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ABSTRACT

There is a profound duality between rays and waves. In fact, 70 years ago, in the context of quantum mechanics, Feynman showed that rays, properly equipped with
phases and correctly summed, provide exact solutions of the quantum mechanical wave equation. In this paper, constructing explicit, exact ray solutions of the one-
dimensional Helmholtz equation as a model for optically thin solar cells, we show that the ray-wave duality is also exact in the context of the electromagnetic wave
equations. We introduce a complex index of refraction in order to include absorption. This have so far not been treated in the quantum ray-splitting literature. We
show that inclusion of exact phases is mandatory and that a ray theory without phases may result in amplitude errors of up to 60%. We also show that in the case of
multi-layered solar cells the correct summation order of rays is important. Providing support for the notion that rays provide the “skeleton” of electromagnetic waves,
we perform a Fourier transform of the (experimentally measurable) solar cell reflection amplitude, which reveals the rays as peaks in the optical path length
spectrum. An application of our exact ray theory to a silicon solar cell is also provided. Treating the one-dimensional case exactly, our paper lays the foundation for
constructing exact ray theories for application to solar cell absorption cross section in two and three dimensions.

1. Introduction

In the quest for cheaper and cheaper solar cells, the solar cell
community is continuously on the lookout for ways to decrease material
costs. It is well known that in order to produce thinner solar cells with
the same absorption properties as their thicker counterparts, absorption
of optically thin solar cells may be enhanced by the use of nano-layering
or by nano-structuring [1,2]. In order to investigate the nature of the
absorption enhancement of optically thin solar cells by nano-layering or
structuring, full wave calculations have been employed [3,4]. Shape
resonances such as whispering gallery modes in spherical nanos-
tructures have been considered as one possible cause for the absorption
enhancement [5]. As another possible cause for the absorption en-
hancement, the coupling of modes in periodic nano-structures has been
considered [6]. While absorption enhancement by nano-layering and
nano-structuring has been demonstrated both experimentally [7] and
numerically [8], the origins of the absorption enhancement mechan-
isms are not completely understood. Handy tools for investigating wave
propagation and absorption properties of electromagnetic radiation in
complex nano-structures are required for achieving a deeper under-
standing.

In the short wavelength limit, i.e., when the wavelength is small
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compared to the size of the structures used for absorption enhancement
(e.g in micro-structured materials), ray tracing has been employed as an
approach for investigating wave propagation and absorption enhance-
ment in solar cells since the 1980s [9-11], when the optical perfor-
mance of various solar cell designs was evaluated using ray-tracing
techniques for the computation of the reflectance, transmittance and
absorption. Since then, several numerical codes [12-19] and methods
were developed, such as the Monte Carlo ray tracing method [20], the
polarization ray tracing technique [21,22], the ray tracing combined
with transfer matrix theory [23] and ray tracing combined with image
processing [17]. Starting with one-dimensional modelling [24], these
methods were later extended to two and three dimensions [25-28].
Ray tracing methods have been shown to explain the trapping of
rays in solar cells. However, ray tracing fails to explain resonance ef-
fects in nano-structured materials such as whispering gallery modes.
The reason for this deficiency is obvious: In order to describe resonance
effects in layered thin films or films with nano-structures, the wave
nature of the electromagnetic radiation needs to be taken into account,
while the classical ray picture in electrodynamics is used to study the
propagation of electromagnetic waves in terms of rays for cases where
the wavelength of the electromagnetic radiation is short compared to
changes of the media in which the electromagnetic radiation is
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propagating. This is not the case for optically thin solar cells with nano-
layers and nano-structures, where the optical properties of the material
change on a scale which is comparable to the wavelength of light.

In the field of quantum theory, a ray theory that takes into account
the wave nature is readily available. In quantum mechanics, the ray-
wave duality leads to the important field of semiclassical methods
[29,301, which attempts to solve the quantum Schrodinger equation on
the basis of classical particle trajectories. Using rays to solve the wave
equations is tempting since it is usually much more straightforward to
solve the ordinary differential equations determining the dynamics and
geometry of rays, than solving the wave equations, which requires the
solution of partial differential equations of continuous media. In order
to obtain an exact result on the basis of rays, the rays need to be as-
sociated with phases; if for each ray the correct phases can be de-
termined, the wave-ray duality is exact and the wave equations may be
solved on the basis of rays. Since in this case, the ray theory solves the
Helmholtz equation exactly, the ray theory can also correctly handle
resonances caused by the wave nature of light. In addition, we in-
troduced a complex refractive index in the ray theory allowing to treat
absorption, which so far has not been introduced in quantum ray-
splitting literature.

Only recently, in the field of solar cells, attempts that include phases
have been reported [31].

In order to increase the understanding of the behavior of light in
nano-layered and nano-structured solar cells, we present a ray theory
that yields an exact description of the behavior of light in one-dimen-
sional systems and allows to explain absorption enhancement due to
nano-layering and nano-structuring.

In order to demonstrate the new theory, we study the optical gen-
eration rate of optically thin solar cells, modeled as vertical stacks of
thin (absorbing) dielectric films, under normal incidence of light. In
sections 2 and 3 we show that in this case, with or without a mirror
behind the stack, Maxwell's vector equations are equivalent with a one-
dimensional scalar Helmholtz equation, which we solve with our exact
ray theory. We will use the scalar theory throughout this paper. In order
to model absorption, we use a complex index of refraction. In section 4
we introduce a hierarchical scheme of summing rays as a convenient
method of keeping track of rays bouncing off of and transmitting
through different dielectric layers of the solar cell. We also show that
including only the simplest rays already yields an excellent approx-
imation of the exact solution of the wave equation. In Section 5 and 6
we show that both summation order and phases are important in our
ray theory. We show in section 7 that the signature of the most im-
portant rays appears as peaks in the Fourier transform of the reflection
amplitude of a flat solar cell. In section 8 we demonstrate how our ray
theory can be used for materials with practical importance within the
solar cell field. In Section 9 we discuss our results; we summarize and
conclude our paper in Section 10.

Our method can be extended for use in two and three dimensions.
The theory describes the optical properties of a device and is based on
the imperative that phases need to be included to arrive at a useful ray
theory.

2. The scalar wave model for a one-dimensional film

In order to develop a ray theory for studying absorption enhance-
ment in optically thin solar cells, we consider one-dimensional systems
in which electromagnetic radiation is propagating towards a region
consisting of one or more parallel layers of different materials. In this
section we will introduce one-dimensional model system that we will
use for illustration throughout the paper. In all cases, we consider the
propagation direction as normal to the surfaces of the materials. Since
we want to develop model systems for optically thin solar cells, we
study cases where one or more of the layers consist of energy-con-
verting materials. We describe the incoming electromagnetic wave by a
plane wave. Since we consider only normal incidence, the system can
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Fig. 1. Schematic description of a half-space problem, where the left half space
is vacuum (no = 1) and the right half space is material. A plane wave is pro-
pagating towards a boundary between vacuum (no = 1) and an arbitrary di-
electric material with refractive index n = n, + in;. The imaginary part n; of the
refractive index is set to zero if the dielectric material is non-absorptive. The
waves are propagating in x-direction, normal to the surface. y, and y; are the
scalar wave functions in the two regions, k = 25t/A is the angular wave number
in vacuum, and A is the vacuum wavelength. r and t are here the reflection and
transmission amplitudes for the plane wave in this system; the amplitude of the
incoming plane wave is set to one.

be fully described by a scalar wave function, y [32].

The first and simplest system we will investigate is a system con-
sisting of a single film. By evaluating the scalar wave function for one
single film, where the material of the film is an energy-converting
material with complex refractive index n = n, + in;, we can understand
the occurrence of interference maxima and investigate how these are
related to the enhancement of the absorption cross section. The inter-
ference maxima are resonances akin to the whispering gallery re-
sonances that occur in spherical particles used for nano-structuring
solar cells, which lead to an enhancement of the electric field and the
absorption properties of the solar cells.

The reflection probability R at the boundary between two materials
is calculated as R, = |r|?, where r is the amplitude of the reflected wave
(see Fig. 1). By requiring a continuous scalar wave function and a
continuous first derivative of the scalar wave function at the boundary,
we can derive an expression for R, for the case illustrated in Fig. 2 [33],
ie.,

(1 - nr)z + ni2

Ry=—" "7

A+ n)?+n? 21
The probability for transmission at the boundary for the system in
Fig. 1, Ty, is given by T, = |t|> = 1 — R,.

We start by evaluating two simple systems, namely a single film and
a single film with a mirror, as shown in Fig. 2a and b, respectively.

We require that the wave function and its first derivative are con-
tinuous at the boundaries and that the wave function is zero at the
surface of the mirror. We derive the transmission probability T = |t|?
and the reflection probability R = |r|? for the systems, where t and r are
the amplitudes of the transmitted and reflected plane waves, respec-
tively. For the single-film case, shown in Fig. 2a, the reflection and
transmission amplitudes are given by

e i sin(nka)[(nk)? — k?]
" 2nk? cos(nka) — i sin(nka)[(nk)? + k2)]’

(2.2a)

(a) (b)

Fig. 2. Two simple single film systems. (a) A single film in vacuum and (b) a
single film in vacuum with a mirror. The refractive index of the film is given by
n = n, + in;. ng = 1 is the refractive index of vacuum, a is the thickness of the
film.
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film-vacuum boundary.

(b)

znkze—Zika
t= S
2nk? cos(nka) — isin(nka)[(nk)? + k3|

(2.2b)

where k = 2m/A is the angular wave number in vacuum, A is the va-
cuum wavelength, nk is the angular wave number in the film, n is the
complex refractive index of the film, and a is the thickness of the film. If
the film is non-absorptive, i.e., n is real, it is straightforward to show
that Eqs. 2.2a and 2.2b lead to R + T = |r|> + |t|* = 1, i.e,, all elec-
tromagnetic radiation entering the film is eventually leaving the film
again.

In the case a mirror is present (see Fig. 2b), there is no transmission.
Therefore the system can be characterized by the reflection amplitude
alone, which in this case is given by

_ ncos(nka) + isin(nka)
n cos(nka) — isin(nka)”

(2.3)

If the film is non-absorptive, i.e., n is real, it follows immediately from
Eq. (2.3) that R = |r|? = 1, i.e. again all electromagnetic radiation en-
tering the film is eventually leaving the film.

We define the absorption cross section as the fraction of light that is
absorbed and denote it by o. In the two cases shown in Fig. 2, the film
with and without the mirror, the expressions for o are respectively
given by

o) =1-R(Q), (2.4a)

o) =1-RA + TQ). (2.4b)

According to the definition of o as the fraction of absorbed light, i.e.,
light that does not exit the solar cell, in addition to absorbed light that
leads to beneficial photo current, o contains all parasitic absorption
processes, for instance the two-photon process [34,35].

The same procedure can be applied for film-systems without mirror.
For a non-absorptive film, o is zero. For the rest of this paper, we will
focus exclusively on cases where a mirror is placed behind the film/
films in order to model a solar cell system.

In an equivalent solar cell system the absorption cross section is the
total amount of absorbed energy absorbed at a given wavelength A. This
is the maximal amount of energy that can potentially create electron-
hole pairs at a given wavelength A. Under normal operating conditions,
if the total amount of absorbed energy is increasing, the number of the
photo-electrons will also increase and this will lead to enhanced effi-
ciency. When the absorption cross section is weighted by the AM1.5
solar spectrum, we obtain the optical generation rate, G,,.. The optical
generation rate G, has been introduced to the solar cell field by Ferry
et al. [36]. Since then it is used as the measure of the optical perfor-
mance of various solar cell designs. In our case G, is given by

Gop[(/l) = I‘solar(/l)g(/l)As (2.5)

where I',,(A) is the spectral weighting term and A is the surface area
of the solar cell. In this paper we will evaluate o(A) for our systems in
order to get a fundamental understanding of how the optical resonances
in the energy converting film increase the total amount of absorbed
energy.

For a single film, or a stack of films, with different refractive indices,
it is possible to analytically derive a formula for the absorption cross
section from the probability current. This depends only on the absolute
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Fig. 3. Three types of rays encountered in a film-
plus-mirror system. (a) The ray directly reflects from
the surface. This ray does not contribute to the ab-
sorption cross section. (b) The simplest ray that
contributes to the absorption cross section. The ray
enters into the film is reflected from the mirror and
exits. (c¢) A more complex ray contributing to the
absorption cross section. This ray has two reflections
from the mirror and one internal reflection from the

—
(©)

square of the scalar wave function inside of the film(s). To be specific,
we consider the case of an array of films, described by a space-depen-
dent complex refractive index n(x) = n,(x) + ini(x). The complex re-
fractive index n(x) when the optical or the absorption properties of a
material change. When a stack of films is illuminated from the front and
backed by a mirror, the absorption cross section is given by
U:%me@m@W@Wﬁ, 2.6)
where the stack of films is assumed to be located in the interval
0 < x < w and the mirror is located at x = w. The details of the deri-
vation are presented in Appendix B. Since for a single film with mirror
both r and y(x) are known explicitly (see Eq. (2.3) and Appendix B), it is
straightforward in this case to show by explicit calculations that Eq.
(2.6) holds (see Appendix C).

3. Exact ray theory for single films

In this section, we will show that it is possible to estimate the ab-
sorption cross section by considering and summing rays. Three ex-
amples of simple rays are shown in Fig. 3.

In order to calculate the total reflection amplitude r we need to sum
up all possible rays in the film [37,38]. Every ray contributes to the
total reflection amplitude and thereby to the absorption cross section
with an amplitude and a phase. The reflection and transmission am-
plitudes of the ray depending on the side of the boundary the ray is
hitting. Denoting by r; and ¢; the reflection and transmission amplitudes,
respectively, for a ray originating from outside in the vacuum and
transmitting into the film, and by r, and ¢ the reflection and trans-
mission amplitudes, respectively, for a ray originating from inside of
the film and traveling towards the vacuum, we obtain (see Appendix A):

s l-n

Tiiw (3.1
o= 2

R P (3.2)
=)

"7 \1+n/) (3.3)
f = 2n

T 14n (3.4

It is important to note that the amplitudes, eq. (3.1)-(3.4), remains
exact if the refractive index, n, is complex. We hereby established a ray
model that is able to describe absorption of electromagnetic radiation.
In addition to the amplitudes, we need to include the phase that the ray
collects when it transverses the film, i.e., each time it travels from the
vacuum-film interface to the mirror or from the mirror to the interface.
This phase collected when traveling through the distance a is given by
¢™ e Fyurther we have to include the phase €™ [39] caused by the mirror
each time a ray is reflected by the mirror.

To introduce our procedure, we state the contribution to r from the

three selected rays illustrated in Fig. 3. The result is
r=n+ t[einkaein'einkaty + tleinkaeiﬂeinkarreinkaeineinkatr (35)

where the first term is the contribution of the ray illustrated in Fig. 3a,
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Fig. 4. Absorption cross section o as a function of the wavelength A for the
system given in Fig. 2a. The blue line is calculated analytically with Eq. (2.3)
and the ray model with Eq. (3.6) is used when the two (red dashed), three
(green dashed line) and five (purple dashed line) simplest rays are included.
The refractive index of the film in this system is 1.8 + 0.05i and the thickness is
500 nm. The wavelength ranges from 300 nm to 1500 nm. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)

the second term is the contribution from the ray illustrated in Fig. 3b,
and the third term is the contribution from the ray illustrated in Fig. 3c.
If we include all contributing rays, their total, exact contribution to r is
given by
0
r=n+ tltreirrezinka Z (eiﬂ'rrezinka)v.
v=0

(3.6)

By inserting the expressions for r, t;, 1 and t,, and with the help of the
elementary summation formula for the geometric series, it turns out
that r in Eq. (3.6) is equal to r in Eq. (2.3).

Whenever an energy-converting film is present, i.e., whenever
n. > 1, we have |r,|] < 1 and the expression for r in Eq. (3.6) con-
verges absolutely. Fig. 4 shows o for the single film system with a mirror
behind. The solid line is the exact expression for g, the dashed line is o
found by the ray model where only a few simple rays are included.

As shown in Fig. 4 very fast convergence is observed even if only a
few of the shortest rays are included. The figure also shows that con-
sidering only the five simplest rays in the system, the analytically cal-
culated absorption cross section can already be predicted near per-
fectly. Fig. 4 illustrates another important aspect, namely that our ray
theory can describe absorption of electromagnetic radiation by in-
cluding a complex refractive index.

4. Exact ray theory for multilayered films: hierarchical
summation scheme

When a system has more than one layer, each ray, upon en-
countering a vacuum-film boundary or a boundary between two layers,
will split into two rays, a reflected ray and a transmitted ray (except the
mirror in our model system). This is called ray splitting [40-42]. With
increasing geometric length, tracking splitting rays becomes an ever
more complex task since each split ray, subsequently, will undergo
splittings itself. Thus, the number of rays in the system increases ex-
ponentially with the number of splittings, i.e., with the geometric
lengths of the rays.

In order to keep track of all the rays, we present a convenient book-
keeping system, called symbolic dynamics [43]. This system is widely
used in the fields of non-linear dynamics and chaos. This symbolic
language consists of an alphabet and simple grammatical rules which
determine the path of a ray unambiguously. The symbolic dynamics of
two film layers with a backside mirror (Fig. 5) has an alphabet that
consists of the three letters (symbols) a, b, c. Each of the letters corre-
sponds to a boundary where the ray will either split or simply reflect.
The grammatical rules are:
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R, —f—

Ry

a b

Fig. 5. Two rays, R; and Ry, in a system with a mirror and two film layers. R;
and R, are labeled by the symbolic dynamics aba and abcbcba, respectively.

C

1. A word must start with the letter a. If the ray exits the system, the
word must also end in the letter a.

2. Skipping letters is not allowed, i.e., unless the trajectory terminates,
the letter a is always followed by the letter b, the letter b is always
followed by letters a or ¢ and the letter ¢ is always followed by the
letter b, indicating reflection off of the mirror.

Illustrating these rules, we construct the two sample rays R; and R,
shown in Fig. 5. R; transmits at a and reflects at b before transmitting
out of the system through a. Thus, the word labeling R; is aba. We may
be tempted to label R, as aca, but this violates rule 2. The correct word,
abcbcba, contains information about every boundary crossed.

To define the symbolic dynamics of systems with more films, we
simply use a larger alphabet. If there is no mirror, i.e., transmission
through the system is possible, rule 1 would allow words to end with
the last letter of the alphabet.

The graph in Fig. 6 generates the part of the vocabulary that con-
tains words with seven or less symbols for the two-film system in Fig. 5.
The incoming ray will first hit node a. All a nodes are colored blue to
emphasize that they mark the end of a word. The edges that are con-
necting the nodes are either black or red. A black edge signifies a ray
traveling to the right and a red edge signifies a ray traveling to the left.
A word can easily be read off Fig. 6 by writing down the successive
letters starting from the first node to another blue node.

The computer implementation of this hierarchical summation
scheme uses the number of ray splittings at the boundaries as a measure
of the run time, not the number of rays explicitly. More splitting events
generate exponentially more rays to approximate the reflectance R.
About seven such splittings are needed to approximate the analytic
expression reasonably well as seen in Fig. 7. These seven splittings
generate a set of 64 contributing rays. Allowing more splittings, thus
adding more rays, improves the approximation further.

If photons were classical, Newtonian particles, ray-splitting would
not occur. The only ray allowed according to Newtonian mechanics
would be the ray labeled abcba. Accordingly, this ray is also known as
the “Newtonian ray” [44]. All other rays show ray splitting [40-42].
Since ray splitting is not allowed according to Newtonian mechanics,
these split rays are called “non-Newtonian” [44]. Non-Newtonian rays
have been proven theoretically [40,41,45,46] and experimentally
[42,47-49].

To assess the importance of the (Newtonian forbidden) non-
Newtonian rays compared with the (Newtonian allowed) non-split,
Newtonian ray, we also show the contribution of the Newtonian ray to
R(A) in Fig. 7. We see that the Newtonian ray alone, although in the
vicinity of the exact result for R(A), produces a result with very poor
accuracy. Conversely, Fig. 7 shows that the contribution of the split,
non-Newtonian rays is substantial, and that only the added contribution
of the split, non-Newtonian rays produces accurate results.

5. Importance of the correct summation order

As discussed in the previous section, in the case of a single film, the
sum in Eq. (3.6) for the reflection amplitude r is absolutely convergent,
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Incoming ray

I

|

. 11 111
I

I

/,\,,,,,,/

(a)
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Fig. 6. Schematic of the ray tree algorithm. The interfaces between the mate-
rials IT and III are labeled a and b, respectively, and the mirror is labeled c. An
incoming ray always hits a first. At a the ray will split in two. One ray is re-
flected (ray labeled ‘a’) and the other will travel to the right (black edge) to-
wards b. At b it can either go to the left (red edge) and exit, or continue to travel
to the right to the mirror, c. The inset shows the two-layered system that is
considered in this example. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

and the summation order of the rays is irrelevant. Any summation
scheme, as long as all rays are included, will yield the exact value for r.
However, if there is more than one film, the order of summation does
matter. Let

Ms

A
0 (5.1)

.
Il

be the ray representation of the reflection amplitude. If Eq. (5.1) were a
finite sum, the order in which we sum the rays would clearly not
matter. However, this is not the case with infinite sums, such as Eq.
(5.1). Only if

D 4l < oo
j=0 (5.2)

is the summation order of the terms in Eq. (5.1) irrelevant and always
yields the correct reflection amplitude. In this case, as discussed in the
previous section, we call the sum in Eq. (5.1) absolutely convergent. If,
however,

(5.3)

it was shown by Riemann [50] that, depending on the summation order
of the terms in Eq. (5.1), the infinite sum in Eq. (5.1) can be made to
have any prescribed value. This is known as Riemann's Rearrangement
Theorem [51]. In this case the sum in Eq. (5.1) is called conditionally
convergent, and it is necessary to sum it in some prescribed way in

0.6 Exact

—— 4 splittings
—— 7 splittings
—— Non-splitting

0.4

0.2

0.0
600

Il Il Il
900 1,000 1,100

A

Il
800

Il
700

1,200

Fig. 7. Absorption cross section o as a function of the wavelength A, including
various numbers of split rays, and the shortest non-splitting ray. The hier-
archical summation scheme approximates the analytical result for the film with
two layers (Fig. 5) almost perfectly with only 64 rays or, equivalently, seven
splittings. Including more rays yields an even more accurate result. The non-
splitting ray approximately defines the lower envelope of the exact result.
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order to obtain correct results.

In Appendix D we show that for our two-film system, for a large
range of dielectric constants, Eq. (5.3) holds, i.e., in these cases our ray
sum in Eq. (5.1) is only conditionally convergent. The correct summa-
tion scheme in these cases is to sum the rays in the order of increasing
path length, where the path length of the ray may either be its geo-
metric length or its optical path length. This summation scheme is not
dictated by mathematics, which does not help us beyond the fact of
stating that in the case of conditional convergence different summation
prescriptions produce different results [51], but interestingly is dictated
by the physical situation. For actual realizations of solar cells there is
always some absorption present, which naturally suppresses the im-
portance of longer rays. Therefore, ordering the rays according to their
importance for r means ordering them according to their path lengths.

We can numerically corroborate the importance of the summation
order by testing for absolute convergence with the hierarchical sum-
mation scheme. We take the absolute value of each term, which is
equivalent to removing the phase completely. Fig. 8 compares the ab-
solute value of the difference between the analytical reflection prob-
ability R, and the reflection probability Ryss, computed according to
the hierarchical summation scheme. Without the absolute value of each
term, i.e., when phases are included, convergence is reached after a
small number of splittings. Without phases, we see that the difference
IRy — Ryssl is diverging, numerically corroborating that the sum over
rays is not absolutely convergent.

6. Importance of phases in the ray theory

In this section we emphasize the importance of phases, even in the
case of absorption (which was not included in Sec. 5), by computing
absorption cross sections, with and without phases included, using as an
example the single film with mirror introduced in Secs. 2 and 3.
Comparing the two cases, we show that the ray theory without phases
produces results that contain unacceptably large errors.

In order to demonstrate the importance of the phases, we introduce
the following ray model where phases are not included. Without
phases, instead of being associated with an amplitude, every ray is
associated with an intensity. We set the incoming intensity of the ray to
I. The simplest ray model we consider retains only the directly re-
flected ray as illustrated in Fig. 3a. We call this ray the ray of zero length,
since it does not enter the energy-converting film, and its optical path
length inside of the film, therefore, is zero. We further assume that the
probability given in Eq. (2.1) describes the amount of light reflected at
the surface of the film. The rest of the light is absorbed in the film. In
this case the absorption depends on the wavelength of the incoming
light only through the wave number, k, as long as the refractive index of
the film is constant for all wavelengths. When we evaluate rays that
travel inside of the film, the intensity assigned to a particular ray de-
creases via Beer-Lambert's Law, and is expressed as

I = Iyemikr, (6.1)

where I is the incoming intensity of the light, which we set to 1, x is the
distance travelled in the film [39,52], k is the wave number and n; is the
imaginary part of the refractive index of the film.

To find the amount of absorbed light, i.e., the absorption cross
section, 0, we need to sum the contributions to the absorption from each
ray. When the ray hit a boundary, a part of it will reflect and a part of it
will transmit. The probability for reflection at a boundary, R, is given in
eq. (2.1) and the probability of transmission is T, = 1 — R;. Evaluating
o due to the rays in Fig. 3a and b, the result is
o=1- (R, + TFe k), 6.2)
where a is the width of the film. The expression inside the brackets is
the sum of the intensities of these two reflected rays. When all possible
rays are included (infinitely many), o is given by
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Fig. 8. Absolute value of the difference between the reflection calculated by the
analytical expression, R4, and the hierarchical summation scheme, Ryss, is
converging when the phase of the rays is included. The same calculation will
diverge if it is done without phases.

}

We arrive at this formula by summing up all possible rays and by using
the elementary summation formula for the geometric series.

Fig. 9 shows a comparison of the absorption cross section evaluated
with ray models that include and neglect phases, respectively. For the
case in which phases are neglected, we present three different sce-
narios. (1) The horizontal blue line in Fig. 9 is 0 computed by including
only the ray of zero length (see Fig. 3a). (2) The red line in Fig. 9 is o
computed on the basis of the two rays in Fig. 3a and b (Eq. (6.2)). (3)
The green line in Fig. 9 is o obtained by including infinitely many rays
(Eq. (6.3)). Contrasting these three cases, computed without including
phases, we also show the exact result for ¢ in Fig. 9, where we have
included infinitely many rays with phases (purple line). The exact result,
with phases included, shows oscillations (purple line), which are not
captured by either of the three cases that do not include phases. As seen
in Fig. 9, o without phases is monotonically decreasing when the wa-
velength increases (green and red lines), without any oscillations ac-
cording to Eq. (6.1). The result without phases included underestimates
the exact result with phases included, and, according to Fig. 9, the re-
lative error can exceed 60% in the wavelength region shown in Fig. 9.
In the context of absorption cross sections of typical solar cells, an error
of this magnitude is not acceptable. We conclude that for accurate
modelling of solar-cell efficiencies in terms of rays, inclusion of phases
is absolutely essential. Any ray theory, whether applied in the elec-
tromagnetic, acoustic, or quantum domains, is exact only if phases are

sz e—2ni ka

c=1-— (Rb + 71 — Rbe_kaa

(6.3)

0.4 -

0.2+
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Fig. 9. Absorption cross section, o0, as a function of wavelength,A, in the range
300 nm < A < 1500 nm, for a single film with refractive indexn = 1.8 + 0.05i,
a thickness of 500 nm, and a mirror on the backside of the film. The blue line is
o, including only the reflected ray of zeroth length (see Fig. 3a). The red line is
0, including only the two simplest rays (see Fig. 3a and b, calculated with Eq.
(6.2). The green line is o, including infinitely many rays without phases, cal-
culated with Eq. (6.3), and the purple line is o, including infinitely many rays
with phases. The purple line is calculated with the ray theory presented in Sec.
3. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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included. Neglecting phases may have serious consequences, ranging
from incorrect results to divergent results as demonstrated in Fig. 8 of
Sec. 5.

7. Signatures of rays in the Fourier transform of the reflection
amplitude

A Fourier transform of the reflection amplitude r(k) allows us to
reveal the signatures of the rays whose combined contributions result in
the exact functional form of r(k). If the entire spectral range is acces-
sible to us, we obtain this information in the form of the length spectrum

FIL) = = [ r(k)e-itk dk.

T dew

(7.1)

To illustrate, let us use the exact, explicit formula 3.6 for the reflection
amplitude r of a single film with mirror. We obtain

FL) = nd(@) + LS 5 (1L — 2nav),
12

v (7.2)

v=1

where §(x) is Dirac's delta function. We see that .# (L) is a series of
sharp peaks at integer multiples of the optical path length 2na, where
each peak corresponds to the optical path length of a certain ray inside
of the film. Thus, every single ray that contributes to Eq. (3.6) is re-
presented as a sharp peak in .# (L). This even includes the “ray of zero
length”, which is the ray that reflects with amplitude r; off of the front
surface of the film. Since this ray does not enter the film, its optical path
length in .# (L), naturally, is zero. The weights of the § terms in Eq.
(7.2) correspond to the amplitudes that the rays pick up when crossing
a boundary or being reflected from a boundary. Thus, the length
spectrum of r contains the complete optical information of the system
under consideration. This is not surprising, since the Fourier transform
in Eq. (7.1), a function in L space, is complementary to the ray re-
presentation, Eq. (3.6), of r in k space. Unfortunately, ray information
can be extracted so cleanly from r(k) with Eq. (7.1) only if the in-
tegration range is infinite. In actual applications in solar cells, we are
restricted to a finite spectral range, which turns the exact length spec-
trum .# (L) into an approximate length spectrum

Z _1 pre —ikL
F W= S e dk. 7.3)
Applied to our single-film example, this evaluates to
F W) =Lexp [-i(@)L](kZ — k) sinc[ 206 — k) |
1 Gl — ) Tz, e exp [ 1( 7271 ) 0 + ko) |
X sinc[(%)(kz - kl)], 7.4)

where sinc(x) = sin(x)/x is the “sinc-function”. We see that in the case
of a finite spectral range the sharp §-function peaks are replaced by
smooth, oscillatory sinc-functions, which produces “Gibbs ringing” [53]
in.Z (L) that produces copious “extra peaks” in Z (L) and may thus
obscure the peaks that correspond to rays. The ringing may be reduced
by the use of a window function [54], i.e., a function w(k) that softly
“switches on” and “switches off” the integration at k; and k, according
to w(ky) = w(kz) = 0, w(k,) = w'lka) =0, w’ (k)/kf < 1,
w’(k)/k? < 1.

As an illustrative example we present the Fourier transform of the
reflection amplitude of a three-layered film with constant, non-dis-
persive indices of refraction, n; = 1.5, n, = 1.9, n3 = 2.3, and film
widths a; = 500 nm, a, = 2000 nm, and a; = 1000 nm, respectively. In
this example we chose k; = 2m/1200 nm and k, = 21/5nm. We used
the window function

N-1)2
2
N-1 ’

T2 (7.5)

wim)=1-—
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Fig. 10. Top frame: Finite-range Fourier transform (approximate length spectrum) . (L) of the exact r(k) of a three-layer film system with mirror with parameters as

specified in the text. # (L) shows distinct peaks, labeled (a)—(f). The rays corresponding to these peaks, including their symbolic-dynamics labels, are illustrated in
the six frames (a)-(f), below the top frame, respectively. These six rays make the most important contributions in the ray-representation of r(k) of this system.

called the Welch window function. Here m is an integer variable that
corresponds to the grid used in the calculations. If we are using M
different values of k, m takes the values 0 <=m < M — 1. Using no
window (box window) shows Gibbs phenomenon very clearly. The re-
sulting length spectrum of this three-layer system is displayed in
Fig. 10. In general, a larger Fourier peak indicates a more important
component in a Fourier series. Hence, the heights of the peaks in Fig. 10
directly relate to the importance of the contributions of the corre-
sponding rays to r. The peaks labeled a-f in Fig. 10 correspond to the
rays illustrated in (a) - (f) of Fig. 10, respectively. The six tallest peaks
correspond to rays labeled by the words aba, abcba, abcdcba, abcbcba-
baba, abcdcdcbecba, and abcdcdcdedcba, respectively. The peaks in
Fig. 10 are located at the optical path lengths of the rays, i.e., they are
located at the linear combinations 2v1n,a; + 2v9n.a, + 2v3nsas, where
vj, nj, and g; are the repetition number, index of refraction, and width of
layer number j, respectively.

As shown in this section, whenever we have r(k), either analytically
or numerically calculated, or experimentally determined, a Fourier
transform of r(k) reveals the peaks of the corresponding multi-layer
system, a technique we call ray spectroscopy. The peak heights will tell
us which of the rays are the most important in determining the re-
flection amplitude r, which, in turn, determines the absorption cross

70nm ITO

15nm p a-Si
6nm i a-Si

1000 nm n~ c-Si

1000 nm n** ¢-Si

Mirror

(a)

section of the corresponding solar cell. As shown in Fig. 10, the peak
height is an exponentially decreasing function of optical path length,
which means that only a few of the shortest rays are necessary to de-
termine r(k) with sufficient accuracy to be useful for system optimiza-
tion. This, in turn, enables us to design and optimize solar cells in a
completely new way on the basis of a few important rays, which implies
a very small parameter space to be searched for system optimization.

8. Example with silicon

To provide an example of the ray-wave equivalence and the hier-
archical summation scheme, we analyzed a three-layer simplification of
a five-layer optically thin, epitaxial crystalline silicon solar cell using
experimentally determined indices of refraction [55-58]. Fig. 11 shows
the layer structure for these two models. The intent with the simple
three-layer design is to demonstrate the concepts described in this
paper applied to a system with material constants of practical im-
portance. However, it should be noted that solar cells with co-planar
structure are mainly used to provide an example. Commercial solar cells
usually have some kind of surface structure to lower the reflectivity.

Since both the two amorphous silicon (a-Si) layers and the two
crystalline silicon (c-Si) layers in the experimentally realized solar cell

70nm ITO

21 nm a-Si

2000 nm c-Si

Mirror

(b)

Fig. 11. Multilayer solar cells with mirror. (a) Experimentally realized thin epitaxial crystalline silicon solar cell consisting of five layers [55]. (b) Three-layer
simplified model of the experimental system shown in (a), obtained by replacing layers with different doping but approximately the same index of refraction by a
single layer. The three layers are, from top to bottom, 70 nm ITO, 21 nm amorphous silicon, and 2000 nm intrinsic silicon, respectively.
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Fig. 12. a) A comparison of the absorption cross section ¢ calculated from an analytic expression and with a finite number of rays, using the hierarchical summation
scheme (HSS). 18 splittings produce 65,537 rays and gives a good approximation to the analytic expression. b) When the AM1.5 solar spectrum [59] is taken into

account, we get the optical generation rate, Gp..

differ only in their doping, and since we for now neglect the doping-
dependent free carrier absorption, we modeled this solar cell in terms of
a three-layer system by collapsing the two a-Si layers and the two c-Si
layers into a single layer, respectively.

Fig. 12a shows a comparison between the analytical result (red line)
for the absorption cross section ¢ and the result produced by the hier-
archical summation scheme (blue line). In the lower wavelength re-
gime, o is perfectly approximated by the hierarchical summation
scheme including 18 splittings or 65,537 rays. Only from 750 nm on do
we start to see some deviations. This demonstrates the complexity of a
three-layer film in terms of its ray dynamics, and highlights the power
of the hierarchical summation scheme even in the case of dispersive
indices of refraction.

In order to obtain the optical generation rate [59], Eq. (2.5), we
multiply o with the AM1.5 solar spectrum, I'. The result is displayed in
Fig. 12b for both the analytical expression (red line) and the hier-
archical summation scheme (blue line), corresponding to the two cor-
responding cases shown in Fig. 12a, respectively.

Once more, we see excellent agreement between optical generation
rate obtained on the basis of the analytical and hierarchical summation
scheme results.
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9. Discussion

As shown in section 3, there is a profound duality between waves
and rays. Rays are governed by ordinary differential equations, de-
scribing particle motion, while wave fronts are the solutions of con-
tinuous wave equations expressed in the language of partial differential
equations. This duality is exploited in many fields of physics that deal
with waves. In optics, e.g., it leads to the important field of geometric
optics [60] in which one attempts to obtain an accurate description of
the passage of light through various optical components by using a ray
picture, side-stepping the more involved solution of Maxwell's wave
equations [39,61]. There are many examples where the wave-ray
duality is exact (see, e.g., [30]) and may be exploited to advantage. The
most important example is Feynman's path integrals [62], which solve
the full wave-mechanical problem of quantum mechanics exactly by
summing over all possible classical rays. Another example of exact ray
solutions to the corresponding wave problem is quantum mechanics
with energy-scaling step potentials in one dimension [63-65]. Since the
quantum step-potential problem and the electromagnetic (E&M) opti-
cally thin solar-cell problem are formally identical problems, one of the
intentions of this paper is to transfer and adapt methodology from the
quantum chaos community in the field of one-dimensional energy-
scaling step potentials and dressed quantum graphs [64,65] to the solar-
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cell community, who is concerned with the solution of Maxwell's
equations for stacks of layers of anti-reflection coatings on top of en-
ergy-converting materials. We note that, so far, only the bound-state
problem has been studied extensively in the context of dressed, scaling
quantum graphs, which, in the optical case, would correspond to the
presence of two mirrors, one at the front and one at the back of the
stack of films. The scattering problem, as studied in this paper, has to
our knowledge not yet been studied in the context of dressed, scaling
quantum graphs.

For the one-dimensional case we derived the exact expression for
the absorption cross section, o, of the energy-converting material. When o
is weighed by the solar spectrum as the spectral weighting term, the
optical generation rate is obtained. This brings out the connection be-
tween the structure of the wave function y and the absorption. By
evaluating o we can engineer our system to increase the absorption, and
thus the absorption cross section, of the system.

We showed the importance of including phases in our ray theory
with the help of the following two-step method. First, we include the
exact phases of the rays in our one-dimensional model, which we take
as consisting of a single film. In section 3 we demonstrate that this
yields the exact solution of the Helmholtz equation. Then, we evaluated
the ray sum for this one-dimensional systems setting all phases to 1. We
showed in Section 5 that the resulting, incorrect ray theory cannot
handle the resonances and in addition predicts a spectral optical gen-
eration rate that is up to 60% off. We are convinced that this ob-
servation carries over to any ray tracing in two and three dimensions,
which means that in order to be confident in the accuracy of a ray-
tracing result, phases must be included. Otherwise, as shown in our
paper in the one-dimensional case, one should be prepared for large
errors in the predictions of a ray theory that omits phases.

For several of our model systems, including our example of the lab
silicon cell discussed in section 8, we showed that including only a few
rays in the ray sum already gives a good approximation of the ab-
sorption cross section (see, e.g., Fig. 4. This observation is important
since, in principle, an infinity of rays needs to be summed over in order
to obtain exact results, and if the convergence were slow, this would
result in an enormous number of terms to be summed, partially, or
totally, cancelling out the advantage in computational speed of rays
over waves. That only a few dominant rays already determine the final
result with good accuracy is particularly important in two and three
dimensions, since, according to the increased dimension, the set of rays
that needs to be summed over is much larger.

Since our ray theory is exact, it works for all refractive indices, n.
This includes all n typically encountered in solar cells, where complex n
indicates an absorptive material. A strength of the ray theory is that the
refractive index can have any value and is not limited to only small
values of real and imaginary parts. Our ray theory is therefore applic-
able to any solar cell material. Including the temperature dependence of
its index of refraction. In linear approximation, as a function of tem-
perature T, we can write

n(T) = no(To) + B(T — T), .1

where ny is the complex index of refraction at a reference temperature
To and f3 is the complex temperature coefficient, combining the two
temperature coefficients for the real and imaginary parts of the index of
refraction. Since our theory is exact for all indices of refraction, our
theory can accommodate exactly the temperature dependence of the
index of refraction, described by the temperature coefficients. In addi-
tion, since our complex index of refraction models the effects of the
band gap and any gain and loss mechanisms, their temperature de-
pendence, via the complex index of refraction, is included as well. We
would also like to point out here that complex indices of refraction have
so far not been treated in the quantum ray-splitting literature. Therefore
our paper is the first to show that a complex index of refraction does not
invalidate the exactness of the ray theory.

In our theory the boundary conditions between the vacuum and
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dielectric films, and between different dielectric films, are treated ex-
actly, without any approximations. Only the boundary condition be-
tween the energy-converting dielectric film and the mirror is idealized,
assuming 100% reflection. This assumption is not necessary since the
mirror can be treated as another dielectric layer [39] for which our
theory is exact.

Two-dimensional materials are of great current interest (see, e.g.,
[66,67]). Since the dielectric properties of these materials have already
been measured [68], reflection and transmission amplitudes of these
two-dimensional materials can be computed. Once these amplitudes are
known, our theory is applicable to these materials and stays exact.

We do not hesitate to point out that for one-dimensional systems
wave calculations are cheaper than ray calculations. For one-dimen-
sional multi-layer systems, the transfer matrix method [69] can be used,
which is fast and includes absorption. Even in two dimensions, solving
the wave equation might still be cheaper and faster than applying the
ray theory. In three dimensions, however, supported by the fact that an
extensive literature on ray-tracing in three dimensions exists
[15,16,27,28], we believed that ray methods will have an edge, in
particular when constructed with phases included, which renders them
exact.

In addition to paving the way toward an exact and efficient ray
theory in three dimensions, the emphasis of this work is to present a ray
theory that can be used to understand the different mechanisms that
may be used to improve the absorption cross section. The fact that only
a few rays describe the absorption cross section, o, of the system is
encouraging since only a few parameters (rays) need to be optimized
for optimizing the entire system. Consequently, there are two ways in
which classical ray calculations can be used in the context of solar cells:
(1) As a predictive tool used to predict the outcomes of wave calcula-
tions (predictive direction; forward model) and (2) as a means to un-
derstand the results of wave calculations, in particular to illuminate and
illustrate the mechanisms by which enhancement of the absorption
cross section is achieved (analysis direction).

In the case of a single film, we showed in section 5 that the ray sum
is absolutely convergent. Therefore, the terms in the sum may be
summed in any order. In the case of stacks of two or more films,
however, we showed in section 5 that the resulting ray sum is only
conditionally convergent. In this case the order of summation is im-
portant, since, according to Riemann [50,70], any result can be ob-
tained from a conditionally convergent sum by cleverly re-ordering the
terms. In section 4 we present a hierarchical scheme according to which
the rays in a multi-layer system can be summed in correct order.

The dominant rays describing the system can be found by per-
forming the Fourier transform of o, Thus, the Fourier transform pro-
vides us with the possibility of extracting ray information from o. It is
important to use a windowed Fourier transform (requiring a switching
function) to eliminate the Gibbs ringing, which produces spurious peaks
in the Fourier transform that do not correspond to rays. We found that
rays are connected to the absorption cross section. The longer the rays,
the larger the absorption cross section. The Fourier transform gives us
the ability to study the dominant rays. By increasing the dominance of
the long rays, which have the largest contribution to the absorption, it
is possible to design solar cells to have an increased absorption cross
section.

In section 8 we study a realistic system with a refractive index that
exhibits dispersion. We showed at even dispersion is no obstacle to our
theory; it still provides us with the correct absorption cross section.

Sunlight is incoherent and the question arises whether our results,
derived for coherent light, are relevant for illumination of solar cells
with incoherent light. We answer this question in the affirmative, since
what we evaluate is the absorption cross section, which is defined for a
sharp frequency, associated with an infinite coherence length. Another
way to see this is the following. On the microscopic level, it is in-
dividual photons that strike the solar cell and interact with it. While
different photons certainly have different frequencies, each individual
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photon has a sharp frequency and a corresponding wave function that is We also showed that including only a few rays in the sum over rays
the solution of the optical Helmholtz equation. Thus, at each individual gives quite accurate results, provided the phases are also correctly in-
frequency, it is indeed the Helmholtz equation that governs the ab- cluded. This is of the utmost importance for three-dimensional appli-
sorption of photons and thus determines the absorption cross section. cations since, as a consequence of ray splitting, as we showed in Section
The total optical generation rate is then obtained by a simple integral 5, the number of rays explodes exponentially in the lengths of the rays
over the absorption cross sections weighted with the solar spectrum. that need to be included to obtain converged results with acceptable
Thus, our theory, despite the fact that sun light is incoherent, works for accuracy. We also showed that the rays are “real” in the sense that their
all film thicknesses. signatures can readily be seen in the Fourier transform of the reflection
probability as peaks in the length spectrum.
10. Conclusions Since our theory is exact, it works for all refractive indices n, even if
n is complex, which includes indices of refraction typical for solar cell
In this paper we have shown that the ray theory is exact in one materials. We showed this explicitly in Section 8, where we discuss the
dimension. Our results are important since they pave the way to the use application of our exact ray theory to an example of a silicon solar cell.
of exact ray tracing in three dimensions, which allows for both in- Extension of our theory to two and three dimensions is straightforward
cluding textures and other scattering surfaces, as well as oblique in- and provides the basis for future work on the application of exact ray
cidences of sunlight. theories for the computation of the absorption cross section of solar
We also showed several other facts that are important for the ex- cells of practical importance.

tension of the ray theory to three dimensions. We showed that the
summation order of the rays is important and that it is dangerous, al-
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Appendix A. Reflection and transmission amplitudes

In order derive the exact ray model, we need to include the phases. The phases are described as below:
To obtain the proper phases for reflection and transmission of a ray at the left edge of a material, we consider the potential shown in Fig. A.1.
t,

rz=0

Fig. A.1. When a ray is coming from the left and goes from region I (vacuum) to region II (material with refractive index n), the ray will split into a transmitted and a
reflected ray at the boundary. The amplitudes of this rays are given by the reflection and transmission amplitudes, r; and .

Coming from the left, out of region I (x < 0), a ray encounters the left edge of region II at x = 0. It gets reflected back into region I with
reflection amplitude r;, and gets transmitted into region II with amplitude t;. The subscript [ stands for “left”. In region I it is vacuum. In order to find
the correct phase of the amplitude, we need to use the wavenumber of the corresponding wave and k is given by 27”, where A is the wavelength. In
region II, the wavenumber of the corresponding wave is given by k; = nk where n is the refractive index in region II. The wavefunction in region I
and II are:

Y = el 4 pe ik, (A1)
lyn = tleiklfx. (A2)

Using the continuity of the wavefunction and its first derivative at x = 0, we obtain:

"= 1-n
Tl (A.3)
2
= .
1+n (A.4)
When the wave is coming from the right, the ray will encounter the boundary as shown in Fig. A.2.
T
<7l tl
,,,,,,,,,, > T
I IT
z=0

Fig. A.2. Reflection and transmission amplitudes, r, and t,, respectively, for a ray incident from the right (out of region II, i.e., x > 0).
The wavefunctions are
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Y = femikx (A.5)
IPH - e—ik[[x + r,e“‘”x. (A6)

Again using continuity and the continuity of the first derivative gives us

= {i5)

T \1+n/) (A.7)
_ 2n

r_1+n' “8

Appendix B. Integral formula for the spectral optical generation rate
In the scalar one-dimensional theory, the radiative flux, up to a constant, is defined by

= Lty — Ly
J—2i(¢dx¢ wdxw).

(B.1)

Since, according to Fig. 1, the incident radiation is described by the plane wave y;, = e**, the flux of the incident radiation is
Jn = l.(e‘”“ie“‘" - e"k"ie"'k") =k>0.

2i dx dx (B.2)
Since, according to Fig. 1 the reflected radiation is described by yreq = re~™** a calculation analogous to Eq. (B.2) yields
e = —IrPk = —Rk < 0. (B.3)
The total flux on the left-hand side of the boundary is thus
J :jin +jreﬂ =k — Rk. (B.4)
In terms of flux, the reflection probability R is defined as
R= Jr—eﬂ = Ir?,

Jin (B.5)
which is consistent with our earlier definition Eq. (2.1) of the reflection probability above. We now turn to the wave equation, i.e.,
d*yp )
P ®6)
Taking the complex conjugate, we arrive at
d2¢* 2\ 2, fyx
e —(n?)*k>yP*. B.7)
From Egs. (B.6) and (B.7) we obtain

4% e 21122
zpw— dxz—[(n)—n]klzpl. (B.8)
We can also write the left-hand side of Eq. (B.8) as
d*p >y d [ dy dy* ] d .
w_ T - L p—— | = 2i— ,

Ve Voo TV Var | T W (B.9)

where we used equation Eq. (B.1).
We now specialize to the situation shown in Fig. 2b, i.e., the film with mirror. For this situation, we now integrate Eq. (B.9) with Eq. (B.8) over
the width of the film to obtain

21 fy! g =2ilj(@) = j(0)]
=2i[0 — k(1 - B
= [ [(n)? — n?]kIpidx
= J;" (—4inn)k?yPRdx. (B.10)

Therefore, we now obtain

R=1- Zkfo nin, lpRdx (B.11)

and

c=1-R= 2ka nin, 1PRdx. (B.12)
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Appendix C. Equivalence of the 1-R with the spectral optical generation rate

In this appendix we demonstrate that the two different approaches presented in section 2 lead to the same formula for the absorption cross
section 0. For a single film on a mirror (Fig. 2a) the wavefunction y inside the film is
—2sin[nk(x — a)]
sin(nka) + in cos(nka)’ (C.1)

where a is the film thickness, n is the complex refractive index and k is the wavenumber. The absorption cross section is

o =2k fo lYPnn, dx.

(C.2)
This can also be written as
o = 2kn,n; 2 fa cosh[2n;k (x — a)] — cos[2n,k(x — a)]dx
rhi 772 T o 0 i r ’ (C.3)
where the prefactor contains
n =y-me+ns
6 =8+ n+nee
y = sin(n,ka)cosh(n;ka)
d =icos(n,ka)sinh(n;ka)
¢ = cos(n,ka)cosh(n;ka)
¢ =isin(n,ka)sinh(n;ka). (C.4)
Evaluation of the integral is straightforward and results in
2
———[n,sinh(2n;ka) — n; sin(2n,ka)].
g e sinh Grika) @n,ka)] s
To complete our task, we have to show that 1 — Irl> from the scalar wave model produces the same result. The reflectivity I is
R = _ ncos(nka) + isin(nka) >
" | ncos(nka) — isin(nka)| ’ (C.6)
which can be rewritten as
pp = (et nig = 8)* + (mie — n,{ + y)*
6% + n? ' ()]

Inserting this together with vy, §, ¢, and ¢ into 1 — |r? yields exactly the same result as in Eq. (C.5).
Appendix D. Proof of importance of the summation order

In this Appendix we show that for our two-film system and for a large range of dielectric constants, Eq. (5.3) holds, i.e., in these cases our ray sum
in Eq. (5.1) is only conditionally convergent. We show this by observing that if the sum in Eq. (5.3) is already infinite for a subclass of rays, it is
certainly infinite when summing over all rays, since all the terms not taken into account are positive. The subclass we focus on consists of rays that
make p right reflections on the vacuum/film interface and make q right reflections on the film/film interface (see Fig. D.1). We also exclude any left
reflections on the film/film interface, which uniquely defines our subclass of rays. Three examples of rays in our subclass are shown in Fig. D.1. All
three rays have p = 1 and ¢ = 2, and they contribute the same amplitude to r in Eq. (5.1). They differ only in their sequence of bounces. This induces

degeneracy in our ray sum. In fact, any class of rays, characterized by a given p and q, is (p ;q) fold degenerate, where (p ;q) is the binomial
coefficient [71]. The total contribution p of all of the rays of our subclass to the total reflection amplitude r is

0 [s+)
o= Z Z (P + q)tlzt22P+2rlprzlleik[2(p+1)n1a1+2(p+q+1)n2az],
o p

s (.1)

where t; and r; are transmission amplitude and right-reflection amplitude at the vacuum/film interface, t, and r, are transmission amplitude and
right-reflection amplitude at the film/film interface, a; is the width of film 1, a, is the width of film 2, and n; and n, are the refractive indices of films
1 and 2, respectively. To check whether the double sum in Eq. (D.1) is absolutely convergent, we need to check whether

0 0

, +

= (p ) q)ltllzltZIZP“InIPIrzlq
p=0 =0

(D.2)
is finite or infinite. Defining x = |t,|?|ry| and y = |r2|, we may write Eq. (D.1) in the form
L 2 2
P =Pk Y ) ( M )xpyq,
p=0 g=0 (D3)
and since t; and t, are constants, it is sufficient to check the double sum
Y [se] o0 + [se] 2 [so] 4 p
o= Z(ppq)xpyq> > (5)(xy)P> 3 @)t
p=0 g=0 p=0 p=1 p (D4)
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For the first inequality we used the fact that all terms in the sum are positive, and that, therefore, including only the diagonal terms in the sum
provides a strict lower bound for the value of the sum, and for the second inequality we used the fact that (2;) > 22m/m, which is straightforward to
show using the doubling formula for Euler's T function [71]. Analyzing the result in Eq. (D.4), we see that the sum over p converges for xy < 1/4.In
this case, therefore, we cannot decide whether p” is finite or infinite. For xy = 1/4, however, the last sum in Eq. (D.4) is the harmonic series, which
diverges [71]. Therefore, for xy = 1/4, we definitely have p” = o, which implies that in this case Eq. (5.1) is only conditionally convergent. Since for
all xy > 1/4 the harmonic series provides a lower bound of the last sum in Eq. (D.4), we also have p” = o for all xy > 1/4. It follows that the ray
sum in Eq. (5.1) is only conditionally convergent in all cases for which z = |t,|?|rirs| = 1/4. Finally, we have to answer the question whether
z = 1/4 is possible at all. We note that |r;| may freely range between 0 and 1, while |t,|?|r| can range only between 0 and 2/(3+/3), which is
obtained by observing that |t;|> = 1 — |ry|? and subsequently determining the maximum of the function w = (1 — |r|?)|r|. This implies that z may
range between 0 and 2/(3+/3) > 0.38, which overlaps with z > 1/4. Thus, we have proved that an entire range of cases exists in which Eq. (5.1) is
only conditionally convergent. In these cases of conditional convergence we are not allowed to sum rays in arbitrary order. As discussed in Sect. 5, in
order to obtain correct results, we have to sum the rays in the order of increasing path length.

| D
: C C

C C
D
C C
D D

ny Up) ny o) ny Up)

(a) Rip (b) Rip (c) Rip

Fig. D.1. Three ray trajectories that belong to the same class, R; », and contribute with the same amplitude to the reflection amplitude of the film system. They differ
only in the order of right-reflections on the vacuum/film and film/film interfaces. (a) The ray reflects inside the second film, then reflects inside the first film and
reflects for the second time at the film/film interface and leaves the system. (b) The ray reflects once at the vacuum/film interface then enters the second film and
reflects twice on the film/film interface. (c) The ray enters the second film, reflects twice on the film/film interface, enters the first film and reflects once on the
vacuum/film interface.
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