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Abstract. The cost of offshore wind energy production has to be reduced continuously to 
improve its competitiveness compared to other energy sources. To contribute to this goal, a 4-
year research project REDWIN – REDucing cost of offshore WINd by structural and 
geotechnical integrated design – is currently ongoing, addressing the challenge of integrating 
the geotechnical discipline in the design process. The project aims to develop foundation and 
soil models to be used in dynamic time-domain analyses of offshore wind turbine structures. A 
library of models has been developed for representation of the most common foundation types. 
The models can be applied to different ground conditions by site-specific model input. To 
make the models applicable for practical usage, it has been important to balance the need for 
computational effectiveness against the need for accuracy. Studies so far indicate that the 
foundation models improve the accuracy in the integrated analyses.  

1.  Introduction  
Due to slenderness and dynamic sensitivity of offshore wind turbines (OWT), as well as complex 
loading environment, integrated analyses are required in design. The integrated analyses include loads 
from wind, waves, current, turbine controller performance and soil or foundation support. The 
soil/foundation models are often overly simplified. Linear and nonlinear uncoupled springs (p-y 
curves) is standard practise for monopiles, and linear elastic lumped stiffness models are often used for 
shallow foundations such as gravity based foundations and buckets. Comparison between the 
computed natural frequency of OWT used in design and the natural frequency measured on site 
indicate that the foundation stiffness is  not satisfactorily modelled. This may affect the fatigue life of 
the structure and the maximum loads. The lack of good soil/foundation models also prevents the 
design from benefitting from the investment in soil investigation and accurate interpretation of soil 
behaviour and site condition. 

http://creativecommons.org/licenses/by/3.0


EERA DeepWind'2018, 15th Deep Sea Offshore Wind R&D Conference

IOP Conf. Series: Journal of Physics: Conf. Series 1104 (2018) 012029

IOP Publishing

doi:10.1088/1742-6596/1104/1/012029

2

More elaborate foundation models are required to improve the accuracy of integrated analyses. The 
ongoing research project REDWIN – REDucing cost of offshore WINd by integrated structural and 
geotechnical analyses which started in 2015, addresses this issue. The title points to the key aspects in 
the project: Reducing cost by integration of the geotechnical properties in the structural design 
process. The NGI-led research program is sponsored by the Research Council, Statoil and Vattenfall.  
The geotechnical department at the Norwegian University of Science and Technology (NTNU), 
Institute for Energy Technology (IFE) and Dr. Techn. Olav Olsen take part within the project as 
research collaborators.  This paper explains why the wind industry should focus on the aspect soil and 
foundation response in OWT design analyses, and it summarize briefly some results and outcomes of 
the project at the time of writing this paper. The project aims at developing foundation and soil models 
to be used in integrated structural analyses under wind and wave loads. These models should address 
fundamental soil and foundation characteristics, such as soil nonlinearity, soil damping, site specific 
soil variability and coupling effect between load components. 

2.  Dynamics of offshore wind turbines 

2.1.  Loads and eigenfrequencies 
OWTs are slender structures, exposed to a complicated load regime with various frequencies. The 
excitation loads from the blade passing, the so called 1P frequency, and from the full turbine rotation 
at 3P frequency, affect the steel structure in fatigue, which is design driving for the OWT. Because of 
this, the OWT has to be designed with a natural frequency separated from these excitation frequencies. 
Figure 1 illustrates the power spectrum density of the loads from wind and waves and the 1P and 3P 
frequency range of some selected turbines. Typically, OWT are designed with a natural frequency 
between 1P and 3P, denoted soft-stiff design, indicated in Figure 1.   

 

2.2.  The importance of foundation behaviour 
The narrow frequency band makes the prediction of foundation stiffness important, since it 
influences the overall dynamic behaviour of the OWT. The extent of influence depends on the 
relative stiffness of the foundation and the tower. It is up to designers to choose how to 
balance the tower and foundation flexibility. Two extreme designs are illustrated in Figure 2a, 
where one of the parts (either the tower or the foundation) is assumed perfectly rigid. The 
extreme designs make the dynamic response of the OWT governed by the foundation stiffness 
or by the tower stiffness.  
 

 
Figure 1 Load frequencies from wind, waves and blade rotation for some selected turbines 
(after Bak et al., 2013; Arany et al., 2016). 
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Soil properties have inherent uncertainties compared to steel and this must be reflected in the 
design practice. To reduce the importance of this uncertainty, the OWT is designed such that 
the overall dynamic behaviour is most influenced by the tower flexibility and less by the 
foundation flexibility. However, this may not be the most cost effective solution.  Figure 2b 
illustrates this point by results from a sensitivity study considering the effect of foundation 
and tower stiffness ratio on the natural system frequency. The study is based on an OWT 
installed in a North Sea wind farm. The figure shows the first natural frequency normalized 
by the natural frequency of a fully clamped tower at mudline. The natural frequency decreases 
as the foundation stiffness reduces. The measured natural frequency and the back-calculated 
normalized stiffness of the real design of the OWT is also included as an example of how a 
specific foundation-tower stiffness is balanced. In the actual construction, referred to "as built", 
the dynamic behaviour is mainly controlled by the tower stiffness. However, the frequency target in 
the Design Basis was lower, giving a foundation-to-tower stiffness ratio less than 6. In this range, the 
tower stiffness governs the natural frequency of the whole system. It is useful to future design if 
similar plots based on other turbine designs are made available in the public domain to reveal typical 
design practice. 
 

 
 

Figure 2 Dependence of OWT natural frequency on foundation stiffness a) Fully clamped 
foundation and fully rigid tower above mudline, b) OWT natural frequency as function 
foundation and tower stiffness ratio. 

Improving the understanding of the OWT dynamics is of great importance for two reasons. 
Firstly, measurements suggest that stiffness of OWTs are systematically under predicted [3,4]. 
Figure 3 summarize findings from [4] which assessed natural frequency measurements from 
over 400 wind turbines and compared them with design predictions. The deviation varied 
from 0 – 20 %. Secondly, any change in the natural frequency has an impact on the fatigue 
damage of the structural components. Schafhirt et al. [5] investigated the effect of foundation 
stiffness on the fatigue damage using the OC3 code comparison turbine from NREL [6]. 
Figure 4 illustrates the fatigue damage sensitivity to natural frequency changes. The figure 
gives the accumulated fatigue damage  in the pile at mudline as function of changes in natural 
frequency [5]. 
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Figure 3 Measured natural frequencies 
versus frequency predicted in design for 
more 400 OWT (after [4]). 

Figure 4 Effect of change in natural 
frequency on the accumulated fatigue 
damage (adapted from [5]). 

3.  REDWIN research project 
The impact of the foundation behaviour on the OWT dynamics give a strong incentive to accurately 
model the dynamic behaviour of the foundation of the OWT in the design. DNV [7] recommend to 
carry out so called integrated analyses in the time domain to ensure a good dynamic representation. 
These analyses include: wind and wave loads, blade pitch controller, structural dynamics and 
soil/foundation response. The integrated approach is motivated by the observation that the loads and 
the reactions are strongly coupled. The time domain analyses are motivated by the fact that the load 
and reactions are strongly nonlinear. State of the art of integrated analyses today include foundation 
behaviour, hydrodynamics, aerodynamics, structural dynamics and the blade pitch controller system. 
In the REDWIN project, the program 3DFloat [8] developed at IFE was used to carry out such aero-
hydro-elasto-dynamic analyses.  Figure 5 illustrates loads and reactions included in integrated 
analyses. Figure 6 shows foundation types considered in the REDWIN. 

 

Figure 5 Loads and reaction included in 
integrated analyses. 

Figure 6 Foundation type considered in 
REDWIN project (OWTs not in scale). 

 
 
Several geotechnical disciplines are required to accurately model the soil and the foundation 

response. Site investigations have to be planned and closely followed accompanied by laboratory 



EERA DeepWind'2018, 15th Deep Sea Offshore Wind R&D Conference

IOP Conf. Series: Journal of Physics: Conf. Series 1104 (2018) 012029

IOP Publishing

doi:10.1088/1742-6596/1104/1/012029

5

testing. Interpretation of soil parameters and soil characteristics has to carried out prior to computation 
of the foundation response. Finally, the foundation response has to be described in a mathematical 
form such that it can be implemented in the integrated analyses. Figure 7 illustrates this chain of 
activities influencing the foundation stiffness as it finally appears in the integrated structural analyses. 
The REDWIN project aims to address three of the aspects mentioned below: The computation of the 
relevant foundation and soil response, their implementation in integrated analyses, and finally 
assessing the effect of the foundation and soil response by integrated analyses. To improve the 
geotechnical accuracy in the integrated analyses it was clear that a significant gap existed in the chain 
in Figure 7; namely the lack of numerical models for the foundation and the soil available for 
integrated analyses. Thorough work on interpretation of soil parameters and advanced geotechnical 
analyses are difficult to justify if the same accuracy cannot be implemented in the integrated dynamic 
analyses.   

 
Figure 7 Design chain from soil investigations to response representation in integrated analyses  

 

4.  Soil and foundation models for integrated analyses  

4.1.  Present industry practice  
The numerical models of foundation response that are used in design work today are overly 

simplified. It is not within the scope of this paper to give a detailed review of the different models 
available; reference is made to [9] for a thorough discussion on the topic. However, some comments 
are included in the following. The models used are mainly simple 1D springs. For shallow and skirted 
foundations, these are typically linear elastic and defined according to the load level of interest. The 
soil response is obviously not linear and iterations between structural and geotechnical analyses are 
often required. This process, which is illustrated in Figure 9, is time consuming, hence costly for 
developers. In addition, the iterative approach is questionable when the load histories are strongly 
irregular, as discussed in [10].  

For monopiles, the design approach is more standardized by the use of the p-y approach where the 
pile is modelled as a beam and the soil is represented as a series of discrete, uncoupled, non-linear 
springs. The springs relate the local lateral resistance, p, to the local lateral displacement of the pile, y. 
Different formulations are proposed depending on the type of soil (sand or clay) and the type of 
loading (static or cyclic). A detailed description of the approach is given by e.g. Reese and Van Impe  
[11]. The current API p-y curve formulations, originally developed for slender piles are also used for 
design of monopiles. The formulations are primarily based on the work of Matlock [12] for laterally 
loaded piles in clay and Reese et al. [13] for laterally loaded piles in sand. The shape of the API curve 
for clay is defined by 50, the soil strain at 50 % shear stress mobilization (߬ ߬௙⁄ ൌ 0.5ሻ. The 
shortcomings of such a simple formulation can be illustrated by comparing the response of two clays 
from an offshore wind farm in the North-Sea. Zhang and Andersen [14] have shown that the stress-
strain DSS curve of a clay has the same shape as the p-y curve for a monopile in the same material.  
Thus, the shape of the DSS-response is directly comparable to the p-y curve shape. Figure 8 shows the 
stress-strain curves from static DSS tests of two over-consolidated North Sea clays. The shear stress is 
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normalized by the maximum shear stress and the shear strain are normalized such that the shear strain 
at 50% mobilization (50) is similar for both curves. However, the curves are still very different. The 
difference in the example may appear obvious for geotechnical engineers, but it challenge the pile 
design practice in the offshore wind industry. The REDWIN models which are presented later address 
this challenge by a flexible formulation that can capture greater variety of soil response. Several 
modified p-y curves for monopiles have been suggested the last decade. Most significant is the recent 
PISA project, which revised the p-y curves and suggested improved functions based on large scale 
testing and FEA [15,16].  

An alternative modelling approach, frequently suggested by researchers to represent shallow 
foundations, is the macro-element approach.  Macro-element models reduce the foundation and the 
surrounding soil to a force–displacement relation at one point at the interface of the foundation and the 
structure. The term macro-element, first used in the early 1990s [17], has roots back to the pioneering 
work of Roscoe [18] and later Butterfield [19,20]. The concept of macro-elements has been further 
developed for earthquake and offshore applications, e.g. bridge piers and spudcans for jack-ups. The 
theoretical framework behind macro-element models has been adapted from soil modelling. The early 
models were developed for static loading within the elasto-plastic framework [17,21]. Later, models 
accounting for cyclic loading were developed in the framework of hyperplasticity [22], hypoplasticity 
[23] and multi-surface plasticity [24]. Unfortunately, the models have to a limited degree entered in 
design practice. There may be several reasons for this. However, two reasons appear prominent. While 
the theoretical formulations of existing models are well documented in multiple papers, the available 
literature describing usage and case studies is very limited. Secondly, the input parameters are 
predefined for idealized conditions from model tests. This makes adaption to complicated sites in the 
field more difficult. 
 

Figure 8 Stress-strian curves from two DSS 
tests on over consolidated North-sea clay 

Figure 9 Iteration flow in computation of 
foundation stiffness 

5.  REDWIN foundation models  
The models developed in REDWIN aim to answer the issues raised above. This has led to some 
general principles for model development: 
 

1. Application oriented models such that it is intuitive to choose a suitable model for the problem 
and foundation type of considerations. 

2. User interface understandable to practitioners. 
3. General models to capture different soil conditions. 
4. The models should work in time-domain, which means they should exhibit realistic response 

though a load cycle, e.g. reduction in stiffness as function of load level and generation of 
material damping.  
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To ensure applicability to different structures, a library of soil/foundations models was developed. The 
models developed so far have focused on monopiles and shallow skirted foundations. The model 
developed for shallow skirted foundations is applicable both to gravity based foundations and to 
bucket foundations. For monopile foundations, two models are developed. One model follows the 
traditional distributed p-y curve approach where the monopile foundation is explicitly included in the 
integrated analyses. The second model for monopiles is a macro-element where the monopile is 
represented as a structural boundary at seabed. 

The user interface is intuitive since the model input is physically interpretable. Typically, one or 
several load-displacement response curves have to be specified as model input. This response is 
typically computed in any design case, often by FEA, and the method used to establish the curves are 
independent of the specific models. It also means that potential degradation effects from cyclic loading 
can be included in the load – displacement curves specified as input.  

The flexibility is obtained by avoiding specific hardening functions and avoiding hardcoded 
relations between the response in different directions. In practice, this means that the model can fit 
very different response curves, e.g. the two stress-strain curves shown in Figure 8.   

5.1.  Mathematical formulation 
The models are formulated within the theoretical framework of multi-surface plasticity [25,26]. In this 
framework, the plastic component, which gradually increases as function of mobilization, is the sum 
of several plastic contributions. Mathematically this is expressed as: 

࢛݀ ൌ ௘࢛݀ ൅ ௣࢛݀ ൌ ௘࢛݀ ൅෍࢛݀௜
௣ሺࡲ, ሻࢇ

௡

௜ୀଵ

 (1) 

The displacement increment ࢛݀ caused by a load increment can be divided up into an elastic part, 
 ௣. The plastic part is the sum of ݊ contributions. Each contribution is a࢛݀ ௘, and a plastic part࢛݀
function of the total loads and the state parameter, which keeps track of the recent load history. The 
state parameters in the REDWIN models are related to kinematic hardening such that the model 
produces damping but no accumulation of displacement. The plastic contributions can be formulated 
in different ways. For REDWIN model 1 (1D), the contribution is defined by a set of internal elasto-
plastic springs in parallel as shown in Figure 10a. The principle is illustrated by 3 springs in parallel, 
each with its own stiffness (k) and yield load (f). The displacement is similar in all the springs and the 
total stiffness will be stepwise reduced as the springs yield one after the other during the loading. For 
the models with 2-6 DOFs, the plastic contributions are given by surface translation forced by the 
movement of the total load position in the load space. The figure shows how surface translation leads 
to additional plastic displacement. Every new surface translation adds more plastic displacements 
giving a stepwise reduction in stiffness. The figure also shows how the models respond to both 
monotonic loading and cyclic loading with load reversals. The principles of both models  are built  on 
the models suggested by [27] and are illustrated in Figure 10. Table 1 summarizes the developed 
models and the foundation type they are intended for.  

 

5.2.  Model input 
The model behaviour depends on the computed load-displacement curve. This is more extensive 

than e.g. the API p-y requirements, but the input ensures adaptability to different site conditions, and 
the load-displacement curves have a clear physical interpretation. Facing layered and varying ground 
conditions offshore, FEA is the most accurate and flexible method for establishing response curves 
assuming the soil model is suitable and its parameters are properly defined. A thorough discussion on 
the advantage of using FEA for determining foundation response is given by Page et al [28].  
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a)                Monotonic loading 

Load reversal and kinematic hardening 

 b)                     Monotonic loading 

 
 Load reversal and kinematic hardening 

Figure 10 Illustration of the multi-surface plasticity concept a) 1D- parallel coupled principle, b) 2D-
multi-surface translation in load space 

Geotechnical engineers are used to delivering load-displacement curves interpreted as a load 
dependent stiffness input. It should be noted that the foundation models in Table 1 will also produce 
damping through a load cycle. Carswell et al. (2015) and Aasen et al. (2017) have demonstrated that 
the foundation/soil damping may influence the design, in particular the fatigue damage. However, up 
to now, it has not been common to compute foundation damping in design, partly due to lack of 
available analyses tools. As explained in the next section, tools has been developed in the REDWIN 
project to address this. 

 

5.3.  Assessment of foundation damping 
The type of foundation damping of greatest relevance to the OWT is the material or hysteretic 
damping. The radiation damping is less relevant as it mainly influences the dynamics at higher 
frequencies. A procedure was therefore established in the REDWIN project to estimate damping from 
the soil. The procedure involves the steps from extraction of damping at soil element level to 
computation of a global foundation damping. Figure 11 illustrates the steps in the calculation of 
foundation damping based on the material damping measured in laboratory test. These steps are a) 
Cyclic laboratory testing. b) Soil damping extracted from the tests in the form of damping as function 
of cyclic strain levels. c) Overall foundation damping computed in FEA for the relevant load level by 
integration of strain and dissipated energies on soil element level. This can be written: 

௙௢௨௡ௗܦ ൌ
∑ሺܸ ∙ ௛ሻܧ

ߨ4 ∑ሺܸ ∙ ௣ሻܧ
 (2) 

where Eh is the energy loss and Ep potential energy of the soil elements. d) By computing the damping 
at different loads levels, a damping – load curve for the foundation is established. 

The damping produced by the macro-element model, which is based on the load-displacement 
curve input, can be compared with the computed damping. Experience shows that the curves agree 
reasonably well for the load levels critical to OWT. However, the models obey Masing's rule, which 
may overestimate the damping at high load levels. The procedure suggested by  Kaynia and Andersen 
(2015) may then be applied to find a reasonable approximation. 
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Table 1 Foundation types and available soil/foundation models 
Foundation and substructre Model applicable Loading regime 

 

Redwin model 1 
 

 

Distributed 1D 
model to be 
applied to any 
DOF. 

Redwin model 2 
 

 

Horizontal and 
Moment loading 

 
 

Redwin model 3 

 

 
 

Vertical-
Horizontal-
Moment-loading 

 
 

 

Redwin model 3 
 

Vertical-
Horizontal-
Moment-loading 

 

p, y

y

p

Soil –support model
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a) 

 

b) 

     
 
c) 

 
 

 
d) 

 

Figure 11 Computation of foundation damping. A) Laboratory sample testing, b) Extraction of 
damping for the soil element, c) Integration of the damping in soil volume d) Foundation damping as 
function of cyclic moment amplitude. 
 

6.  Model demonstration 
The performance of one of the REDWIN models is demonstrated for a layered site with a gravity 
based foundation supporting a monotower. The REDWIN model 3 is suitable for such a foundation 
and loading regime. A thorough description of the model is given in [32]. However, Figure 12 
summarizes some key steps in the process of defining input and producing model response. Figure 12a 
shows the FEA used to compute the responses in three directions of loading, which are shown in 
Figure 12b. The response of the macro-element model will then reflect the soil response modelled in 
the FEA. For dynamic OWT analyses, the response should reflect the cyclic behaviour. Figure 12c 
shows an example of computed moment and rotation response through a 10 min time history. 

 

7.  Impact of foundation models 
Studies of the impact of the foundation models will be one of the most important tasks in the project's 
final year. The studies will reveal insight into how the models influence OWT design compared to 
conventional models expressing the effects on quantities such as steel utilization and cost. Some 
studies, have already been carried out, with useful and informative conclusions. They indicate that 
REDWIN models are more accurate than existing ones and have a positive effect on cost reduction. 
Two studies are briefly summarized herein.  
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a) 

 

b) 

c)  

 
Figure 12 Demonstration of model response. a) FEA of foundation with site spesific data, b) 
Uniaxial load response as input to model, c) Macro-element response - Moment and rotation 
through a 10 min time history. 

 

7.1.  Foundation effect on monopile fatigue damage 
The study by Aasen et al. [30] considered the 5MW wind turbine from the National Renewable 
Energy Laboratory (NREL) according to the OC3 Phase II [6].  The turbine is supported by a 6m 
diameter, 36m long monopile installed in medium dense sand. The study investigated the influence of 
different foundation models on the fatigue damage. The fatigue damage was computed based on time 
domain analyses in the software 3Dfloat [8]. The modes were all relatively simple but the study 
revealed important information about the impact the of foundation behaviour on the overall design. 
The following recap include results from four foundation models:  

A. API p-y distributed elements.  
B. Linear elastic model at mudline 
C. Linear elastic spring at mudline with viscous damper (ca. 1.5 % foundation damping) 
D. REDWIN model 1 from Table 1 used as a lumped foundation model applied to the rotational 

degree of freedom in the depth of the rotation centre. 
The computed normalized fatigue damage for the monopile is shown in Figure 13. The most important 
observation is that the relative difference on fatigue damage is significant, thus the foundation 
behaviour has an impact on fatigue – a design driver in monopile design. A closer look also reveals 
that both stiffness and damping influence the fatigue damage. The stiffness influence can be seen from 
the difference between model A and B, which has different stiffness and no damping. The damping 
influence can be seen from the difference between model B and C, which has the same stiffness but 0 
and 1.5 % foundation damping respectively.  Finally, it is encouraging to see that model D (REDWIN 
model 1), which is considered to be the most accurate model, gives less fatigue damage than the other 
models.   

2M
/D
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Figure 13 Foundation model influence on fatigue damage at tower root after [30]. 
 

7.2.  Prediction of foundation stiffness and natural frequency 
The second study considered an offshore wind turbine on a monopile installed in the North Sea. 

Measured accelerometer data from the turbine were collected over several years of operation and post-
processed in the Redwin project. The idling periods are of great interest for the foundation 
performance as this response is more affected by the foundation stiffness than the response during 
production. The natural frequency of the first mode was identified for these periods. The post-
processing of the measured data contained sample periods with shifting wind and wave direction. The 
peak spectral density from one of these periods are shown in Figure 14. The natural frequency range 
predicted in the original design using the p-y approach are also indicated on the figure. The natural 
frequency of the turbine was revised in the REDWIN project by using the REDWIN model 2 
fromTable 1. A geotechnical 3D FEA was carried out prior to the analyses to establish a moment – 
rotation curve to be used as input to the model. The 3D FEA used the NGI-ADP soil model [33] and 
site specific soil data including cyclic testing. The substructure and tower was modelled in detail in 
3Dfloat and REDWIN model 2 implemented with the monopile stiffness and damping characteristics. 
The natural frequency computed by this revised model is also included in Figure 14 for comparison 
with the measured and original design values. It is evident that the revised model agrees significantly 
better than the original design. It should be noted that the result was obtained without any tuning of 
input parameters to bring the computed natural frequency close to the measured. The importance of 
the results are emphasized by the fatigue damage sensitivity to natural frequency shown in Figure 3. 

 

 
Figure 14 Peak spectral density from measurements showing natural frequency fn of the first mode 
compared with original design natural frequency and natural frequency for analyses with Redwin 
model 2. 
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8.  Conclusions 
The foundation and soil support models developed in the REDWIN project offer effective, practical 
and accurate representation of foundation and soil behaviour. The models can be used in time domain 
analyses and are application-oriented, linking different foundation types to specific models. The 
models benefit from being calibrated using FEA, which can also compute damping and capture 
location-specific properties more accurately compared to e.g. API p-y curves or other closed form 
solutions. Comparisons with measured data from the field suggest that the models are more accurate. 
Numerical parametric studies have been carried out to investigate the effect of the models. These 
studies indicate that the foundation models significantly influence the design, and that the REDWIN 
models are beneficial since they include soil damping. More studies have to be carried out to 
investigate the extension of these conclusions for a greater range of foundation types and conditions.  

The project has helped remove barriers between structural and geotechnical engineers and made it 
possible to solve design problems with an improved integration.  
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