copy, a new assignment operator
must be supplied for the derived type. We introduce the recommendation:

Recommendation 20 An assignment operator for a derived type should be provided if
the derived type Type contains pointer components and the generic assignment operator
is not satisfactory. The assignment operator subroutines shall have the name aType. If
the derived type Type is public the assignment operator, =, must be public.

In practical work with IfeFEM 3.0, one of the most beneficial uses of modules is the
automatic type checking of module procedures. In section 4 we give you an example of
a module implemented after the principles above.

 22

Templates

To accommodate the implementation of the IfeFEM 3.0 syntax conventions,
recommendations and naming conventions introduced above we have made templates
for the basic building blocks of Fortran 90/95. We have templates for program units and
operators. We hope that the templates will be a useful starting point for the
implementation of new modules in IfeFEM 3.0, and make it easier to take advantage of
the more advanced new features of Fortran 90/95. The use of templates, we believe, will
also encourage a unified programming style.

We now present the templates and add comments to statements of particular interest.
Text inside <> brackets must be replaced with appropriate text by the user. The
comments are included in the source code in the form of ordinary Fortran 90/95
comments preceded with a single ! sign. For the time being ignore comments starting
with !!. Their meaning will be explained in section 6.

The templates are meant to be a starting point for the development of new Fortran 90/95
program units and operators. Just copy the relevant template file from the template
directory in the IfeFEM 3.0 directory structure, see section 8, and you are ready to go.
Then edit the text inside <> brackets and add the necessary code. The relevant
comments ending with : may be left in the code as general comments, see section 5.2.
Remember to delete irrelevant comments.

In the first section we present templates for program units. Then a section is devoted to
templates for operators.

Program units

1.1.22 Program

Below we find the template for the program unit program:

!+ <A one line description of this program>
!---

!! @description
!! <Say what this program does>
!!
!! @method
!! <Say how it does it: include references to external documentation>
!! <If this routine is divided into sections, be brief here,
!! and put method comments at the start of each section>
!!
!! @input_files
!! <Describe these, and say in which routine they are read>
!!
!! @utput_files
!! <Describe these, and say in which routine they are written>
!!
!! @owner <Name of person responsible for this code>
!!
!! @history

 23

!! <version> <date> <responsible> <comment>
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

PROGRAM <NameOfProgram>

! Declarations:

! Modules used:

!! <A one line description of module and the purpose of association>

USE <ModuleName>, ONLY : &
! Imported Parameters:

! Imported Type Definitions:

! Imported Scalar Variables with intent (in):

! Imported Scalar Variables with intent (out):

! Imported Array Variables with intent (in):

! Imported Array Variables with intent (out):

! Imported Procedures:

! Repeat from Use for each module...

IMPLICIT NONE

! Include statements:

! Declarations must be of the form
! <type>, attributes :: <VariableName> !! Description/ purpose of
variable

! Local parameters:

! Local scalars:

! Local arrays:

! Define code body of the program.

CONTAINS

! Define internal procedures contained in this program.

END PROGRAM <NameOfProgram>

1.1.23 Module

Below we find the template for the program unit module:

 24

!+ <A one line description of this module>
!---

!! @description
!! <Say what this module is for>
!!
!! @owner <Name of person responsible for this code>
!!
!! @procedure_list
!!
!! @history
!! <version> <date> <responsible> <comment>
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

MODULE <ModuleName>

! Modules used:

!! <A one line description of module and the purpose of association>

USE <ModuleName>, ONLY : &
! Imported Parameters:

! Imported Type Definitions:

! Imported Scalar Variables with intent (in):

! Imported Scalar Variables with intent (out):

! Imported Array Variables with intent (in):

! Imported Array Variables with intent (out):

! Imported Procedures:

! Repeat from USE for each module...

! Impose strong typing of module data and all module procedures:

IMPLICIT NONE

! Make the default access of the module private:

PRIVATE

! Declarations must be of the form
! <type>, attributes :: <VariableName> !! Description/ purpose of
variable
! PUBLIC :: <ModuleProcedureNameList>

! Global (i.e. public) Declarations:
! Global Parameters:

! Global Type Definitions:

 25

! Global Scalars:

! Global Arrays:

! Global Operators:

! Global Module Subroutine:

! Global Module Functions:

! Local (i.e. private) Declarations:
! Local Parameters:

! Local Type Definitions:

! Local Scalars:

! Local Arrays:

! Operator definitions:
! Define new operators or overload existing ones.

! Generic functions definitions:
! Define the generic functions.

CONTAINS

! Module operator procedures:
! Define operator procedures contained in this module.

! Module procedures:
! Define procedures contained in this module.

! Comment: If a module procedure contains more than 100
! lines of source code store it in a sparate file.
! Include it in the module with the Fortran90
! INCLUDE statement.

END MODULE <ModuleName>

1.1.24 Subroutine

Below we find the template for the program unit subroutine:

!+ <A one line description of this subroutine>
!---

!! @description
!! <Say what this routine does>
!!
!! @method
!! <Say how it does it: include references to external documentation>
!! <If this routine is divided into sections, be brief here,
!! and put method comments at the start of each section>
!!
!! @owner <Name of person responsible for this code>
!!
!! @history

 26

!! <version> <date> <responsible> <comment>
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

SUBROUTINE <SubroutineName> &
 (<InputArguments, InOutArguments, OutputArguments>)

! Declarations:

! Modules used:

!! <A one line description of module and the purpose of association>

USE <ModuleName>, ONLY : &
! Imported Parameters:

! Imported Type Definitions:

! Imported Scalar Variables with intent (in):

! Imported Scalar Variables with intent (out):

! Imported Array Variables with intent (in):

! Imported Array Variables with intent (out):

! Imported Procedures:

! Repeat from USE for each module...

IMPLICIT NONE
! This statement is not necessary if the subroutine is a module
procedure.

! Include statements:

! Declarations must be of the form
! <type>, attributes :: <VariableName> !! Description/ purpose of
variable

! Subroutine arguments:
! Scalar arguments with intent(in):

! Array arguments with intent(in):

! Scalar arguments with intent(inout):

! Array arguments with intent(inout):

! Scalar arguments with intent(out):

! Array arguments with intent(out):

! Local parameters:

! Local scalars:

 27

! Local arrays:

! Define code body of the subroutine.

CONTAINS

! Define internal procedures contained in this subroutine.

END SUBROUTINE <SubroutineName>

1.1.25 Function

Below we find the template for the program unit function:

!+ <A one line description of this function>
!---

!! @description
!! <Say what this function does>
!!
!! @method
!! <Say how it does it: include references to external documentation>
!! <If this routine is divided into sections, be brief here,
!! and put method comments at the start of each section>
!!
!! @owner <Name of person responsible for this code>
!!
!! @history
!! <version> <date> <responsible> <comment>
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

FUNCTION <FunctionName> (<InputArguments>) &
 RESULT (<ResultName>)

! Declarations:

! Modules used:

!! <A one line description of module and the purpose of association>

USE <ModuleName>, ONLY : &
! Imported Parameters:

! Imported Type Definitions:

! Imported Scalar Variables with intent (in):

! Imported Scalar Variables with intent (out):

! Imported Array Variables with intent (in):

! Imported Array Variables with intent (out):

 28

! Imported Procedures:

! <Repeat from Use for each module...>

IMPLICIT NONE
! This statement is not necessary if the function is a module
procedure

! Include statements:

! Declarations must be of the form
! <type>, attributes :: <VariableName> !! Description/ purpose of
variable

! Function arguments:
! Scalar arguments with intent(in):

! Array arguments with intent(in):

! Result argument:

! Local parameters:

! Local scalars:

! Local arrays:

! Define code body of the function.

CONTAINS

! Define internal procedures contained in this function.

END FUNCTION <FunctionName>

Operators

1.1.26 Assignment

Below we find the template for the assignment operator subroutine:

!+ <A one line description of this assignment subroutine>
!---

!! @description
!! <Say what this assignment subroutine does>
!!
!! @method
!! <Say how it does it: include references to external documentation>
!! <If this routine is divided into sections, be brief here,
!! and put method comments at the start of each section>
!!
!! @owner <Name of person responsible for this code>
!!
!! @history
!! <version> <date> <responsible> <comment>
!!
!! @language Fortran 90/95

 29

!! @standard Programming standard for IfeFEM 3.0
!---

SUBROUTINE <AssignmentSubroutineName> &
 (<LhsInputArgument, RhsOutputArgument>)

! Declarations:

! Modules used:

!! <A one line description of module and the purpose of association>

USE <ModuleName>, ONLY : &
! Imported Parameters:

! Imported Type Definitions:

! Imported Scalar Variables with intent (in):

! Imported Scalar Variables with intent (out):

! Imported Array Variables with intent (in):

! Imported Array Variables with intent (out):

! Imported Procedures:

! Repeat from USE for each module...

IMPLICIT NONE
! This statement is not necessary if the subroutine is a module
procedure.

! Include statements:

! Declarations must be of the form
! <type>, attributes :: <VariableName> !! Description/ purpose of
variable

! Subroutine arguments:
! May not contain the OPTIONAL attribute. The intent of the Lhs
argument
! must be OUT and for the Rhs argument it must be IN.

! Scalar arguments with intent(in):

! Array arguments with intent(in):

! Scalar arguments with intent(out):

! Array arguments with intent(out):

! Local parameters:

! Local scalars:

! Local arrays:

 30

! Define code body of the subroutine.

CONTAINS

! Define internal procedures contained in this subroutine.

END SUBROUTINE <AssignmentSubroutineName>

1.1.27 General

There are two kinds of operators, overloaded and user defined . An overloaded operator
is an extension of one of the Fortran 90/95 intrinsic operators. The operator symbol in
this case is the intrinsic operator symbol. The user defined operator is defined freely by
the user. The operator symbol in this case will be .OperatorName., where
OperatorName is replaced by the users wish. Below we find the template for the
operator function:

!+ <A one line description of this operator>
!---

!! @description
!! <Say what this operator does>
!!
!! @method
!! <Say how it does it: include references to external documentation>
!! <If this routine is divided into sections, be brief here,
!! and put method comments at the start of each section>
!!
!! @owner <Name of person responsible for this code>
!!
!! @history
!! <version> <date> <responsible> <comment>
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

FUNCTION <OperatorFunctionName> (<InputArgument1>,<InputArgument2>) &
 RESULT (<OperatorResultName>)

! Declarations:

! Modules used:

!! <A one line description of module and the purpose of association>

USE <ModuleName>, ONLY : &
! Imported Parameters:

! Imported Type Definitions:

! Imported Scalar Variables with intent (in):

! Imported Scalar Variables with intent (out):

! Imported Array Variables with intent (in):

 31

! Imported Array Variables with intent (out):

! Imported Procedures:

! <Repeat from Use for each module...>

IMPLICIT NONE

! Include statements:

! Declarations must be of the form
! <type>, attributes :: <VariableName> !! Description/ purpose of
variable

! Function arguments:
! May not contain the OPTIONAL attribute. If the function defines a
! unary operator only one input argument is needed. A binary operator
! will need two input arguments. The intent of the arguments must be
IN.

! Scalar arguments with intent(in):

! Array arguments with intent(in):

! Result argument:

! Local parameters:

! Local scalars:

! Local arrays:

! Define code body of the operator function.

CONTAINS

! Define internal procedures contained in this operator function.

END FUNCTION <OperatorFunctionName>

Examples

In the following sections we will find an example implementations of the program units
and operators. These examples are base on the use of templates and the conventions
defined in this standard.

1.1.28 Program

Below we find an example implementation of a program:

!+ This is a simple example program to illustrate use of a linked list
module.
!---

!! @description

 32

!! This is a simple driver program to test the linked list extension
of the
!! base module MODULE_NAME?. We test all the operations defined for
linked
!! lists.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 07.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
PROGRAM pTestLinkedList
!
! Declarations:
!
! Modules used:
!
!! A container module for the base type GRID_dfGrid.
 USE mfGrid
!
 IMPLICIT NONE
!
! Local parameters:
!
! Local scalars:
 INTEGER :: i_err !! Error status identifier.
 INTEGER :: i_number_of_members !! Number of members in grid
linked list.
 INTEGER :: i_size_of_grid !! The size of the grid.
 TYPE (GRID_dfGridLl), POINTER :: t_gridll !! The linked list of
grids.
 TYPE (GRID_dfGridLlM), POINTER :: t_gridllm !! A pointer to a
linked list
 !! member.
 TYPE (GRID_dfGrid), POINTER :: t_grid !! The base type of the
linked list
 !! member.
 CHARACTER (LEN=GRID_ifNAME_LENGTH) :: c_name_of_member !! Name
of linked
 !! list
member.
!
! Local arrays:
!
! Initaializes the pointer to the grid linked list.
 NULLIFY (t_gridll)
!
! Initializes the grid linked list.
 CALL GRID_fNew (t_gridll)
!
! Append some grids to the linked list.
 CALL GRID_fAppend (t_gridll, "ALSPEN grid", i_err)
 CALL GRID_fAppend (t_gridll, "ALSIM grid", i_err)
 CALL GRID_fAppend (t_gridll, "STEELTEMP grid", i_err)

 33

 CALL GRID_fAppend (t_gridll, "STABILITY grid", i_err)
 CALL GRID_fAppend (t_gridll, "WELDSIM grid", i_err)
!
! Print the grids in the linked list.
 i_err = GRID_fifPrint (t_gridll)
!
! Count the number of members in the list.
 i_number_of_members = GRID_fifCount (t_gridll)
 WRITE (*,*) "Number of members in grid linked list:",
i_number_of_members
!
! Remove a grid from the linked list.
 CALL GRID_fRemove (t_gridll, "STEELTEMP grid", i_err)
!
! Print the grids in the linked list.
 i_err = GRID_fifPrint (t_gridll)
!
! Count the number of members in the list.
 i_number_of_members = GRID_fifCount (t_gridll)
 WRITE (*,*) "Number of members in grid linked list:",
i_number_of_members
!
! Append the STEELTEMP grid to the linked list again!
 CALL GRID_fAppend (t_gridll, "STEELTEMP grid", i_err)
!
! Print the grids in the linked list.
 i_err = GRID_fifPrint (t_gridll)
!
! Count the number of members in the list.
 i_number_of_members = GRID_fifCount (t_gridll)
 WRITE (*,*) "Number of members in grid linked list:",
i_number_of_members
!
! Getting a pointer to a linked list member.
 t_gridllm => GRID_ftfPointerMember (t_gridll, "STABILITY grid")
 CALL GRID_fName (t_gridllm, c_name_of_member, i_err)
 WRITE (*,*) "Name of linked list member : ", c_name_of_member
!
! Getting a pointer to a linked list member base type.
 t_grid => GRID_ftfPointerBase (t_gridll, "ALSPEN grid")
 i_size_of_grid = 3
 CALL GRID_fNew (t_grid, i_size_of_grid)
 CALL GRID_fPrint (t_grid)
 NULLIFY (t_grid)
!
! Copying the ALSPEN grid twice.
 CALL GRID_fCopy (t_gridll, "ALSPEN grid", "ALSIM grid", i_err)
 t_gridllm => GRID_ftfPointerMember (t_gridll, "ALSIM grid")
 CALL GRID_fPrint (t_gridllm)
 CALL GRID_fCopy (t_gridll, "ALSPEN grid", "PREAL grid", i_err)
 t_gridllm => GRID_ftfPointerMember (t_gridll, "PREAL grid")
 CALL GRID_fPrint (t_gridllm)
 NULLIFY (t_grid)
!
! Printing the current linked list.
 WRITE (*,*) "Printing the contents of the linked list!"
 WRITE (*,*)
 CALL GRID_fPrint (t_gridll)
!

 34

! Getting a pointer to a linked list member base type.
 t_grid => GRID_ftfPointerBase (t_gridll, "STEELTEMP grid")
 i_size_of_grid = 4
 CALL GRID_fNew (t_grid, i_size_of_grid)
 CALL GRID_fPrint (t_grid)
 NULLIFY (t_grid)
 CALL GRID_fCopy (t_gridll, "STEELTEMP grid", "ALSPEN grid",
i_err)
 WRITE (*,*) "Printing the contents of the linked list!"
 WRITE (*,*)
 CALL GRID_fPrint (t_gridll)
!
! Remove two grids.
 WRITE (*,*) "Removes: STEELTEMP and STABILITY"
 CALL GRID_fRemove (t_gridll, "STEELTEMP grid", i_err)
 CALL GRID_fRemove (t_gridll, "STABILITY grid", i_err)
 CALL GRID_fPrint (t_gridll)
 i_number_of_members = GRID_fifCount (t_gridll)
 WRITE (*,*) "Number of members in grid linked list:",
i_number_of_members
!
! Delete all grids.
 WRITE (*,*) "Delete all members!"
 CALL GRID_fDelete (t_gridll)
 i_number_of_members = GRID_fifCount (t_gridll)
 WRITE (*,*) "Number of members in grid linked list:",
i_number_of_members
!
END PROGRAM pTestLinkedList

1.1.29 Module

Below we find an example implementation of a module:

!+ A linked list wrapper for the derived data type GRID_dfGrid.
!---

!! @description
!! This module is a wrapper module for the module mfGridBase. Ths
module
!! defines a derived data type extension of GRID_dfGrid. The new
derived
!! data type contains a character string itdentifying the linked list
item
!! by a name, a pointer to an instance of the derived type
GRID_dfGrid and
!! finally a pointer to the next item in the linked list. We refer to
this
!! derived type as a {.linked list member.}. The linked list is
represented
!! by the derived data type mfGridBaseLl. This derived data type
consists
!! one pointer to the head linked list member of the list and one
pointer to
!! the tail linked list member of the list.
!!
!! The following public operations or module procedures have been
defined:

 35

!!
!!{ d
!! New * Initialize the linked list.
!! Delete * Delete the entire linked list.
!! Remove * Remove and deallocate an item from the linked list.
!! Append * Append item identified by character string to the linked
list.
!! Copy * Copy one item from the linked list to another item in the
linked
!! list.
!! Print * Print a list of all the names identifying the item in the
linked
!! list.
!! PointerMember * Get pointer to a linked list member item with a
given
!! identifying name.
!! PointerBase * Get pointer to the base type of a linked list
member.
!! Count * Count the number of members in the linked list.
!!}
!! We find a list of all the module procedures in the tables below:
!!
!! @procedure_list
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
MODULE mfGridBaseLl
!
! Modules used:
!
!! The base module for the construction of a linked list.
 USE mfGridBase
!
! Impose strong typing of module data and all module procedures:
!
 IMPLICIT NONE
!
! Make the default access of the module private:
!
 PRIVATE
!
! Global (i.e. public) Declarations:
! Global Parameters:
!!
 INTEGER, PARAMETER, PUBLIC :: GRID_ifNAME_LENGTH = 40 !! Maximum
linked
 !! list
member name.
!
! Global Type Definitions:
!

 36

!! Derived data type definition of a linked list member.
 TYPE, PUBLIC :: GRID_dfGridLlM
 PRIVATE
 CHARACTER (LEN=GRID_ifNAME_LENGTH) :: cName !! Name
associated with linked
 !! list item.
 TYPE (GRID_dfGrid), POINTER :: tGrid !! Instance of
 !! derived data type
GRID_dfGrid.
 TYPE (GRID_dfGridLlM), POINTER :: tNext !! Pointer to next
linked list
 !! member item.
 END TYPE GRID_dfGridLlM
!
!! Derived data type definition of the linked list.
 TYPE, PUBLIC :: GRID_dfGridLl
 PRIVATE
 TYPE (GRID_dfGridLlM), POINTER :: tHead !! A pointer to the
head item
 !! of the list.
 TYPE (GRID_dfGridLlM), POINTER :: tTail !! A pointer to the
tail item
 !! of the list.
 END TYPE GRID_dfGridLl
!
! Global Module Subroutines:
 PUBLIC :: GRID_fNew, GRID_fDelete, GRID_fRemove, GRID_fAppend,
GRID_fCopy
 PUBLIC :: GRID_fName, GRID_fPrint
!
! Global Module Functions:
 PUBLIC :: GRID_fifPrint, GRID_ftfPointerMember,
GRID_ftfPointerBase
 PUBLIC :: GRID_fifCount
!
! Local (i.e. private) Declarations:
! Local Scalars:
!! Auxilliary pointers used in the implementation of the module
!! procedures.
 TYPE (GRID_dfGridLlM), POINTER :: tCurrent !! Pointer to the
current
 !! member in the
linked list.
 TYPE (GRID_dfGridLlM), POINTER :: tNext !! Pointer to the next
 !! member in the linked
list.
 TYPE (GRID_dfGridLlM), POINTER :: tPrevious !! Pointer to the
previous
 !! member in the
linked list.
!
! Generic functions definitions:
! Define the generic functions.
!! Definition of the generic {.constructor.}.
 INTERFACE GRID_fNew
 MODULE PROCEDURE GRID_fNewGridLl
 MODULE PROCEDURE GRID_fNewGridLlM
 END INTERFACE
!

 37

!! Definition of the generic {.destructor.}.
 INTERFACE GRID_fDelete
 MODULE PROCEDURE GRID_fDeleteGridLl
 MODULE PROCEDURE GRID_fDeleteGridLlM
 END INTERFACE
!
!! Definition of the generic {.print operator.}.
 INTERFACE GRID_fPrint
 MODULE PROCEDURE GRID_fPrintGridLl
 MODULE PROCEDURE GRID_fPrintGridLlM
 END INTERFACE
!
CONTAINS
!
! Module operator procedures:
! Define operator procedures contained in this module.
!
! Module procedures:
! Define procedures contained in this module.
!
!+ Initialize the linked list.
!---

!! @description
!! This is the {.base constructor.} for the linked list data type
!! GRID_dfGridLl. An instance of the derived type is allocated. The
derived
!! data types components head and tail are nullified.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fNewGridLl (t_This)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(inout):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
!
 INTEGER :: i_status ! Status identifier returned by allocate.
!
 IF (.NOT. ASSOCIATED(t_This)) THEN
 ALLOCATE (t_This, STAT=i_status)
 END IF
!
 NULLIFY (t_This%tHead, t_This%tTail)
!
 END SUBROUTINE GRID_fNewGridLl
!
!+ Initialize a linked list member.

 38

!---

!! @description
!! This is a {.constructor.} for the linked list member derived data
type
!! GRID_dfGridLlM.
!!
!! @method
!! First we allocate an instance of the derived data type
GRID_dfGridLlM.
!! The components of the derived type instance is then initialized.
The
!! name of a linked list member is blanked. The pointer to the base
type
!! and to the next linked list member item are nullified. We then
apply
!! the base constructor to the base type.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fNewGridLlM (t_This)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(inout):
 TYPE (GRID_dfGridLlM), POINTER :: t_This !! Pointer to a
linked list
 !! member derived
data type.
!
 INTEGER :: i_status ! Status identifier returned by allocate.
!
!
 IF (.NOT. ASSOCIATED(t_This)) THEN
 ALLOCATE (t_This, STAT=i_status)
 t_This%cName = " "
 NULLIFY (t_This%tGrid, t_This%tNext)
 CALL GRID_fNew (t_This%tGrid)
 END IF
!
 END SUBROUTINE GRID_fNewGridLlM
!
!+ Delete the entire linked list.
!---

!! @description
!! This is the {.base destructor.} for the linked list.
!!
!! @method
!! We traverse the linked list and apply the linked list member
destructor

 39

!! to each of the members of the list. Finally we deallocate the
instance
!! of the linked list itself.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fDeleteGridLl (t_This)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(inout):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
!
 INTEGER :: i_status
 TYPE (GRID_dfGridLlM), POINTER :: t_current, t_next
!
 IF (.NOT. ASSOCIATED(t_This)) RETURN
!
 t_current => t_This%tHead
!
 ListLoop: DO
 IF (.NOT. ASSOCIATED(t_current)) EXIT ListLoop
!
 t_next => t_current%tNext
 CALL GRID_fDelete (t_current)
 t_current => t_next
 END DO ListLoop
!
 DEALLOCATE (t_This, STAT=i_status)
!
! Cleaning up by nullifying auxilliary pointers.
!
 NULLIFY (t_current, t_next)
!
 END SUBROUTINE GRID_fDeleteGridLl
!
!+ Delete a member of the linked list.
!---

!! @description
!! This is the {.destructor.} for the linked list member derived data
type.
!!
!! @method
!! We first apply the base type destructor to the base type
component.
!! Then we deallocate the linked list member instance itself.
!!
!! @owner Magne Rudshaug

 40

!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fDeleteGridLlM (t_This)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(inout):
 TYPE (GRID_dfGridLlM), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
!
 INTEGER :: i_status ! Status identifier returned by
deallocate.
!
 IF (.NOT. ASSOCIATED(t_This)) RETURN
!
 CALL GRID_fDelete (t_This%tGrid)
!
 DEALLOCATE (t_This, STAT=i_status)
!
 END SUBROUTINE GRID_fDeleteGridLlM
!
!+ Print the entire linked list.
!---

!! @description
!! This is the {.print operator.} for the linked list derived type
!! GRID_dfGridLl.
!!
!! @method
!! We traverse the linked list and apply the linked list member print
!! operator to each of the members of the list
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fPrintGridLl (t_This)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(inout):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
!

 41

 INTEGER :: i_status ! Status identifier returned by allocate.
!
 tCurrent => t_This%tHead
!
 ListLoop: DO
 IF (.NOT. ASSOCIATED(tCurrent)) EXIT ListLoop
 CALL GRID_fPrint (tCurrent)
 tCurrent => tCurrent%tNext
 END DO ListLoop
!
! Cleaning up by nullifying module local pointers.
 NULLIFY (tCurrent)
!
 END SUBROUTINE GRID_fPrintGridLl
!
!+ Print a member of the linked list.
!---

!! @description
!! This is the {.print operator.} for the linked list member derived
data type
!! GRID_dfGridLlM.
!!
!! @method
!! We print the name of the linked list member and then apply the
print
!! operator to the instance of the base type.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fPrintGridLlM (t_This)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(inout):
 TYPE (GRID_dfGridLlM), POINTER :: t_This !! Pointer to a
linked list
 !! member derived
data type.
!
!
 IF (ASSOCIATED(t_This)) THEN
 WRITE (*,*) "Name of member : ", t_This%cName
 CALL GRID_fPrint (t_This%tGrid)
 ELSE
 WRITE (*,*) "Not associated !"
 WRITE (*,*)
 END IF
!
 END SUBROUTINE GRID_fPrintGridLlM
!

 42

!+ Remove and deallocate an item from the linked list.
!---

!! @description
!! This subroutine will {.remove.} (delete) the linked list member
specified
!! by the linked list member name. If no member by the specified name
exists
!! nothing will be done.
!!
!! @method
!! The linkde list is traversed to find the member by the specified
name.
!! We then applies the linked list member destructor to this member
and
!! the linked list is joined so that no list member is lost.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fRemove (t_This, c_Name, i_Err)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(in):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
 CHARACTER (LEN=*), INTENT (IN) :: c_Name !! Name identifying
the list
 !! item
!
! Scalar arguments with intent(out):
 INTEGER, INTENT (OUT) :: i_Err !! Error status identifier.
!
 TYPE (GRID_dfGridLlM), POINTER :: t_previous, t_current,
t_next
!
!
 i_Err = 0
!
 IF (.NOT. ASSOCIATED(t_This)) THEN
 ! Linkde list does not existent
 i_Err = 1
 RETURN
 END IF
!
 t_current => t_This%tHead
!
 IF (TRIM(t_This%tHead%cName) == c_Name) THEN
 ! Remove the linked list head.
 t_This%tHead => t_current%tNext

 43

 CALL GRID_fDelete (t_current)
 ELSE
 ! To delete an item inside the list we need to know the previous
item.
 NULLIFY (tPrevious)
 ListLoop: DO
 IF (ASSOCIATED(t_current%tNext)) THEN
 IF (TRIM(t_current%tNext%cName) == c_Name) THEN
 t_previous => t_current
 EXIT ListLoop
 ELSE
 t_next => t_current%tNext
 t_current => t_next
 END IF
 END IF
 END DO ListLoop
!
 IF (ASSOCIATED(t_previous)) THEN
 ! Item by this name in linked list
 t_current => t_previous%tNext
 t_next => t_current%tNext
 t_previous%tNext => t_next
 CALL GRID_fDelete (t_current)
 ELSE
 ! No item by this name in list
 i_Err = 2
 END IF
 END IF
!
! Cleaning up by nullifying auxilliary pointers.
!
 NULLIFY (t_previous, t_current, t_next)
!
 END SUBROUTINE GRID_fRemove
!
!+ Append linked list member member identified by member name.
!---

!! @description
!! This subroutine {.appends.} a linked list member of type
GRID_dfGridLlM
!! to the linked list. The linked list will have the name specified.
!! of the linked list member will be have to
!!
!! @method
!! The new linked list member is created by applying the linked list
member
!! constructor. This means that base type is has been created by the
base
!! constructor. This means that further initialization must be
provided
!! to define the linked list member completely.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95

 44

!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fAppend (t_This, c_Name, i_Err)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(in):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
 CHARACTER (LEN=*), INTENT (IN) :: c_Name !! Name identifying
the list
 !! member.
!
! Scalar arguments with intent(out):
 INTEGER, INTENT (OUT) :: i_Err !! Error status identifier.
!
 i_Err = 0
!
 IF (ASSOCIATED(t_This%tHead)) THEN
 CALL GRID_fNew (tCurrent)
 tCurrent%cName = c_Name
 tCurrent%tNext => t_This%tHead
 t_This%tHead => tCurrent
 ELSE
 CALL GRID_fNew (tCurrent)
 tCurrent%cName = c_Name
 NULLIFY (tCurrent%tNext)
 t_This%tHead => tCurrent
 t_This%tTail => tCurrent
 END IF
!
! Cleaning up by nullifying auxilliary pointers.
!
 NULLIFY (tCurrent)
!
 END SUBROUTINE GRID_fAppend
!
!+ Copy one linked list member to another linked list member.
!---

!! @description
!! This subroutine {.copies.} a linked list member to another linked
list
!! member. The action of the subroutine may be summarized as:
!!
!!{ d
!! {.From.} linked list member exist: * Check if {.to.} linked list
member
!! exist.
!!{ d
!! {.To.} linked list member exist: * Copy contents of the {.from.}
base type
!! to the {.to.} base type.
Everything
!! else is left unchanged.

 45

!! {.To.} linked list member doesn't exist: * We append a new linked
list
!! member to the list
with the
!! {.to.} name. We then
copy the
!! contents of the
{.from.} base
!! type to the {.to.}
base type.
!! The {.to.} linked list
member
!! becomes the new head
of
!! the linked list.
!!}
!! {.From.} linked list member doesn't exist: * Nothing is done.
!!}
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fCopy (t_This, c_From, c_To, i_Err)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(in):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
 CHARACTER (LEN=*), INTENT (IN) :: c_From !! Name identifying
the from
 !! list item.
 CHARACTER (LEN=*), INTENT (IN) :: c_To !! Name identifying
the to list
 !! member.
!
! Scalar arguments with intent(out):
 INTEGER, INTENT (OUT) :: i_Err !! Error status identifier.
!
! Local scalars:
 TYPE (GRID_dfGridLlM), POINTER :: t_from ! Pointer to the
from linked
 ! list member.
 TYPE (GRID_dfGridLlM), POINTER :: t_to ! Pointer to the to
linked list
 ! member.
!
!
 i_Err = 0
 t_from => GRID_ftfPointerMember (t_This, c_From)
!

 46

 IF (ASSOCIATED(t_from)) THEN
 t_to => GRID_ftfPointerMember (t_This, c_To)
 IF (ASSOCIATED(t_to)) THEN
 t_to%tGrid = t_from%tGrid
 ELSE
 CALL GRID_fNew (t_to)
 t_to%cName = c_To
 t_to%tGrid = t_from%tGrid
 t_to%tNext => t_This%tHead
 t_This%tHead => t_to
 END IF
 ELSE
 i_Err = 1
 END IF
!
! Cleaning up by nullifying auxilliary pointers.
!
 NULLIFY (t_from, t_to)
!
 END SUBROUTINE GRID_fCopy
!
!+ Print a list of the linked list member names.
!---

!! @description
!! This function {.prints.} a list of the linked list member names.
!!
!! @method
!! Traverse the list and print the name of the linked list member.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 FUNCTION GRID_fifPrint (t_This) RESULT (i_Err)
!
! Declarations:
! Function arguments:
! Scalar arguments with intent(in):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
!
! Scalar arguments with intent(out):
 INTEGER :: i_Err !! Error status identifier.
!
!
 i_Err = 0
 tCurrent => t_This%tHead
!
 ListLoop: DO
 IF (.NOT. ASSOCIATED(tCurrent)) EXIT ListLoop
!

 47

 WRITE (*,*) "Name of list member:", tCurrent%cName
 tCurrent => tCurrent%tNext
 END DO ListLoop
!
! Cleaning up by nullifying auxilliary pointers.
!
 NULLIFY (tCurrent)
!
 END FUNCTION GRID_fifPrint
!
!+ Get pointer to a linked list member with a given name.
!---

!! @description
!! This function returns a {.pointer to the linked list member.} by
the
!! specified name. If no linked list member of the given name exists
!! the null pointer will be returned.
!!
!! @method
!! Traverse the list to find a linked list member by the given name.
!! If one is found a pointer to this linked list member is returned.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 FUNCTION GRID_ftfPointerMember (t_This, c_Name) RESULT
(t_ThisMember)
!
! Declarations:
! Function arguments:
! Scalar arguments with intent(in):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
 CHARACTER (LEN=*) :: c_Name !! Name of linked list member.
!
! Result argument:
 TYPE (GRID_dfGridLlM), POINTER :: t_ThisMember !! Pointer to
the
 !! linked list
member
 !! data type.
!
!
 NULLIFY (t_ThisMember)
!
 IF (.NOT. ASSOCIATED(t_This)) RETURN
 tCurrent => t_This%tHead
!
 ListLoop: DO
 IF (.NOT. ASSOCIATED(tCurrent)) EXIT ListLoop

 48

!
 IF (TRIM(tCurrent%cName) == c_Name) THEN
 t_ThisMember => tCurrent
 EXIT ListLoop
 ELSE
 tCurrent => tCurrent%tNext
 END IF
 END DO ListLoop
!
! Cleaning up by nullifying auxilliary pointers.
!
 NULLIFY (tCurrent)
!
 END FUNCTION GRID_ftfPointerMember
!
!+ Get pointer to the base type of a linked list member with given
name.
!---

!! This function returns a {.pointer to the base type of the linked
list
!! member.} by the specified name. If no linked list member of the
given name
!! exists the null pointer will be returned. This function will be
useful
!! when further initialization of the base type needs to be
performed.
!!
!! @method
!! Traverse the list to find a linked list member by the given name.
!! If one is found a pointer to the base type of this this linked
list
!! member is returned.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 FUNCTION GRID_ftfPointerBase (t_This, c_Name) RESULT
(t_BaseType)
!
! Declarations:
! Function arguments:
! Scalar arguments with intent(in):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
 CHARACTER (LEN=*) :: c_Name !! Name of linked list member.
!
! Result argument:
 TYPE (GRID_dfGrid), POINTER :: t_BaseType !! Pointer to the
base data
 !! type.

 49

!
!
 NULLIFY (t_BaseType)
!
 IF (.NOT. ASSOCIATED(t_This)) RETURN
 tCurrent => t_This%tHead
!
 ListLoop: DO
 IF (.NOT. ASSOCIATED(tCurrent)) EXIT ListLoop
!
 IF (TRIM(tCurrent%cName) == c_Name) THEN
 t_BaseType => tCurrent%tGrid
 EXIT ListLoop
 ELSE
 tCurrent => tCurrent%tNext
 END IF
 END DO ListLoop
!
! Cleaning up by nullifying auxilliary pointers.
!
 NULLIFY (tCurrent)
!
 END FUNCTION GRID_ftfPointerBase
!
!+ Count the number of members in the linked list.
!---

!! @description
!! This function returns the {.number of linked list members in the
linked
!! list.}.
!!
!! @method
!! Traverse the linked list and count the number of linked list
members.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 FUNCTION GRID_fifCount (t_This) RESULT (i_NumberOfMembers)
!
! Declarations:
! Function arguments:
! Scalar arguments with intent(in):
 TYPE (GRID_dfGridLl), POINTER :: t_This !! Pointer to the
linked list
 !! data type.
!
! Result argument:
 INTEGER :: i_NumberOfMembers !! The number of members in the
linked
 !! list.

 50

!
!
 i_NumberOfMembers = 0
!
 IF (.NOT. ASSOCIATED(t_This)) RETURN
 tCurrent => t_This%tHead
!
 ListLoop: DO
 IF (.NOT. ASSOCIATED(tCurrent)) EXIT ListLoop
!
 i_NumberOfMembers = i_NumberOfMembers + 1
 tCurrent => tCurrent%tNext
!
 END DO ListLoop
!
! Cleaning up by nullifying auxilliary pointers.
!
 NULLIFY (tCurrent)
!
 END FUNCTION GRID_fifCount
!
!+ Returning the name of a linked list member.
!---

!! @description
!! This function returns the {.name of a linked list member.}.
!!
!! @method
!! Check if the linked list member exists. If it exists return the
name of
!! linked list member.
!!
!! @owner Magne Rudshaug
!!
!! @history
!! 0.10 02.09.98 Magne Rudshaug Original code.
!!
!! @language Fortran 90/95
!! @standard Programming standard for IfeFEM 3.0
!---

!
 SUBROUTINE GRID_fName (t_This, c_Name, i_Err)
!
! Declarations:
! Subroutine arguments:
! Scalar arguments with intent(in):
 TYPE (GRID_dfGridLlM), POINTER :: t_This !! Pointer to the
linked list
 !! member data type.
!
! Scalar arguments with intent(out):
 CHARACTER (LEN=GRID_ifNAME_LENGTH), INTENT (OUT) :: c_Name !!
Name
 !! identifying the
list
 !! member.
 INTEGER, INTENT (OUT) :: i_Err !! Error status identifier.
!

 51

!
 i_Err = 0
 c_Name = " "
!
 IF (ASSOCIATED(t_This)) THEN
 c_Name = t_This%cName
 END IF
!
 END SUBROUTINE GRID_fName
!
END MODULE mfGridBaseLl
!

Documentation

Documentation may be split into two categories: external documentation , outside the
code; and internal documentation , inside the code. These are described in sections 5.1
and 5.2 respectively. In order for the documentation to be useful it needs to be both up
to date and readable outside Institute for Enery Technology. To ensure this all
documentation, both internal and external, shall be available in English. To enforce this
we introduce the convention:

Documentation convention 1 Documentation shall be provided in English in the
formats LATEX2e and HTML. Graphics included in the documentation shall be provided
in the formats EPS (encapsulated postscript, LATEX2e) and GIF (graphics interface
format, HTML).

The LATEX2e format is suitable for paper and HTML for online presentation.

A complete Fortran 90/95 program or library (a collection of object files maintained by
a librarian) will be referred to as a package in the text below.

External

In most cases this will be provided at the package level, rather than for each individual
procedure. It shall include the following:

Top Level Scientific documentation:

this defines the problem being solved by the package and the scientific rationale
for the solution method adopted. This documentation should be independent of
(i.e. not refer to) the code itself.

Implementation documentation:

this documents a particular implementation of the solution method described in
the scientific documentation. All program units (subroutines, functions, modules
etc...) in the package should be listed by name together with a brief description
of what they do. A calling tree for routines within the package must be included.

 52

A User Guide:

this describes in detail all inputs into the package. This includes both procedure
arguments to the package and any switches or 'tuneable' variables within the
package. Where appropriate default values; sensible value ranges; etc should be
given. Any files or namelists read should be described in detail.

Internal

This is to be applied at the individual procedure level. There are four types of internal
documentation, all of which shall be present.

Documentation comments:

every program unit must have documentation comments. The purpose of
documentation comments is to describe the function of the routine, probably by
referring to external documentation, and to document the variables used within
the routine. All variables used within a program unit must be declared and
commented as to their purpose. It is a requirement of this standard that the
templates, defined for each program unit and operator in section 4, be used and
completed fully. Extra documentation sections may be added to these headers if
a user so wish. With this practice a formatted (LATEX2e and HTML) version of
the internal documentation may be generated automatically by the program
f90toDOC , see section 6.2. The formatted version of the internal
documentation will be referred to as the application programmers interface or
for short simply the API . The recommended format for documentation
comments is:

!---

!! <Ordinary text and f90toDOC formatting directives>

!---

If the documentation comments block is small we use the simplified format:

!! <Ordinary text and f90toDOC formatting directives>

See section 6.2 for a definition of the f90toDOC formatting dirctives.

Section comments:

these divide the code into numbered logical sections and may refer to the
external documentation. These comments must be placed on their own lines at
the start of the section they are defining. The recommended format for section
comments is:

 53

!---

! <Section number> <Section title>

!---

where the text in <> is to be replaced appropriately.

General comments:

these are aimed at a programmer reading the code and are intended to simplify
the task of understanding what is going on. These comments must be placed
either immediately before or on the same line as the code they are commenting.
The recommended format for these comments is:

! <Comment>

where the text in <> is to be replaced appropriately.

Meaningful names:

code is much more readable if meaningful words are used to construct Fortran
90/95 entity names.

API Documentation tools

An important aspect of the documentation of IfeFEM 3.0 is the documentation of the
application programers interface (API) . A major problem with such documentation is to
keep it up to date. A preferred way to accommodate this is to keep the documentation of
the API in the source code as header comments. We then need a tool to format these
header comments and other relevant information to produce the actual API
documentation. Since no suitable tool existed we have developed our own tool
f90toDOC for this purpose. The formats supported by f90toDOC are LATEX2e and
HTML . The availability of the source code itself is also very important for the purpose
of documentation. To simplify the navigation through source files we translate it to the
HTML format where all definitions and inclusions are resolved through hyper links. We
have developed the tool f90toHTML for this purpose.

F90toHTML

One of the main reasons for using the HTML format is to take full advantage of hyper
links. To resolve all possible links in a group of inter related Fortran 90/95 source files
we need to know all definitions in the source files in advance. Thus, before we can
convert the source files to the HTML format we have to make an analysis with respect
to definitions in all the source files involved. The result of such an analysis is a fortran
definition file (fdb file) . We will use the extension .fdb to denote such files. When all

 54

the files have been analyzed and a fdb file has been produced, we may start converting
source files to the HTML format. In the conversion process references will be resolved
through the definitions in the fdb file.

1.1.30 Usage

f90toHTML [-b:FDBfile_out] [-B:FDBfile_in] [-raw] file

-b:FDBfile_out

With this option the program performs an analysis of the Fortran 90/95
definitions in the input file. The definitions detected are stored in the file
FDBfile_out. The -B option should not be specified in this mode. The default
fdb output file is f90toHTML.fdb.

-B:FDBfile_in

With this option the program performs a HTML conversion of the input file.
Unknown references are resolved through the fdb file FDBfile_in and must be
supplied. The -b option should not be specified in this mode. The default fdb
input file is f90toHTML.fdb.

-raw

Raw HTML output (omit header and tail) for inclusion in other files.

file

The Fortran 90/95 input file.

In the HTML conversion mode output is directed to standard output. Example of
analysis usage:

 f90toHTML -b:IfeFEM.fdb mfModule.f90

In this example the definitions of the mfModule.f90 source file has been appended to
the fdb file IfeFEM.fdb. If new definitions are added to mfModule.f90 you run
f90toHTML in the same way and the fdb file will be updated. To produce a complete
fdb file, f90toHTML must be run in the same manner for all inter related Fortran 90/95
source files. When this is done we are ready to start conversion. Example of conversion
usage:

 f90toHTML -B:IfeFEM.fdb mfModule.f90 > mfModule.html

In this example the Fortran 90/95 file mfModule.f90 will be converted to HTML
format. The references will be resolved through the fdb file IfeFEM.fdb. The output
from the program has been redirected to the file mfModule.html.

 55

1.1.31 Example

As an example of the use of f90toHTML we converted the source file,
pTestLinkedList.f90 in the program example in section 4.3.1 and
mfGridBaseLl.f90 in the module example in section 4.3.2 to HTML format. To
complete the example we also need the files mfGridBase.f90 and mfGrid.f90.

F90toDOC

f90toDOC is a program written to produce API documentation from Fortran 90/95
source code. It is based on special source code comments. The appearance of a
comment block signals that the next statement with a recognizable Fortran 90/95
keyword shall be documented. The format of the documentation produced by
f90toDOC is LATEX2e or HTML.

Usage of f90toDOC assumes that an analysis with f90toHTML of the files to be
documented has been performed. The resulting fdb file from the analysis is used in the
documentation process.

1.1.32 Source code comments

The f90toDOC comment symbol was chosen with the constraint that it must be
interpreted as a Fortran 90/95 comment, it should not clutter the source to much and
must be different than the Fortran 90/95 comment sign !. The last constraint allows
some part of the code to be commented in the Fortran 90/95 sense, but not in the
f90toDOC sense. We chose !! as the f90toDOC comment symbol. You can place a
block of comments before the statement to be commented. A !! type comment, starting
in column one, before a statement signals to f90toDOC that this statement shall be
documented. For example:

 !! Support for error handling
 MODULE mfError

When declaring a variable, a comment is used to define the meaning of the variable. In
this case it is natural to append the comment to the statement as shown in the following
example:

 REAL, TARGET :: RealWork(:) !! Real working array

This in itself will not suffice for a documentation of the variable RealWork. This type of
comment should be regarded as an attribute to the declaration, and will be used as a part
of the documentation if the declaration is preceded by an ordinary f90toDOC comment
as shown in the example below.

 !! Intrinsic type work arrays.
 REAL, TARGET :: RealWork(:) !! Real working array
 INTEGER, TARGET :: IntegerWork(:) !! Integer working array

 COMPLEX, TARGET :: ComplexWork(:) !! Complex working array

 56

1.1.33 Formatting in f90toDOC comments

To write API documentation we need a minimum of formatting possibilities. The
formatting possibilities in f90toDOC are restricted to simple lists , type-face modifiers
and macros .

Lists are started with the modifier !!{ [u,o,d] and ended with the modifier !!}. The
starting modifier has an optional argument expressing what type of list it is. u gives an
unordered list (same as LATEX2e itemize), the default. o gives an ordered list (same as
LATEX2e enumerate) and d gives a definition list (similar to LATEX2e description). The
items of the list has the general format:

 entity * item text

Here entity is only relevant in a definition list. Here it is the entity to be defined by the
item text.

The type-face modifiers are defined with a start and end modifier. The modifiers may be
of type in-line or multi-line. The in-line modifiers are bold, emphasize and verbatim.
The only multi-line modifier implemented so far is verbatim. The modifiers are shown
in the following example:

 !! We may have [.bold.] text, <.verbatim.> text and
 !! {.emphasized.} text in-line in comments. We may also have
 !! a multi-line verbatim text.
 !!<
 !! This is line 1 of verbatim text.
 !! This is line 2 of verbatim text.
 !!>

Nine macros are currently supported. A macro has the general format:

 @macro-name macro-argument

The macros are:

description

Produce a header for the description part of the documentation.

method

Produce a header for the method part of the documentation.

owner

 57

The macro takes one argument, the name of the person presently responsible for
the maintenance of the program unit in question.

history

The macro takes the revision history as input. The revision history must start on
the line immediately following the macro. One line in the revision history
consists of four items. The revision identifier, the date of the revision, the
signature of person responsible for revision and the comment describing what
has been done in the revision. The revision items must be separated by at least
two blank spaces. Revision items may be continued over several lines. The only
requirement being that the items must start in the same column.

input_files

Produce a header for the decription of the use of input files in the program unit.

output_files

Produce a header for the decription of the use of output files in the program unit.

language

The macro takes one argument, the programming language used in the
implementation.

standard

The macro takes one argument, the reference to the programing standard used.

procedure_list

The macro generates a list of the subroutines and functions defined on the
current file. The list is positioned immediately after the macro. The macro takes
no arguments.

see

The macro takes one argument, a comma separated list of "See also" references
to other related program entities or units.

index

The macro takes one argument, a parameter defining what type of index entry
shall be generated for the entity in the comment block. With the argument
"main" the commented block is made the main index in the LATEX2e index list.
This macro has no meaning in the case of HTML documentation.

header

 58

The macro takes one argument, the header title to be used instead of the header
defined automatically. Each comment block automatically gets a header
determined by what entity is being commented. This macro lets you override
this choice of header.

append_header

The macro takes one argument, a text describing the header text more detailed.
If the header for some reason needs a more descriptive text this may be
appended with this macro.

name

The macro takes one argument, the name of the entity being documented. With
this macro you may overrule the name of the entity being commented.

append_name

The macro takes one argument, a text describing the name more fully. If the
name for some reason needs a more descriptive text this may be appended with
this macro.

Error condition handling

In the IfeFEM 3.0 project we attempt to introduce a unified error handling system. This
will consist of a Fortran 90/95 module mfError containing global error messages and
global procedures for printing error messages. Since the error messages in this module
are general, they must be declared public in the module. In this way they will be
available to all other modules using the module mfError. For the mfError we introduce
the convention:

Naming convention 23 Module acronym: The module acronym for the mfError
module shall be ERRMH.

We introduce the following naming convention for global error messages:

Naming convention 24 Global error message: Shall have the prefix ERRMH_ef. The
components shall start with a capital letter and for the remaining part have lower case
letters and numerals and no separators.

Error messages corresponding to error conditions that aren't general will be referred to
as local error messages or module error messages . Since this type of error messages
will be specific to the module, we declare them as private relative to the module. We
introduce the following naming convention for module error messages.

Naming convention 25 Local error message: Shall have the prefix e. The
components shall start with a capital letter and for the remaining part have lower case
letters and numerals and no separators.

 59

We also introduce a convention for the declaration of error messages.

Syntax convention 13 IfeFEM 3.0 error messages shall be declared in the following
way:

 CHARACTER(LEN=*), PARAMETER :: "error_message"

Here error_message is any type of error message.

More details on the definition of the IfeFEM 3.0 error handling system will be supplied
later.

The IfeFEM 3.0 Directory Structure

The IfeFEM 3.0 project will contain a large number of files. A structuring of these files
will certainly simplify the maintenance. It will also be much easier to reference files in
the system if a logical directory structure is devised. It is the objective of this section to
define a standard IfeFEM 3.0 Directory Structure (IDS) : a directory hierarchy for
IfeFEM 3.0 source files, makefiles, examples, documentation, tools, and more.

The root directory of the IDS shall be IfeFEM. The top level directories of the IDS are:

source

for the source files of IfeFEM 3.0 modules.

lib

for compiled versions of the IfeFEM 3.0 library.

standards

for standards used in the implementation of IfeFEM 3.0.

tools

for necessary tools in the IfeFEM 3.0 project.

1.1.34 8.1 The source directory

This directory shall contain the subdirectories:

applications

for simple IfeFEM 3.0 applications useful for debugging purposes. There will be
one directory, containing a makefile and files with extension .f90, for each
application.

templates

 60

for the program unit templates defined in section 4 and templates for
implementation of generic algorithms. There will be one file with the extension
.f90 for each template.

makefiles

for IfeFEM 3.0 related makefiles. This directory will have a subdirectory for
each supported platform. In the subdirectory there will be a makefile building
the IfeFEM 3.0 library for the particular platform.

latex

for LATEX2e macros defined and used in the IfeFEM 3.0 project.

module

for the source of IfeFEM 3.0 modules. Each directory shall contain one file defining the
module. If the name of the module is mfModuleName the directory name shall be
mfModuleName, and the file name shall be mfModuleName.f90. For each module
procedure, fProcedureName in module mfModuleName, there shall be a file
fProcedureName.f90 containing the source. HTML versions of the source files will be
produced by f90toHTML. These files will have the same name, but have the extension
.html. The API documentation produced by f90toDOC will be stored in a subdirectory
doc. They will have the same name, but extensions .tex and .html.

The lib directory

This directory will have a subdirectory for each supported platform. The subdirectories
will contain compiled versions of the IfeFEM 3.0 library for the supported platforms
respectively.

The standards directory

This directory will contain the standardization documents relevant for the IfeFEM 3.0
project. Standardization documents shall be provided in the LATEX2e and HTML
formats if possible. There will be subdirectories latex and html allowing separate
storage.

The tools directory

This directory shall contain the subdirectories:

bin

for executable versions of the supported tools. These will be stored in a
subdirectory for each of the supported platforms.

source

 61

for the source of the supported tools if available. There should be one directory for each
tool. This should have a subdirectory doc containing available documentation.

Programming, conversion and documentation tools

In this section we will briefly discuss some tools that we find useful in the
standardization of IfeFEM 3.0.

F90ppr

This is a Fortran 90/95 preprocessor and source code formatter. The preprocessor is
very useful for conditional compilation purposes. Source code formatting may be useful
to produce a source code with a standardized layout.

Gnu make

The make utility is very valuable when working with a large set of files. With make a
number of tasks may be automated. The problem with make is that the makefile syntax
is not standardized. However, the gnu make is supported on all major platforms
including win32. Thus, by designing our makefiles for gnu make, we will achieve a
much greater degree of standardization.

TeX2HTML

The typesetting system used to produce the printed IfeFEM 3.0 documentation will be
LATEX2e. To make the documentation available electronically it should be converted to
a HTML document. TeX2HTML (commercial version of tth) provides this service. This
product has several benefits compared to similar products. The program is very simple
to install and converts very fast. It deviates from similar products in that it produces
mathematics in HTML code, not as pictures. This makes the resulting HTML code
containing mathematics to appear much faster on the web browser.

Listings and lgrid

There exists two packages to accommodate inclusion of Fortran 90/95 source code in a
LATEX2e document. These are listings and lgrind. Both have Fortran 90/95 support.
The most visually pleasing result is obtained with lgrind. However, lgrind involves a
separate conversion program. With listings source code can be included directly.

Quality assurance

Intentionally left blank.

 62

References

[1]

Michael Metcalf and John Reid. Fortran 90/95 explained. Oxford University
Press, 1996.

 63

Index (showing section)

A

acronym

 module, 2-3

API, 6-0

API, 5-2

application

 programers

 interface, 6-0

application

 acronym, 2-1

 programmers

 interface, 5-2

argument

 lists

 dummy, 3-4

arguments

 dummy, 3-5

array, 2-7

 syntax, 3-4

assignment

 operator

 generic, 3-5

 operators, 3-5

assignment

 operator

 subroutines, 2-4

attributes, 3-2

automatic

 type

 checking, 3-5

 64

B

banned

 features, 3-3

basename, 2-0

C

character

 strings, 3-2

code

 compact, 3-0

 efficient, 3-0

 legible, 3-0

 modular, 3-0

 scalable, 3-0

comments

 Documentation, 5-2

 General, 5-2

 Meaningful names, 5-2

 Section, 5-2

COMMON, 3-5

compact, 3-4

 code, 3-0

conditional

 compilation, 3-4

construction, 2-0

constuctor, 3-5

D

data

 global, 3-5

 hiding, 3-2

 local, 3-5

 types, 3-4

data

 65

 encapsulation, 3-5

 hiding, 3-5

definition

 global derived data type, 2-5

 local derived data type, 2-5

derived

 data

 type, 3-2

derived data type

 components, 2-5

destructor, 3-5

documentation

 A User Guide, 5-1

 external, 5-0

 Implementation, 5-1

 internal, 5-0

 Top Level Scientific, 5-1

dummy

 argument, 2-7

E

efficiency, 3-2

efficient

 code, 3-0

error

 handling, 7-0

error messages

 global, 7-0

 local, 7-0

 module, 7-0

F

f90ppr, 9-1

f90ppr, 3-1

 66

f90toDOC

 comment, 6-2

f90toDOC, 6-2

f90toHTML, 6-1

fdb, 6-1

features

 banned, 3-3

fixed

 form, 3-1

format

 LATEX2e, 6-0

 HTML, 6-0

formatting, 6-2

fortran

 definition

 file, 6-1

free

 form, 3-1

G

generic

 procedures, 3-5

global

 error messages, 7-0

global

 operator, 2-4

 parameter, 2-6

 variable, 2-7

global derived data type

 definition, 2-5

gnu

 make, 9-2

I

 67

IDS, 8-0

IfeFEM 3.0

 directory

 structure, 8-0

indentation, 3-1

index

 variable, 2-7

intent, 3-5

internal

 procedure, 2-4, 3-4

intrinsic

 procedures, 3-4

L

legibility, 3-2

legible, 3-1, 3-4

 code, 3-0

lists, 6-2

local

 error messages, 7-0

 operator, 2-4

 parameter, 2-6

 procedure, 2-4

 variable, 2-7

local derived data type

 definition, 2-5

M

macros, 6-2

matrix

 multiplication, 3-4

memory

 dynamic, 3-4

modular

 68

 code, 3-0

modularity, 3-2

module, 2-3, 3-2, 3-5

 error messages, 7-0

 head, 3-5

 name

 acronym, 2-3

 procedures, 3-5

 tail, 3-5

module

 global

 procedure, 2-4

 local

 procedure, 2-4

N

named

 constants, 2-6

naming

 convention, 2-0

numeric

 inquiry

 functions, 3-4

O

object

 oriented

 design, 3-2

obsolecent

 features, 3-1

operator

 user

 defined, 2-4

operator

 69

 functions, 2-4

operators, 3-5

overloaded

 operators, 3-5

overloaded, 4-2

P

package, 5-0

parallel

 versions, 3-4

parameter, 2-6

parameterized

 intrinsic

 types, 3-4

pointer

 assignment, 3-5

 components, 3-5

pointers, 3-4

precompiler, 3-1

preprocessor, 3-1

print

 function, 3-5

procedure, 3-2

 internal, 2-4

 library, 3-5

procedure local

 variable, 2-7

program, 2-2, 3-2

 unit, 3-5

R

recommendations, 3-0

recursion

 direct, 3-4

 70

 indirect, 3-4

recursive

 procedures, 3-4

redundant

 features, 3-1

S

scalable

 code, 3-0

scalable, 3-0

scalar, 2-7

source

 forms, 3-1

strong

 typing, 3-5

syntax

 conventions, 3-0

T

template, 4-0

TeX2HTML, 9-3

type-face

 modifiers, 6-2

U

use

 association, 3-5

user

 defined

 operator, 2-4

user

 defined, 4-2

V

vector

 multiplication, 3-4

Institute for Energy Technology
P.O. Box 40
NO-2027 Kjeller
Norway
Tlf 0047 63 80 60 00
Telefax 0047 63 81 63 56

www.ife.no

	MR-E-005-programming_standards_IfeFEM.pdf
	MR-E-005-programming_standards_IfeFEM.pdf
	Introduction
	Naming conventions
	Application and library names
	Program names
	Module names
	Procedure and operator names
	Derived data type definition names
	Named constants
	Variable names

	Fortran 90/95 coding style and syntax
	Style conventions
	1.1.1 Source form
	1.1.2 Fortran 90/95 keywords and intrinsic procedures
	1.1.3 Entity names
	1.1.4 Precompiler
	1.1.5 Indentation
	1.1.6 Tab characters
	1.1.7 Source code administration

	Syntax conventions
	1.1.8 Declaration of named entities
	1.1.9 Complete function definition
	1.1.10 Complete form of end statement
	1.1.11 Relational operators
	1.1.12 Control statements
	1.1.13 Character strings

	Banned features
	General recommendations
	1.1.14 Pointers
	1.1.15 Array syntax
	1.1.16 Intrinsic procedures
	1.1.17 Parameterization of intrinsic types
	1.1.18 Derived data types
	1.1.19 Internal and recursive procedures
	1.1.20 Procedures whit optional dummy arguments
	1.1.21 Dynamic memory

	Module recommendations

	Templates
	Program units
	1.1.22 Program
	1.1.23 Module
	1.1.24 Subroutine
	1.1.25 Function

	Operators
	1.1.26 Assignment
	1.1.27 General

	Examples
	1.1.28 Program
	1.1.29 Module

	Documentation
	External
	Internal

	API Documentation tools
	F90toHTML
	1.1.30 Usage
	1.1.31 Example

	F90toDOC
	1.1.32 Source code comments
	1.1.33 Formatting in f90toDOC comments

	Error condition handling
	The IfeFEM 3.0 Directory Structure
	1.1.34 8.1 The source directory
	The lib directory
	The standards directory
	The tools directory

	Programming, conversion and documentation tools
	F90ppr
	Gnu make
	TeX2HTML
	Listings and lgrid

	Quality assurance
	References
	

	Index (showing section)

