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Transport of reactive fluids in porous media may form reaction fronts – narrow zones where the reaction takes place.

We derive approximate solutions for the change in concentration and porosity across the front zone. These solutions

are used to derive a condition for reaction fronts to be narrow. Reaction fronts tend to be unstable and they often show

a fingered growth into the porous medium. A criterion for the stability of sharp reaction fronts in a 3D homogeneous

porous medium is derived using linear stability analysis. The criterion gives that a perturbation of a flat reaction front

of any wave-length becomes unstable if the permeability behind the front increases. The front instability grows faster for

short wave lengths than for long wave lengths. Similarly, the perturbations of the front will die out if the permeability

behind the front decreases, and short wave length perturbations will die out faster than long wave length perturbations.

Front stability and the stability criterion are demonstrated with numerical examples where the fronts are narrow, but

not sharp.
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1. INTRODUCTION

The injection of a reactive fluid in a porous medium may

lead to reaction fronts – zones where the medium goes

from unreacted to fully reacted. Reaction fronts may

propagate in a finger like way into the porous medium,

in which case the front propagation is an unstable process.

Reaction fronts play an important part in a number of geo-

chemical processes such as contamination of groundwa-

ter (Cherry et al., 1984), diagenesis (Dewers and Ortoleva,

1994), melt migration (Daines and Kohlstedt, 1994) and

cave formation (Szymczak and Ladd, 2011). Laboratory

examples of sharp reaction fronts are dissolution of calcite

minerals in sandstone cores using acid, where a quartzose

matrix is left behind as the carbonates are dissolved (Rege

and Fogler, 1989).

It is often of interest to know when the reaction fronts

are narrow. Lichtner (1988); Steefel and Lasaga (1990);

Szymczak and Ladd (2009); Zhao et al. (2008) have de-

rived solutions of the concentration equation that give in-

sight into the spatial extent of the reaction. Here we de-

rive a condition for when a reaction zone becomes narrow.

Furthermore, we extend the concentration solution across

the front to an approximate solution for the porosity.

Dissolution reactions lead to an increased porosity and

thereby an increased permeability. The coupling of reac-

tion and flow, by means of the porosity and permeabil-

ity, may lead to reaction fronts that propagate into the

porous medium as an unstable process. This instability

was first studied by Chadam et al. (1987, 1988), Ortol-

eva et al. (1987), Sherwood (1987) and Hinch and Bhatt

(1990). These authors analyze the stability of a reaction

front in 2D using a linear stability analysis and different

assumptions regarding the front. Chadam et al. (1987,

1988) and Ortoleva et al. (1987) derived a stability con-

dition assuming a sharp front in porosity and permeabil-

ity, but not in the concentration. Sherwood (1987) and

Hinch and Bhatt (1990) have a different approach where
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they assume a constant porosity, but have the permeabil-

ity dependent on the amount of dissoluble minerals. They

ignore diffusion and obtain analytic results for small and

large wave-numbers and for small variations in the per-

meability.

These earlier stability analyzes are all in 2D. Here we

derive an analytic stability criterion for sharp reaction

fronts in a 3D homogeneous porous medium, assuming

that the front is sharp in porosity, permeability and con-

centration. The sharp front assumption gives a stabil-

ity condition that applies in 3D for any wave-length of

the front perturbation and for any permeability contrast

across the front. The stability analysis is based on the

same technique as the gravitational instability of an in-

terface between two immiscible fluids in a vertical Hele-

Shaw cell (Saffman and Taylor, 1958), and the chosen

approach follows the linear stability analysis presented

by Marle (1981).

The stability criterion is demonstrated with a nu-

merical model based on a one-component reaction-

convection-diffusion equation coupled to Darcy flow and

dissolution. The dissolution changes the porosity and

therefore the permeability. These experiments indicate

that the stability criterion may by useful in the interpre-

tation of a wide variety of reaction fronts in geology and

engineering.

This paper is organized as follows: The continuum

equations for reaction-transport are presented. The as-

sumptions about specific surface and permeability as a

function of porosity are discussed. The condition for a

narrow front is given, before the stability criterion of re-

action fronts in porous media is presented.

2. REACTION AND TRANSPORT MODELLING

The numerical reaction fronts are modelled with 3 cou-

pled equations in an isothermal porous medium (Chadam

et al., 1988; Ortoleva et al., 1987; Xin et al., 1993). The

domain is a rectangular box where the inlet is at one side

and the outlet is at the opposite side. Conservation of fluid

mass combined with Darcy’s law give the pressure equa-

tion (Chadam et al., 1988; Ortoleva et al., 1987; Xin et al.,

1993)

∇ ·
(k

µ
∇pe

)

=
∂φ

∂t
(1)

The Darcy flux uD = −(k/µ)∇pe is proportional to the

gradient of the overpressure pe, where the overpressure

is the fluid pressure minus the hydrostatic fluid pressure.

The permeability field k(x,φ) is a scalar function of both

position and porosity, where the dependence on poros-

ity becomes important when dissolution takes place. The

viscosity is denoted by µ. The fluid density and the rock

density are taken to be constant. Boundary conditions for

the pressure equation is a constant flow rate at the inlet (at

the left) and zero pressure at the outlet (to the right).

A solution of the pressure equation gives the Darcy

flux, which together with diffusion, drive the transport of

the solute. The flux of dissolved matter due to fluid flow

and diffusion in the pore fluid is

F = cuD − φD∇c, (2)

where the concentration of solute is denoted c (mole m−3)

and the diffusivity is D (m2s−1). A mass balance in terms

of the number of moles of solute in a fixed volume gives

the equation

∂(φc)

∂t
+∇·

(

cuD−φD∇c
)

= kd S(φ)
(

1− c

ceq

)

, (3)

where the right-hand-side is the source term that repre-

sents dissolution by first order kinetics (Chadam et al.,

1988; Lichtner, 1996; Ortoleva et al., 1987; Xin et al.,

1993). The coefficient kd is the dissolution rate

(mole s−1m−2), ceq is the equilibrium concentration of

dissolved species in the pore fluid and S is the reactive

specific surface area (m−1). The specific surface area is

dependent on the dissolution process through the porosity.

The rate of change of porosity is written as

∂φ

∂t
= −Vsceq Kd Ŝ

( φ

φ1

)

C when C < 0, (4)

where Vs is the molar volume of the solid and where we

have introduced the degree of supersaturation

C =
c

ceq
− 1, (5)

Brine with zero solute has then C = −1 and brine in

equilibrium with the solid has C = 0. The specific sur-

face area is written as

S(φ) = S0 · Ŝ
( φ

φ1

)

, (6)

where S0 is the initial specific surface area at the initial

porosity φ1. The function Ŝ takes care of how the specific
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(a) (b)

FIG. 1: Black is solid and white is void space. (a) Pore

space between grains. (b) Pore space as holes in well ce-

mented rock.

surface area develops with changing porosity, and it gives

the value 1 for φ = φ1. The initial specific surface area

is used to form the dissolution coefficient

Kd =
kd S0

ceq
, (7)

with units s−1. The reaction and transport equation (3)

can also be written as

φ
∂C

∂t
+ uD · ∇C −∇ ·

(

φD∇C
)

= −Kd Ŝ
( φ

φ1

)

C,

(8)

using the pressure equation (1).

The three equations (1), (3) and (4) are the basis for

the numerical reaction-transport modelling. These three

equations are solved sequentially at each time step. The

pressure equation is solved first with an implicit finite dif-

ference scheme. The pressure gives the Darcy flux, which

is inserted into the reaction-transport equation. This equa-

tion is solved by an implicit finite difference scheme,

where also the source term is handled implicitly. The

concentration from the reaction-transport equation is then

used to update the porosity, which is done with a fourth-

order Runge-Kutta scheme.

The boundary conditions for the concentration equa-

tion are zero concentration (C = −1) at the left side (the

fluid entrance) and the equilibrium concentration (C = 0)

at the right side (the fluid exit). The other sides are closed

for fluid flow. The pore fluid is initially in equilibrium

with the solid (C = 0).

3. SPECIFIC SURFACE AND POROSITY EVOLU-

TION

The specific reactive surface as a function of the porosity

is a difficult property to predict. Ortoleva et al. (1987)

derives a function of the form

S(φ) = S0 ·
( φ2 − φ

φ2 − φ1

)2/3

, (9)

for the specific surface area of a packing of grains, where

φ2 is the finial porosity that remains when all dissolvable

parts have gone into solution. A more elaborate version

of this model is the fully penetrable sphere model (El-

sner et al., 2009; Torquato, 1991; Weissberg, 1963). With

the fully penetrable sphere model it is possible to con-

sider an inverse porous medium where solid and void are

interchanged. Here, we approximate the specific surface

function as follows for a cemented rock with an inverse

model

S(φ) = S0 ·
( φ

φ1

)m

(10)

by using an exponent m = 1. A difference between the

two alternatives (9) and (10) is that the specific surface

area for grains decreases with increasing porosity, while

the function (10) for cemented rocks gives an increasing

specific surface area with increasing porosity. This effect

is illustrated with figure 1, where the surface area in fig-

ure 1a decreases with decreasing grains, while it increases

in figure 1b with increasing pores. Therefore, the inverse

model could be a better choice for a well cemented rock

than the grain model. The relationship (10) is a simple

mean to approximate the specific surface area of a num-

ber of different cemented rocks.

Changes in the porosity lead to changes in the perme-

ability. The permeability is assumed to follow a Kozeny-

Carman-like function of the porosity

k(φ) = k0

(

φ

φ1

)n

, (11)

where the exponent is n = 3.

4. THE TIME SCALES OF THE MODEL

The behaviour of the concentration equation can be de-

scribed in terms of two dimensionless numbers – the

Péclet- and the Damköhler-numbers. These numbers ap-

pear as the only two parameters in a scaled 1D version
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of the reaction-transport equation (3), when it is made di-

mensionless by scaling x-coordinate, porosity and time as

x̂ = x/l0, φ̂ = φ/φ1 and t̂ = t/t0, respectively, where

l0 is the length of the box and

t0 =
l20
D
, (12)

is the time characteristic for diffusion over a distance

l0. The following dimensionless 1D equation is then ob-

tained

φ̂
∂C

∂t̂
+ Pe

∂C

∂x̂
− ∂

∂x̂

(

φ̂
∂C

∂x̂

)

= −DaC, (13)

where the two parameters

Pe =
l0uD0

φ1D
and Da =

l20 Kd

φ1D
, (14)

are the Péclet-number and the Damköhler-number, re-

spectively. The right-hand-side is simplified by letting

Ŝ(φ) = 1. Both the Pe- and the Da-number include the

initial porosity, and equation (13) applies for a simplified

system where the porosity increase is negligible. Scaling

the porosity makes the Pe- and the Da-numbers the only

parameters in the model as long as the porosity does not

change much. The Pe- and the Da-numbers can be ex-

pressed by the three time scales inherent in the reaction-

transport equation (3). The first is t0, the second is the

time needed to flood the sample with one pore volume

tp =
φ1l0
uD0

, (15)

and the third is the characteristic time of the dissolution

process

td =
φ1

Kd
. (16)

These three time scales give the Pe- and the Da-numbers

as follows

Pe =
t0
tp

and Da =
t0
td
. (17)

The Pe-number measures the time scale of diffusion rela-

tive to the time scale of advection. The Da-number mea-

sures the time scale of diffusion relative to the time scale

of dissolution. The dimensionless 1D equation (13) al-

lows for simple solutions in case of constant porosity,

which can be useful both for testing and interpretation of

the reaction-transport model.

5. CONDITION FOR A NARROW REACTION

FRONT

A reaction front is a narrow zone where the porous

medium goes from completely unreacted to fully reacted.

The concentration and porosity resulting from a reaction-

transport process do not necessarily give a front. A con-

dition for a narrow front-zone is therefore wanted. Such a

condition can be obtained by considering a 1D station-

ary solution relative to the front. We introduce the x-

coordinate x′ = x − vf t as the distance from the front,

where vf is the front velocity. If the concentration has the

same shape relative to the front we then have a stationary

solution of the form

C(x′) = C(x− vf t). (18)

When equation (18) is inserted into the 1D version of the

concentration equation (8) we obtain the stationary equa-

tion

u′

D

dC

dx′
− d

dx′

(

φD
dC

dx′

)

= −Kd C (19)

after making the replacement d/dx = d/dx′. The con-

dition for a narrow front is derived for small changes in

the porosity and the specific surface is therefore approx-

imated as Ŝ(φ) ≈ 1. We notice that u′

D = uD − φvf
is the Darcy flux in the x′-coordinate system that follows

the front. In order to allow for a solution of the concen-

tration equation (19) it is first assumed that the porosity

makes a jump at the front, which gives that φ = φ2 for

x′ < 0 (behind the front) and φ = φ1 for x′ ≥ 0 (ahead

of the front). The concentration equation (19) is solved

with boundary conditions

C(x′ → −∞) = Cin and C(x′ → ∞) = 0 (20)

where Cin is the input concentration (the concentration

behind the front). Equation (19) with boundary cond-

tions (20) has the solution (Lichtner, 1988)

C(x′) =

{

Cin, x′ ≤ 0
Cin exp(a1x

′), x′ > 0
(21)

where

a1 =
1

2

(

P −
√

P 2 + 4E
)

, P =
u′

D

φ1D
(22)

and

E =
Kd

φ1D
. (23)
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Zhao et al. (2008) derive an alternative solution for the

concentration change around the front, which is differ-

ent from equation (21) in two ways. Firstly, they as-

sume that c = ceq (C = 0) ahead of the front, and

behind the front they apply a stationary solution of the

convection-diffusion equation. We assume that c = 0
(Cin = C = −1) behind the front and that the concen-

tration is a solution of the stationary convection-diffusion

and reaction equation ahead of the front. Secondly and

most importantly, Zhao et al. (2008) ignore reaction in the

stationary solution, which is different from the non-zero

reaction rate in equation (21). The fact that solution (21)

takes into account reaction can be used to make a condi-

tion for when 90% of the concentration change occupies a

width ∆x′. The concentration increases from C = Cin at

the position of the front to Cin/10 over the distance ∆x′ a

head of the front. The inequality C(∆x′) < 0.1Cin gives

that

Kd >
1

2
M ′

(

u′

D +
1

2
M ′φD

)

(24)

where

M ′ = −2ln(1/10)

∆x′
. (25)

Condition (24) gives a minimum dissolution rate for the

concentration to change by 90% over a narrow zone that

is less than ∆x′. If the dissolution experiment is done in

a box with length l0 it is straightforward to rewrite the

condition in terms of the Pe- and Da-numbers since we

have assumed that φ = φ1 ahead of the front and that we

normally have u′

D ≈ uD. We then get the condition

Da > Damin =
1

2
M

(

Pe +
1

2
M

)

(26)

where M is the dimensionless version of M ′ given as

M = l0M
′. We can make an estimate of the M -number

by choosing ∆x′ = 0.02l0, which gives that M ≈ 230.

Using a low value such as Pe = 10 implies that Damin ≈
1.4 · 104 is a lower limit for Da-numbers that can give a

front. Although the conditions (24) and (26) are based on

a constant specific surface area function (Ŝ = 1) they may

serve as a valuable approximation for the general case of

a Ŝ-function.

It is so far assumed that the porosity makes a jump

from φ1 to φ2 at the front position x′ = 0. Approx-

imation (21) for the concentration can be used to make

an estimate for the porosity near the front. The concen-

tration (21) is inserted into the porosity-equation (4), fol-

lowed by a change in the integration variable from t to

x′, and then integrated. The integration is carried out

numerical solution 
analytical solution 

numerical solution 
analytical solution 

x−coordinate [−] 

0.0 0.2 0.4 0.6 0.8 1.0 

di
m

en
si

on
le

ss
 c

on
ce

nt
ra

tio
n 

[−
] 

−1.0 

−0.8 

−0.6 

−0.4 

−0.2 

−0.0 

x−coordinate [−] 

0.0 0.2 0.4 0.6 0.8 1.0 

di
m

en
si

on
le

ss
 c

on
ce

nt
ra

tio
n 

[−
] 

−1.0 

−0.8 

−0.6 

−0.4 

−0.2 

−0.0 
Pe=788 and Da=2.4e+05 Pe=788 and Da=1.4e+04 

FIG. 2: The numerical and the approximate solutions for

the concentration around the front.
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FIG. 3: The numerical and the approximate solutions for

the porosity around the front.

with a specific surface area function that is Ŝ(φ) = 1
for φ < φ2 and Ŝ(φ) = 0 for φ ≥ φ2. We then get that

φ(x′) =

{

φ2, x′ ≤ 0
φ1 + (φ2 − φ1) exp(a2x

′), x′ > 0
(27)

The approximation is obtained by replacing the coeffi-

cient ∆φ = −NKd/a1vf with ∆φ = φ2 − φ1. This

replacement is a simple mean to assure that the approxi-

mation behaves correctly in the limit x′ → ∞. Alterna-

tively, one could use the coefficient ∆φ = −NKd/a1vf
for φ in the porosity interval φ1 to φ2. Anyway, it is

assumed that −NKd/a1vf > φ2 − φ1.

The numerical solution is compared against the con-

centration solution (21) in figure 2 and the match is quite

good. This case has Ŝ(φ) = 1. The concentration

plotted in figure 2b has 20 times faster dissolution rate

than in figure 2a, as seen from the Da-numbers on the

plots. The Da-numbers can be inserted into the condi-

tion (26) for having a narrow jump in the concentration.

The Péclet-number Pe = 800 and M = 230 gives that

Damin = 1.05 · 105, which is in good agreement with the

two plots in figure 2.

Figure 3 compares the numerical porosity against the

porosity solution (27), which corresponds to the concen-

tration profiles in figure 2. The porosity (27) is quite ac-
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curate although it is based on a concentration solution that

assumes a sharp step in the porosity at the front.

6. A STABILITY CRITERION FOR 3D REACTION

FRONTS

The stability of a reaction front in a homogeneous 3D

porous medium can be treated analytically by approxi-

mating a narrow reaction zone by a sharp front. Zhao

et al. (2008) show that the velocity vf of a sharp front is

proportional to the Darcy flux uD

vf
uD

= Nf (28)

where

Nf =
Mf

1 + φ1Mf
, and Mf =

Vsceq
1− φ1

. (29)

The normal case Vsceq ≪ 1 gives that vf/uD ≈
Vsceq/(1− φ1).

The sharp front assumption implies that the porosity,

permeability and the concentration are step functions at

the front. The stability criterion is therefore for the limit

of an infinitely rapid reaction. The assumption of a step-

function in the concentration implies that transport of so-

lute is by Darcy flow and not by diffusion, since the gradi-

ent of the concentration is zero everywhere, except at the

front. The sharp front assumption is an approximation

that covers the cases given as Pe ≫ 1 and Da ≫ Damin.

The first condition (Pe ≫ 1) says that convection domi-

nates diffusion and the second condition (Da ≫ Damin)

assures that the front width is narrow.

The stability becomes expressed by a factor exp(θt) in

the solution of the linearized equations for front position,

pressure and Darcy flux, which implies that the front is

unstable when θ > 0. (See the Appendix for details.)

The parameter θ is

θ = NfuD0

√

(2π

λy

)2

+
(2π

λz

)2
(

k2 − k1
k2 + k1

)

(30)

where λy and λz are the wave lengths of the perturbations

in y- and z-directions, respectively. The initial perme-

ability ahead of the front is denoted by k1 and the final

permeability behind the front by k2. The linear stability

analysis gives that perturbations of a flat front with any
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FIG. 4: (a) The permeability has decreased behind the

front and the streamlines are focused towards the rear

parts of the front. The Darcy flux is highest in the rear

parts, these parts will catch up with the tip and the per-

turbation dies out. (b) The permeability has increased be-

hind the front and the streamlines focuses towards the tip

of the front. The Darcy flux is highest at the tip, the tip

moves away from the other parts of the front and the front

is unstable.

wave-length are unstable as long as the permeability in-

creases behind the front (k2 > k1). Similarly, perturba-

tions of a flat front with any wave-length die out if the per-

meability decreases behind the front (k2 < k1). Finally,

a perturbation remains unchanged if the reaction does not

alter the permeability (k2 = k1).

k2 > k1 unstable front: perturbations grow

k2 = k1 labile front: perturbations are preserved

k2 < k1 stable front: perturbations decrease

(31)

The linear stability analysis is carried out for homoge-

neous permeability fields at the two sides of the front,

and it assumes that the reaction front moves with a ve-

locity that is proportional to the Darcy flux. The stabil-

ity condition (31) is considerably simpler than the sta-

bility criterion for reaction fronts in 2D porous media

obtained by Chadam et al. (1987, 1988); Ortoleva et al.

(1987); Xin et al. (1993) and more recently by Zhao et al.

(2008). These authors also assume step functions in the

porosity and the permeability across a sharp front, except

for the concentration. They assume that the solute is in

equilibrium downstream from the front, and they solve

a convection-diffusion equation that ignores reaction for

the upstream region. Furthermore, they assume that the

normal derivative of the concentration at the front gives

the front velocity.

The stability of a front perturbation depends on how it

alters the fluid flow as shown by the simulations in fig-

ure 4. Notice that the flow is to the right and we recall

that the velocity of a sharp front is proportional to the

To appear in Journal of Porous Media
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FIG. 5: The initial front perturbation.

FIG. 6: The front in the stable case after the box has been

flushed with 84.5 pore volumes.

Darcy flux, as given by the ratio (28). Figure 4a shows

that the stable case, with reduced permeability behind the

front, has the fluid flow directed away from the head of

the perturbation towards its rear parts. The Darcy flux

and the front velocity are largest at the rear part of the

front, which therefore will catch up with the head of the

front, and the front becomes stable. Figure 4b shows the

unstable situation when the permeability is larger behind

the front. The Darcy flux and the front velocity are then

largest at the tip of the perturbation, which then will “run”

away from the rear parts. Chadam et al. (1988) have the

same explanation for the instability. They show a sketch

of how a perturbation focuses the flow field towards the

head of the front, which is similar to the simulation shown

in figure 4b.

The stability of reaction zones have been tested with

a numerical solution of the three coupled equations (1),

(3) and (4). The experiments are for a 3D box when Pe =
788 ≫ 1 and Da = 2.4·105 > Damin. The other parame-

ters are ceqVs = 0.0075 and φ1 = 0.15, which gives that

FIG. 7: The front in the labile case after the box has been

flushed with 84.5 pore volumes.

FIG. 8: The front in the unstable case after the box has

been flushed with 84.5 pore volumes.

Nf = 0.0088. The 3D grid has 30×30×30 = 27000 cells

and 63 time steps where used in each simulation. The lin-

ear equation system for the pressure equation is solved

with a conjugate gradient solver with a Jacobi precondi-

tioner, and the linear equation system for the concentra-

tion equation is solved with a GMRES-solver with a SOR

preconditioner. An initial flat front that is normal to the x-

axis is perturbed by ∆x = A sin(2πy/λ+θ0) sin(2πz/λ)
where the offset is θ0 = 3π/2. Figure 5 shows the initial

front where there are three wave lengths λ across the box

in the y- and z-directions. The permeability is decreasing

by an order of magnitude behind the front in the stable

case, and figure 6 shows that the initial perturbation dies

out and the front becomes flat. The decrease in perme-

ability in rocks is normally the result of porosity decreas-

ing from precipitation of minerals in the reaction zone.

Figure 7 shows the labile case, where the permeability

is unchanged behind the front and the initial perturbation

moves forward almost unchanged. Finally, the unstable

case is shown in figure 8, where an initial permeability is
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increasing by an order of magnitude behind the front. The

perturbation is then leading to unstable growth. The nu-

merical examples indicate that the stability criterion ap-

plies to wide range of narrow reaction zones in porous

media.

7. CONCLUSION

Two topics – (1) the width of reaction fronts and (2) the

stability of reaction fronts in a 3D porous medium are

studied with analytical and numerical modelling.

(1) We have derived approximate solutions for the sta-

tionary concentration- and porosity-profiles for the front.

These stationary solutions have been used to derive a

condition for a sharp front. The condition gives a min-

imum reaction rate necessary for 90% of the concen-

tration change to take place inside a narrow band of

a maximum width. The same condition has also been

expressed in terms of the Péclet- and the Damköhler-

number, when these numbers are based on the length

of the system. Given an injection rate and the corre-

sponding Péclet-number, the condition gives a minimum

Damköhler-number necessary for 90% of the front to be

restricted to 2% of the system length. The approximations

for concentration and porosity through the reaction zone

and the condition for a narrow reaction zone have been

tested with numerical simulations.

(2) The stability of sharp reaction fronts is studied for a

3D porous media. It is shown, using linear stability analy-

sis, that a perturbation of a flat and sharp front is unstable

for all wave-lengths when the permeability increases be-

hind the front. The sharp front is stable for perturbations

if the permeability decreases behind the front. Finally,

the perturbation remains unchanged if the permeability

remains unchanged. For unstable fronts we show that per-

turbations with short wave lengths grow faster than per-

turbations with long wave lengths. The opposite applies

for stable fronts – short wavelengths die out faster than

long wave lengths. The stability of the reaction zones

are also demonstrated with a numerical one-component

reaction-convection-diffusion model. The stability crite-

rion may be useful in the interpretation of the stability

of reaction fronts in a wide variety of transport-reaction

phenomena in porous media, although it is based on an

approximation of the reaction zone as a sharp front.
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APPENDIX A. THE STABILITY OF REACTION

FRONTS IN 3D POROUS MEDIA

The analysis follows the presentation given by Marle

(1981) for the linear stability analysis of an interface be-

tween two immiscible fluids in a Hele-Shaw cell. The

stability analysis looks at how a small perturbation of a

flat sharp front develops. The flat front is moving with a

velocity vf0 along the x-axis, where the front velocity is

related to the initial Darcy flux as vf0 = Nf uD0. The

initial Darcy flux uD0 gives that the pressure gradient at

both side of the front is initially

dpi0
dx

= −µuD0

ki
(A.1)

where i = 1, 2. The index i = 1 denotes the unreacted

part ahead of the front, and i = 2 is the reacted part be-

hind the front. The pressure gradients (A.1) give that the

initial fluid pressure is

pi0 = −µuD0

ki

(

x− vf0t
)

(A.2)

A reference value for the fluid pressure is arbitrary, and

it is conveniently set to zero at position x = 0 at time

t = 0. We will seek a solution for the deviation from the

initial state when the linear front is subjected to a small

perturbation h(y, z, t). The fluid pressure and the Darcy

flux can then be written as

pi = pi0+p′i and vi = (uD0, 0, 0)+v
′

i i = 1, 2
(A.3)

where the initial Darcy flux is

(uD0, 0, 0) = v0 = −ki
µ
∇pi0 (A.4)

and where the primed quantities p′i and v
′

i are the devia-

tions caused by the perturbation of the front. The equation

for the deviation in Darcy flux becomes

v
′

i = vi − v0 = −ki
µ
∇p′i for i = 1, 2 (A.5)

and from fluid conservation we get the continuity equa-

tion for the deviations in the fluid velocity

∇ · v′

i = ∇ · (vi − v0) = 0 for i = 1, 2. (A.6)

Conservation of fluid through the front, v1 · n = v2 · n,

gives that

v
′

1 · n = v
′

2 · n (A.7)
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and continuity of the pressure at the front, p1 = p2, gives

that

p′2−p′1 = −(p20−p10) =

(

1

k2
− 1

k1

)

µuD0

(

x−vf0t
)

.

(A.8)

The next step is a change of x-coordinate to x′ = x−vf0t,
which is a coordinate system that follows the initially

flat front. The position of the perturbed front in the x′-

coordinate system is simply x′ = h(y, z, t), and the ve-

locity of the perturbed front in x′-coordinate system is

vf − vf0 =
∂h

∂t
. (A.9)

The unit normal vector of the front x′ = h(y, z, t) is

n =
(1,−∂h/∂y,−∂h/∂z)

(

1 + (∂h/∂y)2 + (∂h/∂z)2
)1/2

(A.10)

and

n ≈ (1,−∂h

∂y
,−∂h

∂z
) (A.11)

when it is approximated to first order in ∂h/∂y and

∂h/∂z. The deviations v
′

i = (u′

i, v
′

i, w
′

i), p
′

i and h and

their derivatives are infinitesimal quantities, and we have

to first order in these quantities that

v
′

i · n ≈ u′

i −
∂h

∂y
v′i −

∂h

∂z
w′

i ≈ u′

i. (A.12)

The equation for the front velocity is

∂h

∂t
= vf − vf0 = Nf (uD − uD0) = Nf u

′

i (A.13)

The first order equations for the infinitesimal deviations

are summarized as follows

u′

i = −ki
µ

∂p′i
∂x′

, v′i = −ki
µ

∂p′i
∂y

, w′

i = −ki
µ

∂p′i
∂z

,

(A.14)

and
∂u′

i

∂x
+

∂v′i
∂y′

+
∂w′

i

∂z′
= 0 (A.15)

in each subdomain (i = 1, 2), and as

p′2−p′1 = (
1

k2
− 1

k1
)µuD0 h and

∂h

∂t
= Nf u

′

1 = Nf u
′

2

(A.16)

at the front x′ = x − vf0t = h. The equations (A.14),

(A.15) and (A.16) are supplied by the boundary condi-

tions

u′

1 = v′1 = w′

1 = p′1 = 0 for x′ → ∞ (A.17)

and

u′

2 = v′2 = w′

2 = p′2 = 0 for x′ → −∞ (A.18)

which says that the deviations are zero at an infinite dis-

tance away from the front. Following Marle (1981), the

linear equations (A.14), (A.15) and (A.16) with bound-

ary conditions (A.17) and (A.18) have a solution of the

following form

h(y, t) = A exp
(2πjy

λy
+

2πjz

λz
+ θt

)

(A.19)

u′

i(x
′, y, z, t) = Bi exp

(2πjy

λy
+

2πjz

λz
+ σix

′ + θt
)

(A.20)

v′i(x
′, y, z, t) = Ci exp

(2πjy

λy
+

2πjz

λz
+ σix

′ + θt
)

(A.21)

w′

i(x
′, y, z, t) = Di exp

(2πjy

λy
+

2πjz

λz
+ σix

′ + θt
)

(A.22)

p′i(x
′, y, z, t) = Ei exp

(2πjy

λy
+

2πjz

λz
+ σix

′ + θt
)

(A.23)

where i = 1, 2 and the j =
√
−1. The solution is for a

perturbation with a wave-length λy in the y-direction and

a wave-length λz in the z-direction. When these expres-

sions are inserted into equations (A.14) and (A.15) for the

subdomains, we get that

Bi = −ki
µ
σiEi, Ci = −ki

µ

2πj

λy
Ei, Di = −ki

µ

2πj

λz
Ei,

(A.24)

and

σiBi +
2πj

λy
Ci +

2πj

λz
Di = 0 (A.25)

and when inserted into the conditions (A.16) at the front,

we have that

NfB1 = NfB2 = Aθ, and E2−E1 = (
1

k2
− 1

k1
)µuD0A

(A.26)

From equations (A.24) and (A.25) we get that

σ2
i =

(2π

λy

)2

+
(2π

λz

)2

(A.27)

and the boundary conditions (A.17) and (A.18) imply that

σ1 = −σ0, σ2 = σ0 where σ0 =

√

(2π

λy

)2

+
(2π

λz

)2

(A.28)

To appear in Journal of Porous Media



Stability of 3D reaction fronts 11

Expressions (A.24) and (A.25) now give that

Ei = −µBi

kiσi
(A.29)

and therefore

E1 =
µθA

k1Nfσ0

and E2 = − µθA

k2Nfσ0

(A.30)

When E1 and E2 are inserted into the second equal-

ity (A.26) we have finally that

−
( 1

k2
+

1

k1

) θ

Nfσ0

=
( 1

k2
− 1

k1

)

uD0 (A.31)

which gives equation (30) for θ.
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Captions

Figure 1: Black is solid and white is void space. (a)

Pore space between grains. (b) Pore space as holes in well

cemented rock.

Figure 2: The numerical and the approximate solu-

tions for the concentration around the front.

Figure 3: The numerical and the approximate solu-

tions for the porosity around the front.

Figure 4: (a) The permeability has decreased behind

the front and the streamlines are focused towards the rear

parts of the front. The Darcy flux is highest in the rear

parts, these parts will catch up with the tip and the per-

turbation dies out. (b) The permeability has increased be-

hind the front and the streamlines focuses towards the tip

of the front. The Darcy flux is highest at the tip, the tip

moves away from the other parts of the front and the front

is unstable.

Figure 5: The initial front perturbation.

Figure 6: The front in the stable case after the box has

been flushed with 84.5 pore volumes.

Figure 7: The front in the labile case after the box has

been flushed with 84.5 pore volumes.

Figure 8: The front in the unstable case after the box

has been flushed with 84.5 pore volumes.
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