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A reduced-order model for a wind turbine wake is sought from large eddy simulation
data. Fluctuating velocity fields are combined in the correlation tensor to form the
kernel of the proper orthogonal decomposition (POD). POD modes resulting from
the decomposition represent the spatially coherent turbulence structures in the wind
turbine wake; eigenvalues delineate the relative amount of turbulent kinetic energy
associated with each mode. Back-projecting the POD modes onto the velocity snap-
shots produces dynamic coefficients that express the amplitude of each mode in time.
A reduced-order model of the wind turbine wake (wakeROM) is defined through a
series of polynomial parameters that quantify mode interaction and the evolution of
each POD mode coefficients. The resulting system of ordinary differential equations
models the wind turbine wake composed only of the large-scale turbulent dynam-
ics identified by the POD. Tikhonov regularization is employed to recalibrate the
dynamical system by adding additional constraints to the minimization seeking poly-
nomial parameters, reducing error in the modeled mode coefficients. The wakeROM
is periodically reinitialized with new initial conditions found by relating the incom-
ing turbulent velocity to the POD mode coefficients through a series of open-loop
transfer functions. The wakeROM reproduces mode coefficients to within 25.2%,
quantified through the normalized root-mean-square error. A high-level view of the
modeling approach is provided as a platform to discuss promising research directions,
alternate processes that could benefit stability and efficiency, and desired extensions
of the wakeROM.
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1 INTRODUCTION

Performance of wind farms is highly correlated with the wake following a given wind turbine [1, 2]. However, for the sake of

design efficiency, wakes and wind plants are typically modeled with simplified engineering or empirical relationships. Wind

turbine wakes are highly variable, combining effects from the atmospheric boundary layer, interacting with large rotating struc-

tures, and often subject to wake-to-wake interaction within a wind plant [3]. Further, wakes evolving from individual turbines

are asymmetrical due to the inherent shear in the atmospheric boundary layer and reflect the specific nature of incoming inflow

events that vary significantly with diurnal and seasonal cycles and affect the performance of other turbines in a wind plant [4].

Given the complexity of the wind turbine wake, a computationally efficient means of correctly modeling wake dynamics and

interaction is crucial to meet the rapid pace at which wind energy is being adopted globally and to address persistent wind plant

underperformance.

Reduced-order modeling describes a wide range of approaches that approximate complex system dynamics of large or infinite

degrees of freedomwith a limited, and more manageable, number of degrees of freedom. For applications in turbulence, the goal

is typically to simplify the Navier-Stokes equations, by isolating the important dynamics for a given flow with an effective use

of computational resources. Of these approaches, modal decomposition methods are frequently selected as they add definition

and organization to the vector space of the input information and offer intuitive means of filtering or truncation. The proper

orthogonal decomposition (POD) is a widely-used method as it represents the optimal organization of turbulence structures

based on energy [5]. With careful selection of the point of truncation of the mode basis, it is possible to retain the greatest range

of dynamics in the system with the least number of modes [6]. For turbulent flow data of high spatial resolution, the classical

POD presented by Lumley [7] is not as computationally efficient as the method of snapshots by Sirovich [8]. The POD has been

used in the analysis of wind energy for field measurements [9], experiments [10, 11], and simulations [12, 13, 14].

Galerkin projection is widely used to reconcile the modal basis with a governing behavior law, resulting in a minimal set of

ordinary differential equations [15]. The Galerkin-POD procedure was first used in turbulent shear flow modeling [16], and has

since been extended to many flow scenarios, such as mixing layers and wakes [17, 18], compressible flows [19], and bluff body

wakes and aerodynamics [20, 21], among others. Stability is a common difficulty with reduced-order models, typically arising

from truncating the dynamics to exclude higher-order, dissipative contributions to the overall flow. Often, additional turbulence

terms, such as eddy viscosities, pressure-strain correlations, and diffusion models are introduced to the system to add stability

[22, 23, 20]. Ultimately, stable ROMs require a substantial amount of training data, and are often most effectively derived

from numerical simulation data. In an experimental framework, strong closure assumptions are often employed to account for

incomplete or insufficiently resolved data [17, 24]. Brunton and Noack [25] provide a thorough review of closure problems for

dynamical modeling of turbulence and the challenges that remain in deploying prediction and flow control strategies.
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An approach to reduced-order modeling was defined in analogy to the Galerkin-POD by Perret et al. [26], wherein the

time-dependent mode coefficients are used directly in the formation of the dynamical system. In this approach, simultaneous

realizations of the coefficients and their respective time derivatives are required to describe the evolution of the system. POD

coefficients are combined through a least-squares polynomial fit including constant, linear, quadratic, and cubic parameters.

Linear and quadratic parameters are analogous to those produced through the Galerkin-POD method accounting for mode inter-

action in the viscous and convective terms of the Navier-Stokes equations. Constant and cubic parameters added to the ROM

through the least-squares polynomial fit add stability to the dynamical system [17], but do not issue from projecting the modal

basis onto the Navier-Stokes equations, as is the case with the Galerkin-POD method. The data-driven system was combined

with a dynamic reinitialization technique by Hamilton et al. [27] for a turbulent channel flow, demonstrating the effectiveness

of the technique for making estimates of the turbulence field far beyond the time span of the training data.

Data-driven ROMs are promising for predictive methodologies and flow control applications due to the simplified definition

of turbulence dynamics, speed of calculation of results, and portability to control methods [28], even without explicit knowledge

of the underlying flow physics. Because the computational cost is low for data-driven models, composition with a larger range

of degrees of freedom is feasible, enabling one to account for a broader range of system dynamics [29, 30, 31, 27]. Auxiliary

turbulence terms and physical mechanisms sought in numerous Galerkin-POD studies [22, 23, 20] are taken implicitly from the

dynamics of the input data in this application. Data-driven methods that do not require knowledge of the underlying physics are

frequently classified as model-free systems.

Numerical solution of ordinary differential equations can lead to the propagation of error that can cause divergence of the

system. This is a common issue in POD based dynamical systems. Often, exclusion of higher order modes that account for

dissipation and diffusion mechanisms changes the energy balance of the system [32]. Other potential pitfalls with POD-based

systems come from limited input data, which produces basis modes that are not statistically converged, and sensitivity of the

dynamical system to initial conditions [25], which can lead to skewed descriptions of the flow field. Error propagation in reduced-

order models can bemitigated through a number of recalibration techniques and for a wide range of dynamical systems, including

model-free and purely empirical models, see refs. [33, 34, 22, 35, 36, 37].

Couplet et al. [32] introduced a calibration step to the POD-Galerkin coefficients, seeking to minimize the error observed

between the behavior of the input data and that of the dynamical system. Tikhonov regularization was further employed to

recalibrate the parameters quantifying mode interaction, which adds stability to reduced-order turbulence models [31]. The

study found the proposed methods to be applicable to unstable POD-Galerkin systems. The computational cost of construction

of the data-driven dynamical systems is generally less than the cost associated with POD-Galerkin calculations for transitional
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or turbulent flows [31, 25]. Cordier et al. [35] compared multiple methods of calibration that are used to improve the reduced-

order model accuracy. Numerical experiments indicate that, with respect to normalized errors, the Tikhonov regularization

outperforms other effective methods, seeking the optimal balance between model stability and variability [38].

To make best use of wind energy resources, wind farm designers and engineers require sophisticated tools that accurately

simulate the complicated interactions of the turbines with the atmospheric boundary layer.Wind turbine wakes play a dual role in

wind farms as a source of increased turbulence and fatigue loads on blades, and as a mechanism responsible for resupplying the

wind plant with high-momentum flow [2, 39]. Additionally, turbulent wake interaction in a wind farm increases operation

and maintenance costs, and decreases the capacity factor of turbines in the farm. In order to optimize the performance of

new and existing wind energy resources, a new generation of control and optimization strategies are necessary that account for

the global aerodynamics of the wind farm system. A large eddy simulation (LES) framework is used to describe the turbulent

wind turbine wake (section 3). Dynamics are subsequently isolated with the proper orthogonal decomposition (section 2.1) and

used to formulate a reduced-order model (section 2.2). The resulting dynamical system is subject to instabilities endogenous

to the turbulence and introduced during the numerical solution of the system. However, when recalibrated through Tikhonov

regularization, the wakeROM is more stable and capable of producing accurate estimates of the wind turbine wake. Incoming

flow events are related to the POD mode coefficients through a system of transfer functions and periodically offer new initial

conditions to the wakeROM. Providing wind turbine operating conditions as feedback parameters, the data-driven dynamical

system here may be concatenated in series, offering a means of control and optimization for global wind farm power production.

Components of the wakeROM workflow that represent paths for future development or additional investigation are discussed in

section 5, and conclusions of the current work are presented in section 6.

2 THEORY

2.1 Snapshot proper orthogonal decomposition

For data with fine spatial resolution, the method of snapshots [8] provides a computational advantage over the classical POD [7].

The following theoretical development outlines the definition of a basis of modes (or eigenfunctions) ordered by their projection

onto the fluctuating velocity correlation tensor. The eigenvalue associated with each mode delineates the energy that a particular

structure conveys in the turbulence kinetic energy (TKE) budget of the sampled data. Math symbols in bold represent vectorial

quantities, while symbols in plain text are scalars. The flow field is assumed to be a stochastic function of space and time.

Velocity snapshots are then denoted as u(x, tn), where x and tn refer to the spatial coordinate and time at sample n, respectively,

overN total snapshots t0 ≤ tn ≤ tN .
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Stated simply, the POD seeks a set of modes and coefficients that optimally describes the kernel of the decomposition, in

this case the correlation tensor R. The three Cartesian components of the fluctuating velocity field are used to define the

correlation tensor as,

R(x,x′) = 1
N

N
∑

n=1
u(x, tn)uT (x′, tn), (1)

whereN signifies the number of snapshots and the prime represents the spatial coordinate of another point in the domain. POD

modes take the form � =
∑N
n=1

i(tn)u(x, tn), where � represent the largest projection onto the stochastic velocity field

in a mean square sense and i are coefficients quantifying the projection onto each velocity snapshot. The correlation

tensor and ansatz of the modes are substituted into a Fredholm integral equation of the second kind,

∫


R(x,x′)�(x′)dx′ = ��(x), (2)

where  is the physical measurement domain and � are eigenvalues that delineate the corresponding contribution of

each mode to the total integrated TKE. Equation (2) is discretized and solved numerically as an eigenvalue problem.

Modes are normalized by their respective L2-norm by convention,

�(i)(x) =
∑N
n=1

i(tn)u(x, tn)

‖

∑N
n=1i(tn)u(x, tn)‖

, i = 1, ..., N. (3)

POD mode coefficients ai(t) associated with each mode are sought by back-projecting the set of stochastic velocity fields onto

the basis of POD modes and integrating over ,

ai(t) = ∫


u(x, t)�(i)(x)dx. (4)

With spatially coherent PODmodes and the respective time-varying coefficients, the velocity fieldmay be represented through

the relationship,

u(x, t) =
N
∑

i=1
ai(t)�(i)(x). (5)

By convention, POD modes themselves carry no units. It is only in combination with their respective coefficients that they rep-

resent contributions to the velocity field. Truncating the basis of POD modes before reconstructing velocity snapshots as in

Equation (5) results in a filtered description of the turbulence. Low-rank modes are taken to be the most energetic and anisotropic

structures in the flow field; intermediate and high-rank POD modes account for turbulence kinetic energy that is more homoge-

neously distributed and more isotropic, detailed in [40]. The point at which the POD basis is truncated is typically determined

by choosing a desired level of the TKE according to the eigenvalues, �.
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A quantitative description of the accuracy of a low-order description of the turbulence field through the POD as by Equation

5, is acheived through the normalized root-mean-square error (NRMSE), calculated as,

NRMSE(ĝ) = 100 ×

√

(g − ĝ)2

max(g) −min(g)
, (6)

where g is a reference signal and ĝ is the test signal. This method is used for error quantification throughout the manuscript.

2.2 Polynomial reduced-order model

A data-driven dynamical system is used in the current wakeROM and is sought through a polynomial expansion of permutations

of the POD coefficients. In essence, the method seeks a set of parameters that relate the POD coefficients to their respective

time derivatives through a least-squares minimization, as proposed by Perret et al. [26]. The dynamical system is defined in

analogy to the Galerkin-POD structure, where parameters Di, Lij , Qijk, and Cijkl, imply constant, linear, quadratic, and cubic

mode interaction, respectively. The POD basis is truncated toNr modes, and the coefficients are combined as,

dai
dt

= Di +
Nr
∑

j=1
Lijaj +

Nr
∑

j,k=1
Qijkajak +

Nr
∑

j,k,l=1
Cijklajakal. (7)

The parameters above are sought for the time derivative of each POD coefficient, dai∕dt, individually. Each index spans the POD

mode space retained for flow description, on the interval i, j, k, l ∈ [1, Nr]. The polynomial combinations of the coefficients

are reorganized as a vector A =
[

1, aj(t), aj(t)ak(t), aj(t)ak(t)al(t)
]

and the unknown parameters asXi =
[

Di, Lij , Qijk, Cijkl
]T .

Thus, the dynamical system can be more concisely written [35] as,

dai
dt

= A(t)TXi. (8)

Error between the known time derivatives of the coefficients calculated from the POD and the fit provided by the parameters

is expressed as,

�2 =
N
∑

p=1

[

dai
dt

−
N
∑

k=1
A(t)TXi

]2

. (9)

Minimization is accomplished numerically by �2 = |AX − B|2, where B contains theN samples of dai∕dt.

The coupled set of ordinary differential equations (ODEs) in Equation (7) does not use the POD modes to determine the

behavior of the system; rather, the dynamics of the system are derived exclusively through the coefficients. A key advantage of

this approach is the option to include higher order (cubic or even quartic) terms in the description of the dynamical system. Higher

order terms are known to add complexity to the system without introducing instability [26, 17, 24]. Strict data requirements

(i.e. simultaneous realizations of ai and dai∕dt) can be a challenge for many experimental methods, although high-fidelity

computational approaches (direct numerical and large eddy simulation) are capable of sufficient temporal resolution.
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Solving the ODEs in Equation (7) yields a time series of coefficients predicting the relative intensities of each of the constituent

modes in the ROM. Below, products of the ROM are denoted with a caret (̂). The least-squares fit of the time derivatives of the

POD coefficients is written dâi∕dt, the mode coefficients from the ROM are denoted by âi, and are function of a new vector of

time values t̂. The time resolution of âi(t̂) is related to the error tolerance of the numerical ODE solver and the number of modes

in the system [26, 33].

Tikhonov regularization is undertaken by modifying the minimization above to fit the form,

min(|AX − B|2 − �2|L(X −X0)|2), (10)

where the second term in the minimization provides an additional constraint on the vector of parameters being sought X.

In Equation (10), the regularization parameter is denoted as �, a discrete approximation matrix of a differential operator is

introduced as L, and an initial estimate of vector of parameters is considered as X0. The corner of the characteristic L-shaped

curve corresponds to a fair balance between the two norms and is detected to obtain �. When no initial estimate is supplied or

desired in the regularization, X0 = 0. The discrete differential operator is varied, taking L as the identity matrix, a first-order

difference matrix (FOD) or a second-order difference matrix (SOD). Higher order difference operators are employed to test the

effects of smoothing in the regularization process [35]. In cases when L ≠ I , the generalized singular value decomposition

(GSVD) is implemented. Interested readers are referred to the ‘regularization tools’ documentation [41] for more details.

3 LARGE EDDY SIMULATION OF AWIND TURBINE

The data used in the following work relies on the LES code introduced in [42], which integrates the non-dimensional, incom-

pressible, and filtered Navier-Stokes momentum equations together with the continuity equation. The reader is refered to the

works by [4, 42, 43] for a complete description of the LES framework and simulation details. The equations are implemented

using a rotational form to assure conservation of energy and mass of the inertial terms [44]. The effects of temperature were

removed from the simulation, decoupling the temperature and velocity fields and forcing neutral atmospheric stratification. The

flow is forced by a constant pressure gradient boundary condition to ensure the flow remains perpendicular to the wind turbine

rotor.

)ũi
)xi

= 0, (11)

)ũi
)t
+ ũj

(

)ũi
)xj

−
)ũj
)xi

)

= −1
�
)p∗

)xi
−
)�̃ij
)xj

+ fi. (12)
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In equations (11) and (12), a tilde (̃) indicates an instantaneous quantity resolved above the LES filtering operation at the

grid-size Δ. The term �̃ij represents the deviatoric part of the momentum sub-grid stress (SGS) term, which is modeled using

the Lagrangian Scale Dependent model of Bou-Zeid [45]. The filtered pressure term has been modified (p∗) to include the trace

of the SGS tensor (p̃∕� + �̃kk∕3). A forcing term fi represents the momentum sink induced by the wind turbine that includes

both an axial and tangential component. In the simulation, the body force per unit volume fi is modeled using the actuator-disc

with rotation [46].

Numerical discretization of the equations follows that used by Moeng [47] and Albertson [48]. The LES analyzed herein

models a pseudo-spectral approach where a staggered-grid is used. Fourier discretization is employed in the streamwise and

spanwise directions, hence imposing periodic boundary conditions. The top boundary has zero-flux and zero-shear boundary

conditions such that the vertical velocity and the gradients of the horizontal velocities are equal to zero. The lower surface has a

no-slip condition and, because of the staggered grid, an equivalent surface shear stress is imposed at the first grid point for the

horizontal velocities parameterized from the traditional log-law.

The LES analyzed here assess a single wind turbine operating in the atmospheric boundary layer. Boundary effects, arising

from a finite computational domain and periodic boundary conditions, are mitigated by ensuring that the domain is

sufficiently large. This allows for the wake of the wind turbine to fully recover before reaching the outlet. The simulation

domain consists of nx = 512, ny = 128, nz = 384 nodes in the streamwise, spanwise, and wall-normal directions, respectively.

In physical dimensions, the simulation space occupies Lx = 12.3, Ly = 1, and Lz = 1.5 kilometers. The numerical domain is

shown in the schematic in Figure 1 . With periodic boundary conditions, the simulation effectively guarantees the isolation of

the wind turbine, as the flow develops for approximately Sx = 120D and Sz = 1.5D in the streamwise and spanwise directions

before encountering the turbine again. The time resolution of the analyzed data is Δt = 2s. At measurement frequency, velocity

fields remain highly correlated and time derivatives can be accurately computed with reduced-order schemes,

The following analysis focuses on the wake of the wind turbine in the LES data; a subdomain of the simulation is extracted

detailing the wake only. Figure 1 shows the wake subdomain as a volume inside the full LES domain. The figure shows a

scaled wind turbine with blades and a rotor for context only; the LES uses an actuator disc approach, and the mast and

blades of a wind turbine are not included in the simulation. The rotor disc spans 5 × 13 grid points in the transverse and

wall-normal directions, respectively. This grid resolution is considered sufficient to reproduce turbulence in the wind

turbine wake [46]. A low-order dynamical system is developed below characterizing turbulence for the subdomain containing

the wake. Table 1 summarizes key values from the subdomain of the LES used in the following analysis.
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Ly

Lz

Lx

7D

2.5D

15D

FIGURE 1 Demonstration of the spatial domain used in the wind turbine LES. Inner volume represents the subdomain analyzed
in the present work. The light gray circle indicates the area of the actuator disc representing the wind turbine rotor.

TABLE 1 Details for the subdomain of the large eddy simulation domain extracted for the reduced-order model.

Lx 1.6 km nx 64 Δx 24.5 m rotor diameter, D 100 m
Ly 0.25 km ny 32 Δy 7.8 m surface roughness, z0 3 × 10−4m
Lz 0.78 km nz 32 Δz 24.5 m Hub-height TI, �u,hub 0.057
T 4000 s nt 2000 Δt 2 s Hub-height velocity Uhub 14.4 m/s

4 DATA-DRIVEN REDUCED-ORDER MODEL

Figure 2 shows selected statistical values from the wind turbine wake. The momentum deficit area of the wake is visualized

in Figure 2 (a) as the blue areas in the mean streamwise velocity. Because these data pertain to a single wind turbine in

isolation, the momentum deficit in the wake extends farther downstream than one would expect for a wake within a large

array of turbines, where higher levels of turbulence enhance mixing and recovery. The data in Figure 2 are ensemble

averaged over the full range of the LES, ensuring statistical convergence of mean velocities. In each subfigure, transparency has

been employed to aid in visualization.

Normalized second-order wake statistics for selected components of the turbulence field are shown in Figures 2 (b) and 2 (c).

As a normalization scale, the turbulence kinetic energy is spatially averaged over the domain, denoted as ⟨k⟩. The streamwise

Reynolds normal stress uu∕⟨k⟩ is positive by definition and shows peak values of approximately 2.75 trailing the rotor at the

height of the top tip of the disc (z∕D ≈ 1.5). Wake statistics for a single wind turbine in isolation evolve over greater distances in

the streamwise direction than they would for a wind turbine in a large array [3].Here, the peak values of uu occur at x∕D = 6.

As the field evolves downstream, the contour plots show the growth of uu trailing the swept area of the edge of the rotor

disc, mainly above hub height.
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(a) U∕Uℎub

(b) uu∕⟨k⟩

(c) uw∕⟨k⟩

FIGURE 2 Mean velocity, streamwise normal stress, and streamwise/wall-normal shear stress in the wake of an isolated wind
turbine.
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Turbulent shear stresses, represented by the off-diagonal terms of the Reynolds stress tensor, are smaller in magnitude

than theReynolds normal stresses. Flux ofmean flowkinetic energy into themomentumdeficit area of thewake is assisted

by the shear stresses. However, for an isolated wind turbine, turbulent flux of mean flow kinetic energy is not a main

contributor to the energy balance in the wake. Rather, shear stresses are expected to be most significant in higher-order

statistics from the turbulence kinetic energy transport equation. The shear term uv assists in vertical transport of mean flow

kinetic energy. Positive values of uv∕⟨k⟩ occur below hub height and correspond to upward flux; negative values occur above

hub height and correspond to flux downward from above the wake. Figure 2 (c) indicates that there is a streamwise offset

between the peak upward and downward fluxes of mean flow energy into the wake. The spanwise/wall-normal stress (not

shown for brevity) is an order of magnitude smaller than the other components, as a result of the near-axisymmetry seen in the

turbulence field.

In applying the proper orthogonal decomposition to the LES wake data, each snapshot is taken as a full volume of the fluc-

tuating velocity field. The two-point correlation tensor forming the kernel of the decomposition effectively accounts for the

turbulence field characterized by the Reynolds stresses seen in Figures 2 (b) and 2 (c). The cumulative summation of eigen-

values �n, shown in Figure 3 , is used to establish the portion of energy represented by a truncated basis of POD modes. In

the ROMs explored below, a maximum of 47 modes are employed, corresponding to 50.1% of the integrated TKE of the LES

data. With 47 modes, the turbulence field may be described (as by Equation (5)) to within approximately 18% according to the

NRMSE outlined in Equation (6), and marks an acceptable compromise between basis truncation and accuracy. Eigenvalues of

the POD from Equation (2) are shown in the inset of Figure 3 , normalized by the integrated turbulence kinetic energy of the

volume. Application of the POD to LES data shows slow accumulation of energy by mode due to periodicity in the simulation

space. The nature of the subgrid filtering and periodic boundary conditions in the LES introduce homogeneity that slow the rate

of convergence of �n.

Figure 4 demonstrates the vectorial magnitude of modes from the POD basis selected to demonstrate the increase in com-

plexity with mode number. Color scale information is included for completeness, although it should be noted here that by

convention, the modes do not carry physical units unless combined with their respective coefficients. The modes represent

the spatially coherent structures in the wind turbine wake, ordered by their projection onto the turbulence field. The

modes of lowest rank represent the largest and most energetic features of the wake. After the first few modes, it becomes

increasingly difficult to associate each structure with features in the wake, although their contribution to the energy is

defined by their associated eigenvalue. Similarity in structures exhibited by modes |�(1)| through |�(8)| (Figures 4 (a) through

4 (d)) arise from two sources: (i) snapshots are not statistically uncorrelated in time and (ii) the simulation domain of the LES

is periodic. These effects cause some structures in the input snapshots to be over-represented by the POD and appear in more

than one mode. Mode pairing is commonly seen in POD applied to time-resolved data and do not affect the ability of the method
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FIGURE 3 Distribution of energy in the PODmode basis according to eigenvalues �n. The cumulative fraction of eigenvalues is
shown against thresholds corresponding to 50, 75 and 90% of the integrated turbulence kinetic energy in the domain; Normalized
eigenvalues are shown in the inset figure, up to i = 47, corresponding to the 50% TKE threshold.

to represent the turbulence field, but certainly slow the convergence of energy contained in the eigenvalues. Within the current

data, mode pairing is evident between modes 2 and 3, modes 4 and 5, modes 7 and 8. As the rank of the modes increases, mode

pairing becomes less easily identified, as structures become less coherent and represent more isotropic contributions to the over-

all turbulence field. Normalized eigenvalues in Figure 3 demonstrate mode pairing as ‘stair steps’ in the distribution of

energy. The dynamics of the input data described by the POD require the contributions of relatively similar PODmodes.

For this reason, mode pairs are retained without any a posteriori filtering (beyond the basis truncation) and are included

in the reduced-order model. However, because mode pairs are statistically similar, individually they do not contribute

as much new information to the description of the turbulence field as un-paired modes. For this reason convergence of

energy is slower than in cases where mode pairing is not present.

The definition of the wakeROM requires that each mode coefficient interacts with the others in the truncated POD basis,

often at several polynomial orders. Figure 5 shows the parameters coupling the dynamics of each mode ultimately used in the

numerical solution according to Equation (7).The constant term is quite small ( ∼ 10−3) as eachmode is zero-centered and

shows no easily identified trend with mode index i. Linear mode interactions are shown in Figure 5 (b). In the Galerkin-POD

method, Lij describes the linear mode interactions arising from dissipation terms in the Navier-Stokes equations. The generally

small values of Lij ( ∼ 10−1) indicate that most of the linear interactions in the wakeROM are not dominant in the overall

dynamics. Note that Lij increases with the mode index along i, since most dissipation occurs at small, dissipative scales.

Therefore, one may conclude that the linear interactions are more relevant to intermediate and high-order modes. Quadratic

terms relate the dynamics arising from the nonlinear convection term in the traditional Galerkin projection. Here, they are

derived through a least-squares fit rather than projection onto the Navier-Stokes equations but remain the dominant contributor
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(a) �(1) (b) �(2)

(c) �(4) (d) �(8)

(e) �(16) (f) �(32)

FIGURE 4 Vector magnitude of selected POD modes from the wind turbine wake.
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( ∼ 101) to the wakeROM dynamics. The cubic terms are negligible when compared to the others in the wakeROM ( ∼ 10−7)

and are not shown for brevity.

(a) Constant
parameter

(b) Linear parameter (c) Quadratic parameter with k = 1

FIGURE 5 Constant 5 (a), linear 5 (b), and quadratic parameters 5 (c) coupling the mode coefficients in the ROM. Trans-
parency has been employed to accentuate the quadratic parameters that contribute more significantly to the dynamics of the
wakeROM.

Physical significance of the parameters is taken here to be analogous to those in the Galerkin projection, explored at length by

Noack et al. [15]. Parameters are classified in terms of their contributions to components of the momentum balance suggested

in the Navier-Stokes equations, including inter-modal energy exchanges. The constant term in Figure 5 (a) is small but non-

null, indicating that some long-term instability must be expected in the dynamical system. Behavior of the quadratic parameter

is less easily characterized, although it appears that extreme values ofQijk occur for high values of the index j and for an entire

space of i and k, in Figure 5 (c). This trend indicates that the convective term in the Navier-Stokes equations is characterized

by a wide range of mode interactions. This result is not surprising given that the non-linear term in the Navier-Stokes equations,

which is associated with Qijk, accounts for a wide range of turbulence scales.

The parameters discussed above are combined as in Equation (7) yielding a system of coupledODEs that describe the evolution

of the dynamical mode coefficients. Figure 6 (a) shows the time derivative of selected PODmode coefficients from Equation (4)

as time series in black. Coefficients shown in the figure correspond to the modes shown in Figure 4 . Dynamics of each mode

varies according to rank; dai∕dt shows larger, low-frequency features when i is low and much higher frequency oscillations with

increasing mode number. Colored lines correspond to the coefficient derivatives from the wakeROM, employing or forgoing

the influence of Tikhonov regularization. Dark blue lines in Figure 6 (a) result of the least-squares fit detailed in Equation (9)

without any form of additional model regularization. The remaining time series in Figure 6 (a) show the evolution of the mode
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FIGURE 6 Comparison between the time evolution (left subfigure) of selected POD coefficients (black) and least-squares
fit (dark blue). Solving the set of coupled ODEs in Equation (7) yields coefficients seen in (right subfigure). Modeled mode
coefficients from wakeROMs employing Tikhonov Regularization are shown in light blue (L = I), green (L = FOD), and
yellow (L = SOD).

coefficients with Tikhonov regularization fixing the differential operator as the identity matrix (L = I , light blue line), a first-

order difference matrix (L = FOD, green lines), or a second-order difference matrix (L = SOD, yellow lines). Agreeing with

previous applications of the technique [26, 27], the fit of dâi∕dt (denoted with a caret) is a good fit for dai∕dt for low rank

modes, where low-frequency dynamics are dominant. Tikhonov regularization employing the second order differential operator

(L = SOD) removes variability from the system, suppressing the magnitude of ai for low-ranking modes i ≤ 8. For modes of
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rank i > 8, Tikhonov regularization with L = SOD produces estimates of ai that grow unstable and have magnitudes greater

than those of the other differential operators.

Solving the system of equations results in the modeled coefficients in Figure 6 (b). From the figure, the estimated coefficients

âi (blue) diverge from their respective values produced through back-projecting the POD modes onto the snapshot basis (black)

regardless of the absence, presence or form of model regularization. The system of ODEs described by Equation (7) is com-

posed with 47 modes, corresponding to 50.1% of the energy described by the integrated TKE. Increasing the number of

modes used to describe the turbulence marginally increases the accuracy of the solutions âi, but the computational cost

increases exponentially. Modeled coefficients are sought in a prescribed time interval, set here to match the span of the train-

ing data, and require initial conditions, taken as the first values of the POD coefficients ai(t = 0). Modeled coefficients match

their respective values from the POD for a short range beyond their initial conditions, but take on different trajectories as error

accumulates from numerical solution of the ODEs and in the least-squares fits of their respective time derivatives. While the

trajectories of âi differ from ai, Figure 6 (b) demonstrates that each modeled coefficient exhibits dynamics of similar amplitude

and frequency range as their respective match from the POD. Resolution in time of the modeled coefficients is determined by the

error tolerances allowed in the numerical integration of Equation (7). Including a greater number of modes in the ROM increases

their ability to match the trajectories of ai, but require significantly more computing power and time to resolve. Regardless of

the number of modes used in the ROM, the system of âi will eventually diverge and grow unstable given a sufficiently long

integration time.

Long-term instability is expected in the numerical solution of the system of ODEs defining the present ROM, and the tra-

jectories of the modeled mode coefficients are sensitive to their initial conditions. Divergence is most evident for a1 and a16 in

Figure 6 (b), where the modeled coefficients rapidly take on values that differ from the known values of ai, become unstable and

will eventually grow without bound. Using a higher-order differential operator L = FOD or L = SOD (green and yellow lines,

respectively) stabilizes these modes and delays the divergence of these mode coefficients. However, even under the influence of

Tikhonov regularization, the modeled coefficients âi do not match the POD mode coefficients (in black) and thus do not reflect

incoming flow events, even if they remain stable. The value of a ROM that can accept information regarding inflow conditions

cannot be overstated for wind energy, and further underpins the need for additional system inputs. Any means of recalibrating or

re-initializing the ROM must respect the dynamics delineated by the system of ODEs and inform the system of incoming flow

dynamics if the reduced-order model is to be used in a predictive sense. The effective velocity seen by the rotor disc, defined by

Equation 13, offers an intuitive signal to characterize incoming flow conditions.

Disparity between the known coefficients and their respective trajectories produced by the wakeROM is quantified with a

normalized root-mean-square error given by Equation (6). NRMSE(ai) between each POD mode coefficient and its counterpart

from the wakeROM is shown in Figure 7 . From the figure, it is evident that Tikhonov regularization is able to improve the
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systemmoderately when using the identity matrix or the first-order differential operator L = FOD. Figure 7 shows that

for modes i ≤ 8, L = SOD produces accurate estimates of the mode coefficients. However, for higher ranking modes, the

wakeROM estimate with L = SOD produces coefficients that grow unstable, seen most clearly in â16, â32, and â47. The

total error associated with each version of the wakeROM (for the span of all coefficients as opposed from the NRMSE by mode)

is 27.1% (without regularization), 27.4% (with L = I), 25.2% (with L = FOD), and 45.4% (with L = SOD). The wakeROM

with Tikhonov regularization and L = FOD exhibits the lowest NRMSE, hence the other versions are not considered in the

remaining analysis.

FIGURE 7 NRMSE between POD mode coefficients and their respective wakeROM equivalents from the wakeROM without
regularization (dark blue) and those employing Tikhonov regularization in light blue (L = I), green (L = FOD), and yellow
(L = SOD).

As input signal is used to periodically refresh the initial conditions for the wakeROM, shown in the flowchart in Figure 8 .

Process blocks are shown as diamonds and include decomposition into modes, tuning initial conditions from transfer functions,

calibration of the reduced-order dynamical system, and reconstruction of the turbulence field in the wake. Inputs are shown as

rectangles and include the statistical record of the wake, taken here as the LES data, the effective inflow velocity used as the

‘input signal,’ and the output is the modeled wake flow ûwake. Intermediate variables are shown in squares with rounded corners

and include the POD modes (�(i)) and coefficients (ai), the renewed initial conditions (a′i,0), as well as the modeled coefficients

(âi).

It is understood from previous work [27] that coefficients predicted by the ROM will diverge from those of the POD in long

solution times. To ensure that the modeled wake reflects incoming turbulence, the wakeROM is periodically halted and reini-

tialized with new initial conditions supplied by relating the effective inflow velocity to the known coefficient values. Effective

inflow velocity is calculated by integrating the instantaneous streamwise velocity over the swept area of the rotor immediately

upstream of the turbine, shown as a gray circle in Figure 1 , defined as,

ueff = ∫
Arotor

ũ(t)dA. (13)
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âi
Field recon-
struction
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FIGURE 8 Work flow demonstrating the input/output map of the dynamical system with periodic recalibration from the
effective inflow velocity.

Incoming flow information is provided to the wakeROM by relating ueff to the POD mode coefficients ai through a system

of open-loop transfer functions Hi(s). Each transfer function is tuned to maximize the fit to its respective mode coefficient by

varying the number of poles and zeros, up to a maximum of 15 each, a time delay between input and output signals is sought as

an addition fit parameter. For the sake of brevity, the transfer functions are presented without exhaustive supporting detail and

are mainly intended to demonstrate the need for some means of relating the wakeROM to incoming flow information. A more

complete discussion of the components of the wakeROM is outlined in Section 5.

FIGURE 9 Effective inflow velocity. Training data shown in blue; validation data shown in black.

Figure 9 shows ueff(t) separated into two ranges; the portion of the signal shown in blue indicates the range over which ueff

was compared to ai to define transfer functions and the section in black is reserved as validation data. The inflow velocity ueff

is commonly used in the calculation of the fluid power available to the turbine. For calculation of the transfer functions, ueff is

normalized to vary over the interval [0,1]. The effective inflow velocity signal is compared to POD mode coefficients over the

same time interval that have been similarly normalized. Transfer functions are calculated relating the inflow velocity signal to

the POD coefficients in the wake optimizing the number and magnitudes of poles and zeros for best fit between ueff and ai.

Open-loop transfer functions are employed to estimate new initial conditions for the dynamical system of the wake corre-

sponding to the atmospheric flow interacting with the wind turbine rotor. Optimized transfer functions are limited to a maximum
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of 15 poles and 14 zero locations, and the NRMSE of the fit ranges between 4.57% for a2 and 45.6% for mode a47. During the

calculation of the transfer functions, both ueff and ai are renormalized to scale between 0 and 1. Renormalization speeds

the calculation of the transfer functions by saving the algorithm from having to seek extra fit parameters. After calcula-

tion, the transfer functions, ueff, and ai are all scaled back to their original ranges. Table 2 shows details of the selected

transfer functions employed in the recalibration process.

TABLE 2 Details for transfer functions relating ueff to the training data of each POD mode coefficient. Modes shown in the
table correspond those discussed above and shown in Figures 4 and 11 .

Mode 1 2 4 8 16 32
Poles 14 15 15 15 15 14
Zeros 7 13 11 8 14 13

Time Delay (s) 50 40 4 58 0 16
NRMSE (%) 6.35 4.57 9.22 12.36 19.64 22.4

Periodically refreshing the system with new initial conditions forces the solution to reflect the influence of the flow field

incident to the rotor, within the error bounds of the transfer functions and dynamical system. However, once reinitialized, the

dynamical model is again free to take on its own trajectory that may deviate from that of the physical system. Thus the degree of fit

between the model and the true coefficient space is necessarily a function of the time interval between periodic reinitializations.

Large time intervals between the resupply of fresh initial conditions allows the modeled system to deviate further from the

validation data, taken as the POD coefficients.

The range of reinitialization time intervals tested for each mode coefficient in Figure 10 suggests that as the period between

renewed initial conditions Tp is reduced the error is minimized. On the contrary, large time periods between recalibration allow

the system to deviate far enough that the transfer functions are not able to supply the appropriate corrections. In the case where

Tp = 250 seconds, the error grows toward (103), indicating that the transfer functions are not able to correct for the deviation

in the wakeROM.

As recommended by the fit analysis in Figure 11 , a short time period between reinitialization is selected for the model;

transfer functions are able to supply the necessary information to the ROM to inform the model of the inflow, given a sufficiently

short reinitialization time scale. Modeled coefficients âi exhibit discontinuities that arise from halting and restarting the solution

to the dynamical system. Discontinuities are difficult to detect for low mode numbers but become more obvious for intermediate

and high rank modes. Given the effective inflow velocity at hub height of Uhub = 14.4m/s, the maximum distance into the

wake that the flow could be convected over the prediction horizon Tp = 50 s is approximately 7.5D, which is on the scale

of common spacing of turbines within an array. At this reinitialization schedule, the model is updated on the scale of
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FIGURE 10 Fit between coefficients predicted by dynamical model and their respective values from POD. Coefficients for
each mode i are tested for a range of time periods Tp (in seconds).

(a) a1 v. â1 (b) a16 v. â32

FIGURE 11 Comparison of validation data (black) to predictions of the regularized wakeROM (blue). In each subfigure, from
top are reinitialization horizons of Tp ∈ [50, 100, 150, 200, 250] seconds. Coefficients of only two modes (a1 and a32) are shown
for brevity.

time for flow information to evolve from one turbine to the next in an array setting. While the wake of the isolated wind

turbine analyzed here spans closer to 15D, the current results with a 50 s reinitialization horizon is promising for an analogous

reduced-order model for a wind turbine array.
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Shocks seen in modeled mode coefficients propagate through to fluctuating velocity snapshots in the wake as abrupt shifts

in the velocity fields in time. The time series of velocity output by wakeROM are compared in Figure 12 at selected points

in the wake. Each of the figures correspond to the time series of fluctuating velocity aligned with the center of the rotor disc

((y∕D, z∕D) = (0, 1) at locations x∕D ∈ [0, 5, 10, 15] into the wake. Velocity signals produced by the ROM (green) are able to

capture large-scale behavior, but like the POD exhibit low-pass filtering as compared to the LES data. Discontinuities present

in the modeled coefficients are seen in the velocity signals as well. Filtering is mitigated by adjusting the point of truncation of

the POD mode basis accounting for both spatial filtering through the modes (�(i)) and temporal filtering through the associated

coefficients (ai). For comparison, Figure 12 shows the time series predicted by the POD in blue. The overlap of the wakeROM

and the POD coefficients confirms that the dynamical system introduces minimal filtering of the predicted velocity fields beyond

that of the POD.

FIGURE 12 Comparison of velocity signals at locations downstream of the wind turbine. Green lines are ûwake integrated over
the swept area of the rotor, black lines are validation data from the LES, blue lines are produced with POD. Fluctuating velocity
signals correspond to points aligned with the center of the rotor disc ((y∕D, z∕D) = (0, 1) at locations x∕D ∈ [0, 5, 10, 15]
downstream of the rotor disc.

Discontinuities seen in the time series above (highlighted in Figure 13 ) are not distinctly visible after ensemble aver-

aging to reach the Reynolds stresses shown in Figure 14 . In ensemble, turbulence statistics in the modeled wake closely

reflects features demonstrated in the statistics calculated directly from the LES. Terms from the modeled turbulent stress
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FIGURE 13 Detail comparison of reconstructed fluctuating velocity signal in the wake highlighting discontinuities that arise
from the re-initialization process (green line, every 50 seconds from t = [1000, 1500]).

tensor are shown in Figure 14 . The color scale of each subfigure is fixed to that of the original statistical values of each stress

for ease of comparison.

(a) ûu∕⟨k̂⟩ (b) ̂uw∕⟨k̂⟩

FIGURE 14 Reynolds stresses produced by the wakeROM using 32 PODmodes, Tikhonov regularization with a second-order
differential operator (L = SOD), and iterative reinitialization with open-loop transfer functions. Equivalent Reynolds stresses
from the LES are shown in Figure 2 , for comparison.

The modeled streamwise normal stress ûu demonstrates the same characteristic feature evolving with x∕D trailing the top

tip of the rotor disc. It is expected that the modeled stresses will demonstrate reduced magnitudes compared to those arising

from the original statistics. The difference in magnitudes is attributed to truncating the basis of modes to Nr in the model and

reconstruction; only 47 of 2000 modes are used and account for 50.1% of the total turbulence kinetic energy of the wake.
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5 DISCUSSION ON GENERALIZING THEWAKEROM

The wakeROM detailed above uses one particular combination of methods and algorithms (out of many possible options) to

produce mode coefficients that reflect incoming flow events, and provide a dynamic estimate of the turbulence in a wind turbine

wake. Within the approach explored here, several of the model inputs and processes require further exploration or development

to reflect a general wake model that can be used in plant optimization. Figure 15 shows a generalized version of the workflow

used in the current wakeROM, highlighting areas for further exploration.

wakeROM
Input
Signal

System
Response

a′i,0
Renewed
initial

conditions

DecompositionStatistical
Record

ai
Dynamical
System

âi
Field recon-
struction

ûwake

φ(i)

FIGURE 15 Generalized workflow used in the current reduced-order modeling. Input and process blocks requiring additional
development are shown in green and blue, respectively. Regardless of algorithms selected, the current wakeROM workflow,
shown in gray, can be deployed equivalently for wind plant modeling, control, and optimization.

While the wakeROM developed in the current work represents significant progress toward a broadly applicable modeling

tool, there remain several points that require additional investigation. The first and most significant consideration in making

a generalized ROM is ensuring that the resultant model reflects the full range of operating conditions that a wind turbine is

designed to encounter. The statistical record (Figure 15 , top left) must necessarily be expanded from the limited data set used

to train the model here to one that includes the effects of terrain, thermal stratification and atmospheric stability due to diurnal

and seasonal cycles, and interaction of wakes within an array, etc. Offering the wakeROM a more complete range of training

data presents a challenge both in terms of data collection and decomposition.

Proper orthogonal decomposition was selected to identify and isolate the dynamics of interest from the statistical record.

Snapshot POD as used here is an intuitive means of identifying the optimal modal basis with respect to kinetic energy, which is

advantageous in terms of representing the important dynamics of a wind turbine wake. To date, the POD remains unproven in

its ability to effectively recover transient phenomena such as dynamic wake meandering, although some notable devel-

opment has been undertaken to these ends [13]. Additionally, further development will be required to make a POD-based
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dynamical system effective over the full parameter space of wind turbine operating conditions. Parameter-varying reduced-order

models were explored for wind turbine wakes in Annoni and Seiler [49], and shows promise for generalizing the wakeROM

constructed above. Many alternate means of decomposition have been applied to turbulent velocity data such as the Dynamical

Mode Decomposition [50], Balanced POD [51], and Empirical Mode Decomposition [52] to name a few.

Another means of modifying the proposed wakeROM without changing the overall workflow comes through testing addi-

tional dynamical system models. The dynamical system approach pursued here explores a data-driven method interrelating the

dynamic POD mode coefficients with a set of parameters of increasing polynomial order, but many other dynamical systems

are potentially suitable for the task of wake modeling. There exists a wide range of other data-driven (black-box or gray-box)

models that could offer means of stabilizing or otherwise extending the capabilities of the current ROM [25]. Among the most

favorable and well-tested reduced-order modeling approaches for turbulence is the traditional POD-Galerkin projection, which

reconciles the governing behavior law with the modal basis directly. The low-order dynamical system model employing

polynomial coefficients shares the form of the arguably more physical Galerkin-POD method. However, being a data-

driven approach, the current wakeROM benefits from being intuitive and efficient to calculate, and does not rely on the

strong closure assumptions often necessary to keep Galerkin models stable such as eddy viscosity and diffusion models

[20, 22, 23, 25]. Considering this additional cost along side the full range of operating conditions discussed above may require

computational resources sufficient to defeat the purposes of reduced-order modeling at all [26]. Neural networks continue to

gain attention in recent flow control and predictive modeling applications, and may offer an accurate and stable path toward

wake modeling, give that a sufficiency of data may be provided to train the network [53, 23].

The final two components of the above workflow that merit further investigation work together to offer the wakeROM infor-

mation regarding incoming flow events. It is certain that the wakeROM outlined here will produce estimates of the turbulence

field in a wind turbine wake that differ from observed events. Even if the model remains stable, the modeled wake turbulence

will eventually diverge from the actual or observed wake due to a combination of factors. The most prevalent sources of error

are that the ROM necessarily excludes dynamics from the system for the sake of computational efficiency and error accumulates

in any numerical solution of differential equations, regardless of tolerances. Offering exogenous inputs to the system provides a

means of tuning the wakeROM to reflect incoming flow events and opens a path toward defining feedback mechanisms, control

strategies, and optimization.

The current work relates a single input signal, the effective inflow velocity ueff, to the mode coefficients through a system of

open-loop transfer functions. Calculating or estimating new initial conditions for the dynamical system can be done in many

ways, ranging from transfer functions to auto-regressive models to Kalman filtering [54, 55] and state estimation techniques. In

a practical application, ueff may not be easily provided to the wakeROM for wind turbines, although recent work has proposed

forward-facing LIDAR systems to provide just such an input for simulations and field application [56, 43]. Alternatively, the
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effective inflow velocity could be estimated using power, pitch angle, and rotational speed along with some other models

as in Bozkurt et al. [57]. Currently, it is commonplace for modern wind turbines to be outfitted with a large range of sensors

or monitoring instrumentation that provide supervisory control and data acquisition (SCADA) information and could easily be

leveraged as inputs in the system [58] from Figure 15 .

Inputs
WTa
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Wake ROM,
WTa

ûa

Inputs
WTb

Pb

Wake ROM,
WTb

ûb

Inputs
WTc

Pc

d◦ ◦ ◦

θ, β,Ω θ, β,Ω

Power
output

FIGURE 16 Control network for wind plant modeling, control, and optimization connecting separate instances of a generalized
wakeROM.

Low-dimensional models like the one proposed here represent a possible path for computationally efficient wake modeling

reflective of incoming flow events, that should lead ultimately to real-time control strategies for wind turbinewakes and optimized

wind plant power production. The ability to tune the model to an incoming velocity signal means that the model could be

iteratively linked in a wind plant setting, shown in Figure 16 . In the modified flowchart, the entirety of the above modeling

procedure is contained in the gray box, excluding only the input signal and the modeled wake. Connecting instances of the

wakeROM together as suggested in Figure 16 also offers a direct means of providing feedback for optimization and control.

In the figure, the wind turbine operating parameters describing the yaw angle of the rotor relative to the inflow (�), the

blade pitch (�), and the loading in the nacelle (Ω) are proposed for feedback mechanisms. Other parameters, such as the

atmospheric conditions, are less desirable mechanisms as they are not easily controlled or modified. Among the inputs

offered to the wakeROM in the control network are estimates of the power produced by each wind turbine (denoted as WTa and

WTb). Real-time estimates of the power produced by each wind turbine are part of the SCADA information discussed above

and should provide a means of reaching a dynamic optimization of the wind plant.

In addition to control and optimization, a generalized reduced-order model for a wind turbine wake will also be extremely

important for the next generation of wind plant design tools. The complexity of wind turbine wake turbulence, wake interaction,

and the large range of operating conditions seen by a wind plant make a priori estimates of new wind farms difficult to rely on.

Combining the inherent complexity of the wake dynamics with the sensitivity of wind turbine micro-siting makes the iterative

process of wind plant design optimization very expensive with conventional means [59, 60, 61]. Because the computational

costs of high-fidelity models remains a significant hurdle, engineering and empirical models are still commonly used in wind
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plant design but fail to describe the dynamics that are now understood to contribute to poor plant performance and increased

operations andmaintenance costs. The ideal design tool then is one that is sufficiently complex to describe turbulent wind turbine

wakes and efficient enough to be used iteratively for design optimization.

6 CONCLUSIONS

Predictive models of wind turbine wakes are necessary for optimal design and operation of large wind turbine arrays, although

the complex turbulent wake flows remain a challenge. Simulations such as the one analyzed above provide increasingly real

physics with the necessary temporal and spatial resolution to determine loading conditions and dynamic evolution of the wake.

However, the computational cost of LES prohibits themethod from being applicable for continuous-timemodeling ormonitoring

of wake flows. In many wind farms, monitoring of wind turbine wakes and operating conditions is difficult, if not prohibitively

expensive. Modeling and prediction as in the scheme undertaken here present a possible path forward for diagnosing control

schemes and monitoring techniques easily and uniquely adapted to wind turbines in the field.

Using high resolution data from LES simulations, the dominant features of the turbulence flow field are characterized using

the proper orthogonal decomposition, optimal for describing the energy of the flow with the fewest modes. Low-dimensional

models are generated combining the time series of mode coefficients through a least-squares error minimization of their time

derivatives. The dynamic evolution of the mode coefficients is coupled to ordinary differential equations by way of polynomial

coefficients up to cubic order. Solving the coupled set of ODEs results in predictions of mode coefficients that can then be used

to reconstruct fluctuating velocity fields in the wind turbine wake. Predicted trajectories of the mode coefficients are sensitive

to initial conditions, diverging from validation trajectories and ultimately becoming unstable. Residual errors, as a result

of defining the coupling parameters of the ROM via least-squares minimization, propagate through to the ODEs and

accumulate in their solution over time.

The dynamical wake model is trained to reflect the influence of the flow field incident to the wind turbine rotor. Incoming flow

information is offered to the dynamical system through a series open-loop transfer functions that periodically supply refreshed

initial conditions to the system.Validation data of themode coefficients are compared to predicted values employing recalibration

at a variety of time intervals, showing that a nearly perfect fit is possible with sufficiently short prediction horizons. Transfer

functions are optimized for their ability to match the time series of the POD coefficients during the training period, constrained

only by a maximum of 15 poles. The recalibration method applied here is equally feasible for any dynamical system, provided

an input signal is readily available to inform the time evolution of the mode coefficients.

Modeling and control using reduced-order dynamical systems as proposed here will require further development of the transfer

functions used to supply refreshed initial conditions to the reduced-order model. The wakeROM will greatly benefit in future
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work from a thorough exploration into the range of possible inputs and processes that a turbine may experience in real operating

conditions, including strong gusts or high inflow turbulence intensity. The control parameters will also need to be redefined for

wind turbine wakes in large arrays, where wake dynamics, and thus the evolution of modes and coefficients will differ from

those presented above.
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