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Light-trapping Properties of a Diffractive
Honeycomb Structure in Silicon

Jostein Thorstensen, Jo Gjessing, Erik Stensrud Marstein and Sean Erik Foss

Abstract— Thinner solar cells will reduce material costs, but
require light trapping for efficient optical absorption. We have
already reported development of a method for fabrication of
diffractive structures on solar cells. In this paper, we create these
structures on wafers with a thickness between 21 pm and 115 pm,
and present measurements on the light-trapping properties of
these structures. These properties are compared with those of
random pyramid textures, isotropic textures, and a polished
sample. We divide contributions into optical loss into front
surface reflectance, escape light and parasitic absorption in the
rear reflector. We find that the light-trapping performance of
our diffractive structure lies between that of the planar and the
random pyramid textured reference samples. Our processing
method, however, causes virtually no thinning of the wafer, is
independent of crystal orientation and does not require seeding
from e.g. saw damage, making it well suited for application to
thin silicon wafers.

Index Terms—Laser processing, Light trapping, Optical
characterization, Silicon solar cells.

|. 1 BACKGROUND

Pv is rapidly moving towards direct competitiveness with
alternative energy sources, and grid parity is already
reached in some locations [1]. One way to continue this trend
is to reduce silicon consumption. This can be achieved by
using thinner wafers, and/or by moving to kerf-less wafering
technologies capable of delivering cells with a thickness of 20
pm or below. Such methods have been presented by several
authors, being based on proton implantation [2], etching and
layer transfer [3], exfoliation [4] or epitaxial growth [5]. Some
of these methods are currently commercially available. Thin
cells also reduce the requirements on material bulk quality and
allow higher open circuit voltage (V). However, in such thin
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cells, a significant part of the sunlight may be lost due to
insufficient absorption in the near infrared. In order to
overcome this problem and avoid excessive efficiency loss, an
efficient light-trapping scheme must be applied.

For mono-crystalline silicon with a <100> orientation, the
industry standard for light trapping structures today is the
random pyramid texture, an excellent light trapping texture
created by anisotropic alkaline etching. However, neither for
the multi-crystalline silicon (mc-silicon) nor for the <111>-
oriented wafers typically created by proton implantation [2],
can the random pyramid texture be applied, and one is left
with the far less efficient isotropic acidic etch for surface
texturing. Furthermore, both of the above mentioned texturing
processes cause significant thinning of the wafer, and seeding
for the textures may prove a challenge for wafers with no saw
damage [6]. These textures may as such be unsuitable for thin
cells altogether.

Diffractive structures are periodic structures with
periodicity in the range of the wavelength of light. These
structures can be optimized to trap light by tuning their
dimensions such as periodicity and structure height [7].
However, fabrication of such structures remains an obstacle
for commercial use. Only a few fabrication methods for
creation of diffractive structures suitable for thin silicon solar
cells have been shown, among which are hot embossing [8]
and nanoimprint- or interference lithography [9]-[11] using
reactive ion-etching and plasma-etching. In this work we
investigate a different route for fabrication of sub-mircometer
sized diffractive structures in thin Si wafers based on wet
etching.
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Fig. 1. Schematic figure showing the various absorption and loss
mechanisms. (Not to scale.) The silicon wafer is shown in grey, the rear
reflector in black and the anti-reflection coating in blue. Indicated are: The
incoming sunlight, the front reflectance (Ry), the silicon absorption (Asi), the
parasitic absorption in the rear mirror (Aag) and the escape light (Resc).
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In previous work [12], we present a method for fabrication of
a hexagonal dimple structure suitable for a diffractive rear
reflector. Using isotropic wet-etching, the process is suitable
both for multi-crystalline silicon and for <111> silicon. In this
article, we investigate the optical properties of these
structures, deposited on silicon wafers with a thickness of 21 —
115 pm. For reference we use Si wafers with random
pyramids, with isotropic texture resulting from acidic etching,
and a planar wafer. We investigate the optical absorption
properties of the textures, and examine sources of loss. As
schematically shown in Fig. 1, we divide the sources of loss
into primary reflectance (Ry), escape light (Res;) and absorption
in the rear mirror (Aag). The primary reflectance consists of the
light that is reflected off the front surface and, hence, does not
enter the wafer. This contribution will, in general, be higher
for planar than for textured front surfaces. Escape light refers
to the part of the light that has entered the wafer, but is not
absorbed and escapes through the front surface. This
contribution is an indication of the light-trapping properties of
the texture. Finally, the rear reflector may absorb a fraction of
the light that reaches the rear surface. This contribution will
depend on the type of metal used, and on the geometry of the
reflector. Generally, a textured metal surface will have a larger
absorption than a planar rear reflector [13]. In order to
investigate the optical properties closer, we shall use our
texture either as a front side texture or as a rear side texture.

Il. EXPERIMENTAL

A. Texturing process

Our method for creating honeycomb structures on silicon is
schematically represented in Fig. 2. Details on the process
may be found elsewhere [12],[14]. The spheres have a
diameter of 0.96 um, close to the predicted optimum for a
rear-side diffractive grating on 20 pum thick Si wafers [7], [15].
In order to be able to cover the entire surface uniformly, we
have applied a square top-hat intensity profile, by inserting a
beam shaping element before the focusing lens. The size of the
laser spot is approx. 150x150 um. The texture is characterized
using Scanning Electron Microscopy (SEM).

SiN, etch barrier deposition

000000000

Microsphere deposition

SOOI

Laser irradiation

Openings through etch barrier

N

Etching

Finished structure (front / rear)

Fig. 2. Schematic representation of the texturing process.

After creating the textures, a SiN, anti-reflection coating
(ARC) is deposited on the front surface of the wafer, and a
200 nm thick PECVD-SiOy spacing layer is deposited on the
rear surface. For the rear side reflector, we apply two different
silver (Ag) reflectors. The first Ag reflector is a detached
planar reflector, which is evaporated onto a microscope slide
and placed at the rear of the wafer. The second Ag reflector is
a reflector which is evaporated onto the rear of the wafer (onto
the SiOy). This reflector will follow the shape of the wafer and
spacing layer.

For comparison of the properties of the textures, we also
prepare reference textures; random pyramid textures and
isotropic textured wafers are prepared from diamond-sawed
wafers (both sides are textured). The random pyramids are
etched ina 1 % (wt) KOH, 4 % (wt) isopropanol solution at 78
°C for 40 min. The isotropic etched samples are etched in a
CP5-solution (10:5:2, HNO3:CH3COOH:HF) at 20°C for 70
and 180 seconds. A double-side polished wafer is also used as
reference. Each of the reference structures exhibit the same
SiN, ARC and SiO, spacing layer as the dimple structures.

B. Optical characterization and calculation of optical

losses

We measure the reflectance of the samples with an
integrating sphere in a center mount configuration, i.e. with
the samples inside the integrating sphere (type Labsphere
RTC-060-SF). Reflectance is first measured with detached
rear reflectors, and then measured again after we deposit Ag
on the rear side of the samples. With zero transmission the
spectral absorption, A,,.q.s(4), is unity minus the measured
reflectance, i.e. 1- Rypeqs(1)

For wavelengths, A, above the band gap of Si (1200-1400
nm) the absorption curves tend to stabilize at absorption levels
typically between a few percent and up towards 20 percent, as
seen in Fig. 4. We use this plateau value to separate Ag
absorption from Si absorption. Hence, we implicitly assume a
constant rear reflectivity in the spectral range where the Si is
sufficiently transparent so that light may be absorbed in the
Ag rear reflector, i.e. about 800-1400 nm. This assumption is
motivated by the occurrence of a plateau above the Si band
gap together with the fact that Ag reflectivity is quite flat in
this spectral range.

We estimate the front side reflectance, R;(4), by linear
extrapolation of the measured reflectance at shorter
wavelengths, where the contribution from rear side reflectance
is negligible. The method of extrapolation overestimates
R¢(2) somewhat, particularly if the front side is planar.
Typically this error results in an overestimation of R, and
underestimation of escape light by around 0.1-0.2 mA/cm? for
planar surfaces, as found by comparison with ray-tracing
simulations using the software package TracePro [16].

We divide the absorption spectra by (1 — R¢(1)) to correct
for the effect of R.(1) on absorption. These corrected spectra
are here marked with prime symbols '. The corrected Ag

!

plateau value, A;,., which is a scalar value, is defined as:
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(1)

A (1=1250-1300 nm)
AL, . = mean|=2eE
plat 1-R(A=1250-1300 nm)

The Si absorption, Ag; (1), can now be found as follows:

!
Ameas() —Aplat

!
1_Aplat

Agi(4) = (2)

Our samples are moderately doped (1-3 Qcm, p-type) so we
ignore the contribution of free carrier absorption. The light
that is not absorbed in the Si is assumed to be Ag
absorption, A} ,(2):

A:qg (’1) = A’meas (’1) - AI?L‘ (’1) (3)

To get the non-primed absorption values, we simply
multiply the primed values with (1 — R¢(4)).

The optical losses related to front side reflectance and
parasitic absorption can be calculated from R;(4) and A, (4).
In addition we may extract the escape loss, R, (1):

Resc (’1) = Rmeas (’1) - Rf (/1) (4)

To test the procedure described in this section we apply it to
ray-tracing simulations. The simulations allow the extraction
of wavelength dependent Si absorption, Ag absorption and
front side reflection. We simulate a planar structure, a
structure with a Lambertian reflector with 99 % reflectivity
and a double-side pyramidal structure [17]. From reflectance
curves, the Ag absorption plateau is extracted. Ag and Si
absorption determined by the method described above agree
well with Ag and Si absorption registered by the ray-tracing
program for all test structures. An example is shown in Fig. 3,
where the estimated and simulated Si and Ag absorption is
shown, for a Lambertian rear reflector with 99 % reflectivity.

The magnitude of the escape light will be dependent on the
thickness of the cell and the wavelength integration limit.
Rather than integrating to a fixed wavelength, e.g. 1.2 um,

U DL DL L
1.0 —
0.8 —
_§ 0.6 = Simulated - total absorption —_
*é | —-—-Simulated - Ag; i
g 04" Estimated - ASi —
< L Simulated - A, .
L Estimated - A, , \ ]
ool L0 1 LT\
0.4 0.6 0.8 1.0 1.2
Wavelength [pm]

Fig. 3. Correspondence between simulated and estimated absorption for a 90
um thick wafer with a Lambertian rear reflector with 99 % reflectivity.

which would overestimate losses for thin cells, we weight the
optical loss with the probability of absorption in a Lambertian
cell of the same thickness, being a relevant reference for light
trapping schemes. We do the same for the front side
reflectance and the parasitic absorption. Fig. 4 shows
measured absorption, Si absorption and the various optical
losses in a 28 um thick sample with rear side dimples, as
extracted using the method described above. We see that Ry
contributes both at short and long wavelengths, whereas Reg.
and Ang only contributes at long wavelengths where long
optical absorption lengths allow the light to reach the rear
surface and potentially to escape through the front of the
wafer.

In order to quantify the optical properties in terms of current
density or current density loss, the spectral properties are
weighted against the AML1.5 solar spectrum. From the silicon
absorption Ag;, we extract the photogenerated current density
Joh. Correspondingly, we extract the equivalent current losses
from the various loss mechanisms. From R;, we extract the
primary reflectance 10ss Jieq, from Res, the escape light loss
Jesc and from Ang, the loss from parasitic absorption Jparasitic-

I1l. RESULTS

A. Texturing process

Fig. 5 (d) shows a SEM image of a part of one laser spot.
We see a fairly homogenous processing result, with defects at
imperfections in the microsphere crystal. The crystal is poly-
crystalline. We also see the edge between two adjacent laser
spots as a line to the right. Here, the intensity is high enough
for removal of the microspheres, but not high enough to
penetrate the SiNy etch barrier. Hence, the pattern will not
form here. Some larger unprocessed areas are also observed
(not shown here), where the microspheres have formed
multilayer structures rather than monolayer structures.

When the texture is illuminated by a white-light source, a
circular diffraction pattern is observed (Fig. 5 (e)). The
circular pattern is an indication that we do not have any
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Fig. 4. Optical losses for a 28 um thick cell with planar front side and
dimples on the rear side. The losses are weighted with the probability of
absorption in a Lambertian wafer of equal thickness, seen as a cutoff of the
absorption contributions towards 1.2 pm.
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prevailing crystal orientation, as is also obvious from the
SEM-image. The rainbow colors imply a wavelength
dependence of the scattering angle, indicating that the
structure is indeed diffractive, and not simply diffuse. This
means that although the crystal grains are randomly oriented,
the average neighbor to neighbor distances are well defined
and is dominating the scattering properties.

Also shown in Fig. 5 are SEM-images of our reference
textures; random pyramids (a), 70 seconds isotropic etch (b)
and 180 seconds isotropic etch (c). The lines from the sawing
process are clearly visible for the isotropic etches, and barely
visible for the random pyramid etch. Note also how the
appearance of the isotropic etch changes from the 70 seconds
etch to the 180 seconds etch.

B. Optical properties of the samples

The optical properties of the samples are analyzed and the
results are summarized in Fig. 6. The photogenerated current,
Jon, i shown in Fig. 6(a). We observe that the samples with
front side structures generate more current than the rear side
structures, a difference of about 2 mA/cm? The samples with
detached reflectors generate slightly more current than the
ones with evaporated reflectors. Furthermore, we observe that
the dimple structures generate more current than the planar
reference, but less than the pyramidal structures. We shall
analyze the contributions to this behavior in more detail.

Thicker wafers generally absorb more light than the thin
wafers, causing increased Jon, however trends caused by
thickness are reduced in the graphs showing optical loss, as

e A b &,

the contributions are weighted against the Lambertian
absorption at the given thickness as described in section 11.B.

C. Primary reflectance

Fig. 6(b) shows the primary reflectance loss, Jiq. It is
around 2 mA/cm? higher for the rear side textures, i.e. the
textures with a planar front surface, compared to the front side
textures, explaining the majority of the observed differences in
photogenerated current. Textured front surfaces will allow for
the light to experience multiple bounces at the wafer surface,
increasing the transmission into the wafer. We observe that the
random pyramids have a lower J.q than the dimples. The
random pyramids texture has steep angles (54.7°). This
ensures multiple bounces for all of the incident light, and
hence low primary reflectance. The dimples on the other hand
have a lower J.¢; than the isotropic textures.

It is important to note that the differences in J.s will be
lower when the cell is encapsulated under module glass and
laminate, making this contribution less dominant. We have
performed experiments on random pyramid textures and
isotropic etched samples showing that a difference in Jeq of
2.3 mA/cm? in air is reduced to only 0.6 mA/cm? after
encapsulation [18].

D. Escape light

The escape light loss, Je, (Fig. 6(c)) for the planar
reference is very high, indicating the lack of light trapping in
this sample. On the other hand, the pyramidal structures have
slightly lower Je. than the dimples, indicating that this texture

B35 B BT P

Fig. 5. Images of (a) the random pyramid, (b) the 70 second isotropic and (c) 180 second isotropic etches. (d) Dimple pattern in silicon, showing part of one
laser spot. A homogenous processing result is seen, with minor defects caused by irregularities in the microsphere layer and at the edge of the laser spot. (e)

Diffraction pattern from the texture when illuminated by a white-light source.
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traps the light very efficiently. The scatter in the
measurements on the dimples may be indicative of a slight
inhomogeneity in the texture. We see that the use of front and
rear side dimples result in the same Je, indicating that the
light trapping properties of the texture is similar whether the
texture is on the front or rear surface. Surprisingly, also the 70
seconds isotropic etched sample shows low Je, while
showing fairly high primary reflectance loss. This behavior is
indicative of the fact that multiple front-surface bounces
requires quite steep front surface angles, which are not
dominant for the isotropic etch, while fairly shallow rear
surface angles is enough for the light reflected from the rear
surface to hit the front surface at angles outside of the escape
cone of silicon.

E. Parasitic absorption

We observe that all structures with detached rear reflectors
show very low Jyarasiic (Fig. 6(d)). The evaporated reflectors,
on the other hand have higher Jyarasiic, indicating a stronger
coupling to the rear reflector in this case. For the case of rear
dimples with evaporated reflector, we see a significant
increase N Jparasiic. This trend is not as strong for non-
diffractive samples, indicating that microscopic periodicity is

required for increased parasitic absorption, as investigated by
Springer et al. [13]. We also seem to experience an increase in
Joarasitic for the thinnest cells, where a larger fraction of the
incoming light will reach the rear reflector.

Silver is a material with high reflectivity, minimizing the
impact of parasitic absorption. Using e.g. screen-printed
aluminum, which has a much lower reflectivity, would
certainly be detrimental to the rear-structured samples,
increasing Jparasiic. ON the other hand, the process proposed by
Hauser et al. [10] may vyield a planar dielectric on micro-
textured surfaces, reducing Jparasiiic for rear structured samples.

IV. DISCUSSION

A more industrially oriented processing method could,
instead of spin-coating the microspheres onto individual
wafers, apply a microlens-array on a carrier [19]. Such an
array could be re-used, simplifying the process. Using
400x400 pm laser spots and 100 kHz pulse repetition rate, a 5
inch wafer can be processed in one second. Such laser
parameters are industrially available. Furthermore, using an
etch barrier which does not require vacuum deposition would
significantly simplify the process. Laser damage to the wafer
has been measured on other samples using similar laser

€@ Front dimples Rear dimples A Pyramids @ Isotropic, 70 sec W Isotropic, 180 sec Planar
BT T T T T T T T T T T T T T T
42 - — B ® |
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36 -\ 2 |
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Fig. 6. Extracted optical performance of the textures. Filled symbols indicate detached rear reflector, whereas open symbols indicate evaporated rear reflector.
Gray areas indicate the dominating behavior of a group of textures. Several trends are clear: Rear side textures have lower photogenerated current, mainly
caused by higher primary reflectance. Evaporated reflectors cause higher parasitic absorption, especially for rear side textures. Pyramidal structures show higher
photogenerated current than the dimple structures, mainly as a result of very low primary reflectance.mages of the random pyramid, 70 second isotropic and 180

second isotropic etches.
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parameters, where etching of 0.27 pm from the surface
completely restored bulk lifetime. As such, we do not expect
laser damage to be detrimental to this texture when applying
ultrashort laser pulses.

Random pyramid and isotropic etches are dependent on
proper seeding for good quality textures. We have observed a
lowering of texture quality when moving from slurry to
diamond wire cut wafers. With certain kerf-less wafering
technologies, proper seeding of the etch structures will be a
challenge, and the performance of an isotropic texture would
be hampered compared to our texture, which does not require
any additional seeding. The two different isotropic etched
samples are meant to illustrate different states of surface
roughness. We see that the more polished 180 seconds sample
delivers significantly lower Jy, than the 70 seconds sample. As
our 100 um thick dimple structures deliver roughly the same
Jon as the 70 seconds isotropic etched samples from diamond
cut wafers, we have reason to believe that our structures will
outperform isotropic etched textures on wafers from certain
kerf-less technologies. In addition, the isotropic etch removes
several micrometers from each side of the wafer. As such, the
dimple structure is more suitable for thin silicon wafers.

The fact that our texture is a single sided texture may be
beneficial, potentially simplifying laser processing (e.g. for
local contact openings) on the planar side of the wafer [20]
and reducing surface recombination.

Microscope images (not shown here) have shown that
samples with dimple structures have to different degrees areas
that are not textured. Such areas will naturally not contribute
to light trapping or lower reflection. It is therefore viable that
even better light trapping might be achieved by improving the
monolayer fill factor. Improvement of the crystallinity of the
texture may also alter the light-trapping properties.

V. CONCLUSION

We have fabricated thin silicon solar cells with a diffractive
structure based on a hexagonally ordered dimple pattern, and
experimentally compared the light-trapping properties of our
structures with a random pyramid texture, isotropic textures
and planar references. We see that applying the texture to the
front surface is far more efficient than applying it to the rear
surface, as a result of lower front reflectance combined with
lower parasitic absorption. The performance of our dimple
structures lies between that of the planar and random pyramid
textures, being roughly similar to the 70 seconds isotropic
etched structures.

The main sources of loss compared to the random pyramid
texture are front surface reflectance, a contribution which will
be significantly lower when the cell is incorporated in a
module, and parasitic absorption, especially in the cases where
a micro-structured rear reflector is used.

The main benefit of our structure is that it is suitable for
very thin wafers and wafers without saw damage, and that the
etching process does not cause significant thinning of the
wafer. Further improvement of the performance of the texture
may be obtained through higher area coverage and better
crystal quality of the texture, and by improving the

hemispherical shape of the dimples.
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