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Abstract

In this paper, we present an analytical plane strain solution for surface uplift above

pressurized reservoirs. The solution is based on a Fourier representation of the reservoir

pressure. The plane strain model is developed in two stages: First, an exact solution is

derived for the displacement field for the reservoir alone subjected to a periodic over-

pressure distribution of one wavelength. This one-layer model forms the basis for the

analytical plane strain solution for a two-layer model – a pressurized reservoir with an

overburden. We give an example where numerically computed uplift is quite accurately

estimated by a simple 1D estimate, except for in the near well area. The plane-strain

solution is well suited to study conditions for when the simple 1D approximation of

the uplift is accurate. A condition for the accuracy of the simple 1D approximation

is first derived for just the reservoir expanded by a periodic overpressure distribution

of one wavelength, which corresponds to one term in a Fourier series. The 1D esti-

mate is accurate for wavelengths larger than 2π times the reservoir thickness. Then,

a condition is derived for when the 1D estimate is accurate for the two-layer model.

We show that the wavelength of the overpressure distribution must be larger than 2π
times the maximum of the reservoir thickness and the overburden thickness for the 1D

approximation to be accurate. We demonstrate how uplift is computed from a Fourier

decomposition of the reservoir overpressure. The resulting uplift is analysed in terms

of Fourier coefficients, using the knowledge of how a single wavelength behaves. The

analytical results for the displacement field and the uplift are tested by comparison with

finite element simulations, and the match is excellent.
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1. Introduction

The global emissions of CO2 to the atmosphere are more than 35 Gt annually [17].

CO2 is a greenhouse gas and the enormous emissions are one explanation for the ob-

served global warming [10]. Subsurface storage of CO2 in deep saline aquifers and

depleted oil and gas reservoirs is considered a promising way to reduce the CO2 emis-

sions to the atmosphere [4, 5, 6]. The injection of large quantities of CO2 into an aquifer

or a reservoir leads to a build-up of pore fluid pressure. An increasing pore fluid will

in turn lead to an expansion of the storage unit. Such expansion has been measured

as surface uplift at the In Salah gas field using remote sensing techniques [27]. At

In Salah, roughly 1 Mt CO2 has been injected into a 20 m thick sandstone aquifer

over 7 years [33]. The uplift is observed at a rate of roughly 5 mm/y around three

injection wells [33]. A considerable amount of scientific interest has been devoted to

understand surface uplift at In Salah and what it might imply for reservoir integrity

[39, 35, 8, 40, 47, 33, 38, 29, 31, 46, 42, 30, 41]. In the same way as the onshore

field In Salah, seabed uplift is expected for offshore CO2 storage sites, although it is

currently not straightforward to observe.

The surface uplift at In Salah has been modelled using numerical tools, like the

mechanics simulator FLAC coupled to the two-phase flow simulator TOUGHREACT-

II. The coupling of simulators for geomechanics and the multiphase flow is not a simple

matter and the simulations are computer demanding [34, 28, 32, 1, 23].

However, it is possible to estimate the uplift from just the pressure response in

the reservoir using an analytical 1D linear poroelastic model [11, 33]. Rutqvist [33]

discuss the application of the 1D approximation at the In Salah site and he concludes

that it overestimates the uplift near the wells. The overestimation is explained by the

lateral variations of the fluid overpressure distribution in the reservoir, which are too

large for a 1D model to be accurate. Such 1D estimates are very useful, since they can

be applied directly to the pressure field from flow simulations, especially when the flow

simulations can be performed decoupled from the geomechanics [9]. This method is

extremely efficient when coupled with reduced order models for pressure increase from

high volume injection of CO2 into heterogeneous systems with large areal extent [13].

This simple method is therefore an attractive approach, however, its range of validity

has been poorly quantified.

Analytical and semi-analytical models have been developed for the geomechanical

response related to fluid injection into reservoirs and aquifers. Li et al. [24] present

a semi-analytical model of a deformable reservoir coupled with immiscible two-phase

flow (CO2 and brine). The overburden is treated as a thin plate and the model computes

axisymmetric flexural deformations due to a constant rate of CO2 injection. The model

is computationally light compared to the finite element simulations and it has been

successfully applied to the In Salah field.

The full set of poroelastic equations can be computationally demanding to solve

numerically. Therefore, it is customary to solve for the pore fluid pressure and the dis-

placement field decoupled. One way to solve the poroelastic equations decoupled is by
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means of the fixed-stress split, which assures that a sequential solution of the two equa-

tions is unconditionally stable [19, 20]. Another approach is developed by Andersen

et al. [3, 2] by using precomputed response functions.

A problem related to uplift by fluid injection is subsidence caused by fluid produc-

tion. An early example of a subsidence model, based on poroelasticity and cylinder

coordinates, was developed by Geertsma [14, 15]. Selvadurai [36], Kim and Selvadu-

rai [18], Selvadurai and Kim [37], Niu et al. [26] have developed analytical models for

different configurations of a reservoir and a caprock. Selvadurai and Kim [37] present

analytical poroelastic solutions for a storage aquifer with a caprock, when there is a

steady injection into a circular injection zone. The analytical solutions are given as in-

tegral representations and they are rather complicated expressions. The solutions were

used to investigate how the radius and the depth of the planar injection region influence

the surface displacement.

It should be mentioned that analytical solutions have limited applicability with re-

spect to complicated geometries and complicated distributions of material properties.

As with the analytical models cited in the paragraph above, we assume long sedimen-

tary strata of homogeneous rocks. The challenge of upscaling heterogeneous rock units

is outside the scope of this article.

In this paper, we develop a plane-strain solution of the displacement field for an

overpressured reservoir with an overburden. We do this in terms of stationary analytical

solutions of the poroelastic equations, when the reservoir overpressure is represented

by a Fourier series. The reservoir layer is of infinite lateral extent with a periodic

overpressure distribution. Overpressure is defined as the fluid pressure minus the initial

fluid pressure, where the initial pressure is assumed hydrostatic. The expression for the

displacement field gives the surface uplift. The solution is developed in two steps:

The first is a one-layer model of just an overpressured reservoir. The next step, which

builds on the first step, is a two-layer model of an overpressured reservoir with an

overburden. These solutions for the displacement field are first developed for pressure

as a single cosine-function, which is one term in a Fourier series. The one-layer and

two-layer models are well suited to study the accuracy of a 1D estimate of uplift from

a reservoir overpressure. We give answers in terms of wavelength. The poroelastic

mechanical model is linear. Therefore, the full solution of the displacement field and

the uplift is found as a superposition of solutions for the terms in the Fourier series

representing the reservoir pressure. The use of plain strain assumption and Cartesian

coordinates is different from the other approaches mentioned above, which are based

on cylindrical coordinates. Another difference is that we study how a stationary fluid

pressure controls the mechanical deformations, with respect to wavelengths.

This paper is organized as follows: The poroelastic assumptions are reviewed and

an example is given where numerical computed uplift is compared with the 1D poroe-

lastic uplift. The analytical model for the expansion of the reservoir is presented, before

the analytical model for a reservoir layer with an overburden. The analytical results for

uplift are first tested against numerical simulations for a single wavelength and then for

pressure distributions represented by Fourier series.
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2. Poroelasticity

The initial stress state is not modelled – it is taken as given. The difference from

the initial stress state is modelled assuming linear poroelasticity [7, 43]. Therefore, the

full stress state is written as

σij = σ
(0)
ij + σ

(1)
ij (1)

where σ
(0)
ij is the initial stress and where σ

(1)
ij is the poroelastic stress change caused

by fluid injection. The full stress state fulfills the equilibrium equations

σij,j = ̺gδiz (2)

where g is the constant of gravity, ̺ is the bulk rock density and δij is the Kronecker

delta

δij =

{

0, i 6= j
1, i = j

(3)

The Einstein summation convention is applied in equilibrium equation (2), which means

that there is summation over every pair of equal indices. The indices can have three

values, 1, 2 and 3, which represent the three different spatial directions, respectively.

An alternative to 1, 2 and 3 is x, y and z, respectively, with the exception that there are

no summation over the x, y and z when they are used as indices. The initial stress state

does also fulfill the equilibrium equations, which implies that the equilibrium equations

in terms of the poroelastic stress difference becomes

σ
(1)
ij,j = 0 (4)

where the right-hand-side is just zero. The right-hand-side of the equilibrium bal-

ance (4) could include a term representing buoyancy of supercritical CO2 being less

dense than brine. The following analysis is single phase and the eventual uplift from

buoyancy is not accounted for, as commonly done with analytical models [15, 36, 37].

The effective stress τij can be written as the sum of the initial effective stress τ
(0)
ij and

the effective stress caused by changes in the fluid pressure τ
(1)
ij , in a similar way to the

full stress state

τij = τ
(0)
ij + τ

(1)
ij (5)

The initial effective stress is the full stress added to the initial fluid pressure

τ
(0)
ij = σ

(0)
ij + αp(0)δij (6)

where p(0) is the initial fluid pressure and α is the Biot coefficient. The sign convention

is that tension is positive strain and positive stress, while the fluid pressure is positive.

The effective stress caused by fluid injection is written in the same way as

τ
(1)
ij = σ

(1)
ij + αp(1)δij (7)

where p(1) is the pressure that develops from fluid injection. It is the effective stress (7)

that leads to linear poroelastic deformations

σ
(1)
ij + αp(1)δij = Λǫkkδij + 2Gǫij (8)
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where ǫ = 1
2 (ui,j+uj,i) is the strain, ui is the deformation in spatial direction i, Λ is the

Lameé-parameter and G is the shear modulus. The equations for the displacement field

are obtained by inserting the stress σ
(1)
ij into equilibrium equations (4). We assume zero

strain in the y-direction, ǫyy = 0, which leads to the following 2-dimensional model

for the displacement field

(Λ + 2G)u,xx +(Λ +G)w,xz +Gu,zz = αp,x (9)

(Λ + 2G)w,zz +(Λ +G)u,xz +Gw,xx = αp,z (10)

where the notation is simplified using u = u1 (without an index), w = u3 and p = p(1).
Equations (9)-(10) show how the displacement field is coupled to the fluid pressure.

Equations (9) and (10) give how the fluid pressure produces deformation in the

rock. These deformations have a feedback on the fluid pressure through the change of

volume strain. The equation for the fluid pressure is

(

φ

Kf

+
α− φ

Ks

)

∂p

∂t
−∇

(

κ

µ
∇p

)

= −α
∂ǫ

∂t
(11)

where Ks and Kf are the bulk modulus of the solid and the fluid, respectively, φ is the

porosity, κ is the permeability, µ is the fluid viscosity and ǫ = ǫxx + ǫyy + ǫzz is the

bulk strain. The pressure is coupled to the displacement field through the source term

∂ǫ/∂t.

3. 1D vertical uplift

A simple and useful solution of the equations for the displacement field is the 1D

vertical expansion of a reservoir layer under a constant pressure p0. The pressure in-

crease p0 is restricted to the reservoir layer and there is no lateral displacement, u = 0.

Then, equation (10) simples to (Λ + 2G)w,zz = αp,z , which after two times of inte-

gration gives

w =
αp0(z − z0)

Λ + 2G
, (12)

when there is zero vertical displacement at the base of the layer at z = z0. The de-

nominator Λ + 2G is termed uniaxial modulus or the p-wave modulus. The maximum

displacement at maximum the top of the layer becomes

w =
αp0h

Λ + 2G
(13)

where h is the layer thickness. This 1D model for reservoir expansion turns out to be

a simple and accurate way to estimate surface uplift in certain situations of large scale

fluid storage. Furthermore, when the approximation (13) is valid the time-derivative of

the bulk strain becomes

∂ǫ

∂t
≈ ∂

∂t

∂w

∂z
=

α

(Λ + 2G)

∂p

∂t
(14)
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Figure 1: (a) The figure shows the thickness of the Utsira formation, where the x’es mark the places where

the uplift is logged. The x-mark to the left is the position of the injection well. (b) The overpressure in the

Utsira formation after 25 years of injection. (c) The uplift of the seabed after 25 years of injection.

When this is the case, it is possible to use relation (14) to decouple the pressure equation

from the displacement field, since the pressure equation can be written [9, 25]

(

φ

Kf

+
α− φ

Ks

+
α2

(Λ + 2G)

)

∂p

∂t
−∇

(

k

µ
∇p

)

= 0 (15)

The advantages of this decoupling, when it is applied to model large scale poroelastic

deformations from CO2 injection, have been demonstrated by Bjørnarå et al. [9], Gasda

et al. [13].

4. Numerically computed uplift compared with 1D uplift

This section gives an example of numerically computed surface uplift, which is

compared with the estimate (13). The example is a case study of fluid injection into the

Utsira formation in the Sleipner field in the North Sea. The Utsira formation is a more

than 400 km long sandy aquifer of Pliocene age with a thickness in the range from 50 m

to 350 m, see figure 1a. It is covered by a 500 m thick layer of fine grained Quaternary

clay and shale, and by 100 m to 200 m seawater [44, 16]. The geomechanical model

of the formation includes the caprock (the Nordland shale) the Utsira sand and the

underburden, which is shale of Tertiary age. Geomechanical and petrophysical data

for these units are limited and they are therefore treated as homogeneous rocks. The

details of the model are found in Wangen et al. [44].

Figure 1a shows the isopach of the Utsira formation, which together with the fluid

pressure (figure 1b) can be used to estimate the aquifer expansion and the surface uplift.

Figure 1c shows the numerically computed uplift after 25 years of fluid injection. The

lateral extent of the surface uplift is large compared to the thickness of the aquifer and
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Figure 2: The blue curve is the numerically computed uplift and the red curve is the uplift estimated with

equation (13). The reservoir thickness and the distance from the injection well is denoted on the plots as

“dist” and “h”, respectively.
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Figure 3: The analytical model of the reservoir uplift is based on a reservoir of thickness h.

the overburden. The surface uplift was logged as a function of time at the 6 position

marked with an “x” on figure 1a. The leftmost mark shows the lateral position of the

injection well.

The numerically computed uplift is compared with the estimated uplift using rela-

tionship (13) in figure 2. The uplift is compared over a time span of 25 years, where p0
is equation (13) is the overpressure at the given time and place. Therefore, the pressure

p0 is a function of time in the uplift estimate (13). The estimated uplift is close to the

uplift computed from the 3D poroelastic model. The difference is less than 30% above

the injection element where the lateral change in fluid pressure is largest. There is a

good match away from the injection element, which suggests that the estimate (13)

might be useful as a simple way to estimate geomechanical deformations for certain

injection scenarios. It is also seen from figure 2 how the uplift starts at increasingly

later times with an increasing distance to the injection point. We will see that the rea-

son for the better match away from the injection element is that the reservoir pressure

is decreasing slowly with distance, which corresponds to a pressure distribution with

long wavelengths in a Fourier decomposition.

5. Poroelastic expansion of a reservoir layer

The aim of this work is to find conditions that must be fulfilled for 1D vertical uplift

to be a “good” approximation. The first step is to study the expansion and uplift of the

reservoir layer alone, when the layer has a known overpressure distribution. Taking

the pressure as known allows us to study how a given pressure distribution creates

mechanical deformations. Since the pressure distribution is known, we are not solving

the fully coupled poroelastic model. Figure 3 shows the reservoir layer with thickness

h. The layer has lateral extent from −L to L. We assume that the pressure distribution

p(x) inside the layer is symmetric around the z-axis (x = 0) and that it goes to zero

before the domain size x = L. The pressure distribution is taken to be an even and

periodic function and it can, therefore, be represented as follows by a Fourier series of

cosine-functions,

p(x) =
a0
2

+
∞
∑

n=1

an cos(nπx/L) (16)
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where the Fourier coefficients an are given by

an =
2

L

∫ L

0

p(x) cos(nπx/L) dx, n = 0, 1, 2, . . . (17)

see for instance Kreyszig [21]. The Fourier series is periodic with period 2L, because

we have that p(x + 2L) = p(x). The inaccuracy introduced by the assumption of

a periodic pressure distribution approaches zero with increasing L [45]. There is no

upper limit for the domain size in the analysis of uplift that we carry out below, although

there is a lower limit, as we will see. It should also be mentioned that a Fourier analysis

in the limit L → ∞ gives the Fourier transform, which is not restricted to periodic

functions [45]. Since the mechanical model is linear with respect to the fluid pressure,

we can make a superposition of the contributions from the terms in the Fourier series.

A particular aim with the model is to see how the uplift depends on the wavelength.

We will therefore look at how a single term in the Fourier series affects the uplift.

Therefore, we assume that the overpressure in the layer is a cosine-function

p(x) = p0 cos(kx) and k =
2π

λ
(18)

where p0 is the maximum pressure, k is the wavenumber and λ is the wavelength. Since

the cosine-function has a given wavelength and it is reasonable to expect that there will

be a change in behaviour of the uplift as wavelength goes from “short” to “long”. The

model is expected to expand vertically for “long” wavelengths. The negative and the

positive parts of the overpressure are expected to cancel for “short” wavelengths and

the net effect is zero expansion.

The cosine representation of the overpressure can be inserted into the equations (9)

and (10) for the displacement field, which gives that

(2 + γ)u,xx +u,zz +(1 + γ)w,xz = −αkp0
G

sin(kx) (19)

(1 + γ)u,xz +w,xx +(2 + γ)w,zz = 0 (20)

where γ = Λ/G is a dimensionless elastic parameter. We notice that the Biot co-

efficient appears at only one place, as a factor together with the amplitude p0 of the

pressure. The boundary conditions for the pressurized aquifer is zero vertical displace-

ment at its base

w(z=0) = 0 (21)

and zero normal stress at the top, z = h,

σzz(z=h) = Λ
∂u

∂x
+ (Λ + 2G)

∂w

∂z
− αp0 cos(kx) = 0 (22)

The full stress is the effective stress minus the fluid pressure times the Biot coeffi-

cient, as given by the definition of effective stress (7). The solution (u, v) of the equa-

tions (19) and (20) for the displacement field becomes

u =
αp0

(2 + γ)Gk

(

1− cosh(kz)

cosh(kh)

)

sin(kx) (23)

w =
αp0

(2 + γ)Gk

sinh(kz) cos(kx)

cosh(kh)
(24)
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as shown in Appendix A. The displacement field is also periodic with the same wave-

length λ as the reservoir pressure. The displacement in the x-direction is zero along the

top surface and it is a sinus-function along the base surface with amplitude αp0/((2 +
γ)Gk). The vertical displacement is a cosine-function with an amplitude that is pro-

portional to the internal pressure (18). The amplitude has its maximum at the surface

and it is zero at the base as imposed by the boundary condition. In order to see how the

uplift depends on the wavelength it is instructive to write the displacement field in the

following dimensionless form

û =
1

kh

(

1− cosh(khẑ)

cosh(kh)

)

sin(2πx̂) (25)

ŵ =
sinh(khẑ)

kh cosh(kh)
cos(2πx̂) (26)

where x̂ = x/λ ẑ = z/h, û = u/u0 and ŵ = w/u0 where where u0 = αp0h/(Λ +
2G). The characteristic displacement u0 is precisely the 1D vertical uplift. Therefore,

how the vertical uplift depends on the wavelength is represented by the dimensionless

amplitude at the surface (z = h)

A(kh) =
tanh(kh)

kh
. (27)

The amplitude (27) is only a function of the dimensionless argument kh = 2πh/λ. It

is plotted in figure 4, which shows that there is a transition from A ≈ 1 for kh ≪ 1
to A ≈ 0 for kh ≫ 1. Therefore, the 1D vertical uplift (13) is a good approximation

for wavelengths sufficiently long to fulfill kh ≪ 1, or alternatively, λ ≫ 2πh. The

pressure variations cancel out for short wavelengths, λ ≪ 2πh. The critical wavelength

λc = 2πh defines the transition between the two regimes. We notice that condition for

the use of approximation (13) does not depend on the poroelastic parameters G, ν and

α – the condition is only dependent on the thickness of the aquifer.

6. Poroelastic uplift above a reservoir layer with an overburden

Aquifers being candidates for CO2 storage are normally found at a depth of 1000 m

or deeper, because that is the depth necessary for CO2 to remain supercritical. There-

fore, the overburden cannot be ignored when considering the uplift above aquifers and

reservoirs for CO2 storage.

A model with a reservoir and an overburden is shown in figure 5. The reservoir has

the thickness h1 and the overburden has the thickness h2 and both are infinite in the

x-direction, where the reservoir has the periodic overpressure distribution (18). The

solutions for the displacement field (uA, wA) for the reservoir and (uB , wB) for the

overburden are derived in Appendix B. These displacement fields are continuous on

the interface between the reservoir and the overburden. The vertical displacement wA

is zero at the base of the reservoir and there is zero normal stress at the surface of the

overburden.
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Figure 5: The analytical model of the reservoir uplift is based on a rectangular reservoir under a rectangular

caprock. The thickness of the reservoir is h1 and the thickness of the caprock is h2.

The uplift is given by the displacement at the surface of the overburden, wB(z=z2).
From Appendix B, we have that

wB(z=z2) =
αp0h1

(Λ + 2G)
· f(kh1, kh2) · cos(kx) (28)

where the first factor is identified as the 1D vertical uplift. The second factor, the

function f , is the dimensionless amplitude that depends on the layer thicknesses. It is

given as

f(kh1, kh2) =
1

kh1

(

cosh(kh2) tanh(kh1 + kh2)− sinh(kh2)
)

(29)

as derived in Appendix B. The function (29) gives the same dimensionless amplitude

as (27), for just the reservoir layer, when h2 = 0. How the function (29) depends

on both kh1 and kh2 is shown in the plot 6. We see that the function f is between 0

and 1, and that the regime where it is close to one is given by kh1 ≪ 1 and kh2 ≪ 1.

This is the regime where the 1D vertical solution (13) is a good approximation. The

other regimes, where either kh1 ≫ 1 or kh2 ≫ 1, have too short wavelength and the

oscillations in the periodic fluid pressure (18) cancel out. There is a transition zone

between the regimes of f ≈ 1 and f ≈ 0, which takes place in either of the two cases:

(1) hk1 ≈ 1 and hk2 ≪ 1, (2) hk1 ≪ 1 and hk2 ≈ 1. In terms of the wavelength

of the periodic pressure the condition for the validity of the 1D approximation can be

written as

λ ≫ λc and λc = 2πmax(h1, h2), (30)

where the lower limit on wavelength is λc.

In order to represent the long wavelengths that allows for the 1D solution of uplift,

we need a minimum domain size L. The wavelengths in the Fourier series (16) are

λn = 2L/n for n = 1, 2, . . .. According to condition (30), we must therefore have

λn > λc for n = 1, 2, . . . , n0, where n0 is a suitable number of long wavelengths.

A slightly stronger condition is λn > 2πH , where H = h1 + h2. An alternative is

to write this condition as L > πn0H or simply L ≫ 2πH . We also notice that the
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Figure 7: A numerical check of the analytical solution (28) in the three different regimes of wavelength: (a)

λ/λc = 0.1, (b) λ/λc = 1, (c) λ/λc = 10, where λc = 2πh2 with h2 = 1000 m. The reservoir layer

has the thickness h1 = 50 m and the pressure amplitude is p0 = 1 MPa.

amplitude a0 in the series (16), which corresponds to an infinite long wavelength, goes

to zero with an increasing domain size and an increasing number of long wavelengths.

7. Numerical verification

The analytical result (28) for uplift was tested by comparing them with numerical

simulations. The uplift given by equation (28) is for just one term in a Fourier series for

overpressure and it is not an injection pressure. The numerical code solves the displace-

ment equations with a standard finite element method [22]. Bilinear rectangular ele-

ments for the mechanics problem is used in combination with the pressure represented

at the element centers. The code assumes plain strain in the xz-plane and the periodic

overpressure distribution (18). The thickness of the reservoir layer is h1 = 50 m and

the thickness of the overburden is h2 = 1000. Both the reservoir and the overburden

have the same Lameé-parameter Λ = 2.778 GPa, shear modulus G = 4.167 GPa and

Biot coefficient α = 1. (The elastic parameters are equivalent to Young’s modulus

E = 10 GPa and Poisson ratio ν = 0.2.) The pressure amplitude is a0 = 1 MPa and it

is seen that displacement field is proportional to p0. From equation (13) and the num-

bers above we get that the 1D uplift, resulting from the expansion of the reservoir, is

w = 4.5 mm. The finite element grid has 100×15 = 1500 nodes. The lower boundary

on the wavelength for the 1D approximation (13) is λc = 2πh2 = 6283.2 m. Figure 7

shows three cases with wavelengths λ = 0.1λc, λ = λc and λ = 10λc in figures (a),

(b) and (c), respectively. All cases show uplift for 5 periods of the overpressure distri-

bution. The match between the numerical finite element solutions (red crosses) and the

corresponding analytical solutions (blue curve) is good.
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Figure 8: The analytical vertical displacement field, wA (for z < h1) and wB (for z > h1), is shown for

three different regimes of wavelength: (a) λ/λc = 0.1, (b) λ/λc = 1, (c) λ/λc = 10, where λc = 2πh2

with h2 = 1000 m. The reservoir layer has the thickness h1 = 50 m and the pressure amplitude is

p0 = 1 MPa.

Figure 7 shows that the vertical deformation are more than half-way towards its

maximum value when λ = λc. Therefore, the approximation may be useful even

for wavelengths down to λc. The numerical example presented in the section 4 has a

finite element grid with xy-resolution dx = 3265 m and dy = 4900 m. The thickness

of the overburden is a little less than 1000 m, and the limiting wavelength becomes

λc ≈ 6000 m. The limit λc is short compared with the cell size dx and dy, since

only few cells are enough to cover the size λc. This is consistent with the good match

away from the injection point, shown in figure 1, between the numerically computed

uplift and the estimated uplift. It should be mentioned that the analytical results give a

condition assuming plain-strain, while the case in figure 1 is not plain-strain.

Figure 8 shows the full vertical displacement field, which is wA for z ≤ h1 and wB

for z > h1. The surface uplift in figure 7 is the displacement at the surface (z = 0)

model in figure 8. Figure 8 shows that the vertical displacement is zero at the base

z = −1050 m and it increases towards the top of the reservoir at z = −1000 m, where

it is at its maximum. For short wavelengths, λ ≪ λc, the vertical displacement is

decreasing in the overburden towards the surface. It is almost zero in the upper part

of the overburden, and there is no surface uplift. For the critical wavelength, λ = λc,

the vertical displacements are only partly suppressed by the overburden, and there is

noticeable surface uplift as seen from the figure 7b. In the case of long wavelength,

λ = 10λc, the maximum vertical displacement at the top of the reservoir is preserved

through the entire caprock, and the surface uplift is almost the same as the expansion

of the reservoir.

Even if it is not rigorously proved, experience with the plain-strain results indicate

that the condition (30) is useful for assessing the uplift in a general setting in 3D with

a variable layer thickness. The 1D estimate (13) is accurate when the wavelength in
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Figure 9: The thick line shows the three pressure distributions of the cases 1, 2 and 3, which corresponds

to 0.1, 1 and 10 years of injection, respectively. (a) The circular markers show the Fourier representation

of the pressure distributions. (b) The thin line show the pressure pu(x) of equation (32). See the text for

further explanation.

both the x- and y-directions of the overpressure distribution is much larger than λc, and

when λc is based on maximum layer thicknesses.

8. Computation of uplift from Fourier representations of reservoir overpressure

The previous section looks at the uplift from the pressure represented by just a

single wavelength, which could be one term in a Fourier series. Now, we will give

examples of uplift from more realistic pressure distributions, which are represented by

Fourier series. We consider the pressure distributions obtained by injecting fluid at a

constant overpressure p0 = 5 MPa at x = 0. The overpressure is then given by the

following solution of the pressure equation (11)

p(x, t) = p0 erfc
( x

2
√
Dt

)

(31)

where D = κKf/(µφ) is the hydraulic diffusivity. The hydraulic diffusivity is D =
0.02 m2s−1, which is the result of the following set of parameters: κ = 1 · 10−13 m2,

φ = 0.1, µ = 0.001 Pa s and Kf = 2 · 107 Pa. The rock parameters are Young’s

modulus E = 10 GPa, Poisson ratio ν = 0.2 and Biot coefficient α = 1. Since

E ≫ Kf , fluid compressibility dominates the rock compressibility and the right hand

side of equation (11) can be ignored.

Three pressure distributions are produced with solution (31), selecting the times

t = 0.1 year, 1 year and 10 years, see figure 9. They are termed case 1, 2 and 3,
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Figure 11: The uplift created by the three pressure distributions in figure 9.
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respectively. The pressure distributions are represented by the Fourier series (16), and

the Fourier representation is plotted in figure 9a with circular markers. The Fourier

series are seen to provide an accurate representation of the given fluid pressure. The 11

first Fourier coefficients an of the series are plotted in figure 10, and they are computed

by numerical integration of integral (17). It should be noted that the procedure to

represent a pressure distribution by the Fourier series (16) is general and not restricted

to solution (31). The solution (31) just serves as the basis for an example.

The uplift from one term in the Fourier series is given by equation (28). Since

equations (9) and (10) for the displacement field are linear we can superpose the con-

tributions from each term in the Fourier series for pressure. Therefore, the uplift from

the series (16) becomes

w(x) =
αh1pu(x)

(Λ + 2G)
where pu(x) =

a0
2

+

∞
∑

n=1

f(knh1, knh2) an cos(knx). (32)

The uplift produced by the three discrete pressure distributions in figure 9 are shown

in figure 11. Figure 11 shows three curves for each case, where the first is red and

it shows the uplift computed by a finite element simulation. The second is the uplift

computed by the series (32), which is shown by the blue crosses. We see that there is

an excellent match between the analytical solution (32) and the finite element solution.

The third curve is green and shows the simple 1D based uplift estimate. The 1D uplift

estimate gets better as pressure distribution spreads out.

Figure 10 shows that Fourier coefficients for case 3 (at 10 years) is dominated

by the 5 first wavelengths, and that the following Fourier coefficients for increasingly

shorter wavelengths are almost zero. Case 1 (at 0.1 year) is characterized by small

Fourier coefficients relative to the injection pressure and they are of nearly the same

size for the first 11 terms in the series. Figure 10 shows the f -function values for

the Fourier coefficient and we see that f ≈ 0 for n > 10. Figure 9b shows the

pressure pu of equation (32). The uplift is directly proportional to this pressure, where

the Fourier coefficients are increasingly damped by the f -function with increasing n.

The analytical uplift by expression (32) shows that if the f -function had been one

for all wavelengths, then the 1D approximation would have been an exact relation.

Wide pressure distributions, which is dominated by the longest wave lengths, have

the associated f -function values close to 1. Therefore, wide pressure distributions of

just a few dominating long wavelengths become only weakly modified by the filter

effect of the f -function. The simple 1D estimate works for such cases. We can use

condition (30) to decide how wide a distribution must be. The critical wavelength is

λc = 6283 m for these three cases with h1 = 1000 m and figure 9 shows that only case

3 has a pressure distribution wider than λc.

9. Conclusion

Large scale CO2 injection leads to build-up of reservoir fluid pressure, which again

leads to poroelastic expansion of the reservoir. The expansion can be observed as

surface uplift. We present a plane-strain solution for the displacement field produced

by a reservoir overpressure, when the overpressure is represented as a Fourier series.

(Geomech. for Energy and the Envir.) 18 (doi.org/10.1016/j.gete.2018.03.002)



The solution is derived in two steps, when considering a single term in the Fourier

series of the overpressure. A first step gives the displacement field and the uplift for the

reservoir layer alone. This solution is the basis for the next step, a two-layer model of a

pressurized reservoir with an overburden. The vertical displacement at the surface gives

the uplift. We show a case study for the Utsira formation in the North Sea, where the

uplift can be approximated with a 1D solution. The analytical model for uplift is well

suited to study when the 1D estimate is applicable. Answers are given in terms of the

wavelengths for the one-layer and two-layer models. For the one-layer model, the 1D

estimate is accurate for wavelengths larger than 2π times the thickness of the reservoir

layer. For the two-layer model, the 1D estimate is accurate for wavelengths larger

than a critical wavelength, which is 2π times the maximum of the reservoir thickness

and the overburden thickness. We show three examples of surface uplift computed

from Fourier series representing three stages in an expanding overpressure plume. The

examples show how the Fourier solution for the uplift approaches the 1D estimate as

the plume gets wider. An analysis of the terms in Fourier series tells that only terms

with a wavelength longer than the critical wavelength contribute significantly to the

surface uplift. The analytical expressions for the reservoir expansion and uplift are

tested against finite element simulations and the match is excellent.

10. Appendix A: Solutions for the displacement field for a reservoir layer

The system of linear inhomogeneous differential equations (19)-(20) becomes ho-

mogeneous when u is replaced by a displacement v defined as

u =
αp0

(2 + γ)Gk
sin(kx) + v. (33)

The equations for the displacement field (v, w) are then

(2 + γ)v,xx +v,zz +(1 + γ)w,xz = 0 (34)

(1 + γ)v,xz +w,xx +(2 + γ)w,zz = 0 (35)

A periodic solution of the of equations (34) and (35) is written

v =
(

v1e
cz + v2e

−cz
)

sin(kx) (36)

w =
(

w1e
cz + w2e

−cz
)

cos(kx) (37)

Notice that the solutions (36) and (37) for v and w, respectively, do not contain the

elastic parameter γ. The reason for that is that both v and w are also solutions of the

biharmonic, ∇4v = 0 and ∇4w = 0, which is a parameterless equation, see Fung [12].

Inserting the solutions (36) and (37) into equations (34) and (35) lead to c = k,

w1 = −v1 and w2 = v2. The boundary condition w = 0 for z = 0 gives that v1 = v2,

which is conveniently represented as w0/2. The solution for v and w is then

v = w0 cosh(kz) sin(kx) (38)

w = −w0 sinh(kz) cos(kx) (39)
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The remaining parameter w0 is obtained by the boundary condition on the surface (22),

where the normal stress is zero, which gives that

w0 = − αp0
(2 + γ)Gk cosh(kh)

(40)

The parameter w0 gives the solution (23) and (24).

11. Appendix B: Solutions for the displacement field in the overburden above a

reservoir

Appendix A gives that the solution for the displacement field for the reservoir is

uA = c0 sin(kx) + w0 cosh(kz) sin(kx) (41)

wA = −w0 sinh(kz) cos(kx) (42)

when there is zero displacement at the base of the reservoir and where

c0 =
αp0

(2 + γ)Gk
. (43)

We also have from Appendix A that the solution for displacement field in a layer with

zero fluid pressure, such as the overburden, is

uB =
(

u3e
cz + u4e

−cz
)

sin(kx) (44)

wB =
(

− u3e
cz + u4e

−cz
)

cos(kx) (45)

There are now three parameters which have to be obtained from boundary conditions.

One boundary condition is the zero normal stress on the surface of the overburden

σzz(z=z2) = Λ
∂u

∂x
+ (Λ + 2G)

∂w

∂z
= 0 (46)

and the two other boundary conditions express that the displacement field is continuous

on the interface between the reservoir and the overburden

uA(z=z1) = uB(z=z1) (47)

wA(z=z1) = wB(z=z1) (48)

These two boundary conditions give that

u3 =
1

2

(

c0e
−kz1 + w0

)

(49)

u4 =
1

2

(

c0e
kz1 + w0

)

(50)

Finally, zero stress on the surface of the overburden gives

w0 = −c0
cosh(kz2 − kz1)

cosh(kz2)
. (51)
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When w0 from (51) is inserted into expressions (49) and (50) for parameters u3 and u4,

respectively, and in equations (41) and (42), it gives the displacement field in both the

reservoir and the overburden. The amplitude of the vertical displacement at the surface

(z = z2) becomes

AB(z = z2) = −u3e
cz2 + u4e

−cz2 (52)

= −1

2

(

c0e
−kz1 + w0

)

ecz2 +
1

2

(

c0e
kz1 + w0

)

e−cz2 (53)

= −c0 sinh(kz2 − kz1)− w0 sinh(kh2) (54)

Replacing w0 and c0 by equations (51) and (43), respectively, gives the expression of

the amplitude AB in equation(28).
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