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Abstract 

The underpressure observed in the glacial valley Adventdalen at Svalbard is studied numerically 
with a basin model and analytically with a compartment model. The pressure equation used in 
the basin model, which accounts for underpressure generation, is derived from mass 
conservation of pore fluid and solid, in addition to constitutive equations. The compartment 
model is derived as a similar pressure equation, which is based on a simplified representation of 
the basin geometry. It is used to derived analytical expressions for the underpressure 
(overpressure) from a series of unloading (loading) intervals. The compartment model gives a 
characteristic time for underpressure generation of each interval, which tells when the pressure 
state is transient or stationary. The transient pressure is linear in time for short time spans 
compared to the characteristic time, and then it is proportional to the weight removed from 
the surface. We compare different contributions to the underpressure generation and find that 
porosity rebound from unloading is more important than the decompression of the pore fluid 
during unloading and the the thermal contraction of the pore fluid during cooling of the 
subsurface. Our modelling shows that the unloading from the last deglaciation can explain the 
present day underpressure. The basin model simulates the subsurface pressure resulting from 
erosion and unloading in addition to the fluid flow driven by the topography. Basin modelling 
indicates that the mountains surrounding the valley are more important for the topographic 
driven flow in the aquifer than the recharging in the neighbour valley. The compartment model 
turns out be useful to estimate the orders of magnitude for system properties like seal and 
aquifer permeabilities and decompaction coefficients, despite its geometric simplicity. We 

estimate that the DeGeerdalen aquifer cannot have a permeability that is higher than 18101 −⋅  
2m , since otherwise, the fluid flow in the aquifer becomes dominated by topographic driven 

flow. The upper value for the seal permeability is estimated to be 20101 −⋅  2m , since higher 

values preclude the generation and preservation of underpressure. The porosity rebound is 
estimated to be less than 0.1 % during the last deglaciation using a decompaction coefficient 

9101= −⋅rα  1−Pa . 

Keywords: unloading, erosion, underpressure, fracture porosity. 
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1 Introduction 

Pore fluid pressure below the hydrostatic pressure is not so common in sedimentary basins. 
The common situation is hydrostatic pressure or overpressure. Underpressure was discovered 
during the drilling of test well DH4 in Adventdalen at Svalbard, see figure 1. The well DH4 
showed 40:  bar pressure at 870 m depth in the DeGeerdalen formation (fm), which is an 
interbedded layer of sandstone and silty-sandstones [Braathen et al. , 2012]. DeGeerdalen fm is 
of Triassic age, and it is buried underneath a 500:  m thick layer of shales and siltstones from 
the Jurassic and the Cretaceous. The well is situated at the base of a valley where there is a 
little more than 100 m of permafrost. The valley Adventdalen was carved out during the 
Pliocene and Pleistocene ice-ages. The glacial erosion and the rapid last deglaciation have 
unloaded the brittle Mesozoic sediments in the subsurface of the valley. 

There are several studies of underpressure generation in similar settings. [Corbet Bethke, 1992, 
Bachu Underschultz, 1995, Parks Toth, 1995, Bekele et al. , 2003] have examined causes for the 
underpressure in the Alberta basin, and they have all linked it to unloading by erosion or 
deglaciation. [Bekele et al. , 2003] found that underpressure is caused mainly by deglaciation, 
because Pliocene to recent erosion rates were too slow. They used basin modelling software to 
simulate the underpressure. [Lazear, 2009] relates the underpressure in the Piceance basin in 
West-Central Colorado to regional uplift and a 1.5 km incision, where 0.1% fracture porosity is 
estimated from the unloading. [Vinard et al. , 2001] modelled the underpressure at Wellenberg 
site in Switzerland with different scenarios of erosion and unloading using the software 
ABAQUS with a poro-elastic rheology. They concluded that unloading from deglaciation gives 
results that best fit the observations. Several other studies have also linked underpressure in 
reservoir units to uplift, erosion and unloading when the reservoir unit is vertically sealed from 
the surface [Russell, 1972, Bradley, 1975, Chapman, 1976, Dickey Cox, 1977, Neuzil Pollock, 
1983]. A common explanation for the underpressure is porosity rebound from the unloading 
[Neuzil Pollock, 1983, Corbet Bethke, 1992, Luo Vasseur, 1995]. A hypothesis that has received 
less support is the thermal contraction of a cooling pore fluid when it is brought towards the 
surface during erosion [Russell, 1972, Bradley, 1975, Lou Vasseur, 1992, Hall, 1994, Swarbrick 
Osborne, 1997]. It should also be mentioned that topographic driven flow creates 
underpressure underneath the locally highest areas, where the flow field is vertically 
downwards [Toth, 1978, Orr Kreitler, 1985]. A number of authors have modeled regional scale 
groundwater flow systems driven by glaciation [Belitz Bredehoeft, 1988, Lemieux et al. , 2008a, 
Lemieux et al. , 2008c, Lemieux et al. , 2008b, Bense Person, 2008, Iverson Person, 2012], but 
these studies are less directed towards underpressure generation. 

Adventdalen valley has undergone a complex geohistory with glacial erosion and several tens of 
cycles of glaciation during the last 3.5 Ma, involving rapid deglaciations [Starkel, 2003, Eiriksson, 
2008, Geirsd_ttir, 2011]. The underpressure is therefore linked with a series of different 
episodes of unloading/loading, combined with an uncertain rheology of fractured rocks. This 
study looks at ways to quantify the underpressure in the DeGeerdalen formation, when it is 
generated by unloading. We aim at estimating the megascopic permeabilities of the 
underpressured aquifer and the seal, and to estimate the amount of pore space expansion that 
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is necessary for the generation of the observed underpressure. These properties are estimated 
when accounting for the different time-intervals of unloading. The rocks in DH4 are fractured 
and it could be that most of the void space produced by unloading is due to reopening of joints 
and fractures by reduction in the vertical effective stress. 

We have developed a compartment model for the underpressure generation, which is a 
pressure equation based on a simplified representation of the geometry of the basin. The 
simplified geometry allows us to produce analytical expressions for the underpressure, which 
are otherwise difficult to obtain. A similar modelling approach has earlier been used to study 
the generation and dissipation of overpressure in fault bounded compartments in reservoir 
formations [Borge, 2002]. The analytical results from the compartment model are used to 
derive a condition for underpressure generation that is similar to a condition for overpressure 
generation in basins during sediment deposition and burial. 

Even though the basin geometry is simplified in the compartment model, it has the same sink 
term that generates underpressure as the basin model. This sink (or source) term has 
contributions to the underpressure from porosity rebound, thermal contraction of the fluid and 
decompression of the fluid. We compare these contributions to find the process that dominates 
underpressure generation. 

The compartment model includes a term for topographic driven flow, which is represented by a 
potential for recharging the aquifer. It is possible that the aquifer is recharged from the 
neighbouring valley, where the DeGeerdalen formation is exhumed at a height 200 m above the 
surface of Adventdalen. On the other hand, the mountains surrounding the valley also drive 
fluid flow, which can be important for the underpressure in the DeGeerdalen formation. The 2D 
basin model is needed to study the nature of the topographic driven flow in Adventdalen. 

This paper is organized as follows: The underpressure observations are first presented, then 
observations of glaciations in Adventdalen, before the surface sediment temperatures are 
commented. The compartment model is introduced, and its transient- and stationary states are 
analyzed. The different contributions to the source/sink term in the equation for underpressure 
are compared. The compartment model is then applied to cycles of glacial loading and 
unloading, before it is applied to different scenarios for underpressure generation in 
Adventdalen. Finally, results of basin modelling of Adventdalen are presented. 

The technical parts of modelling are collected in the Appendices. The pressure equation for 
underpressure generation and fluid flow is derived in Appendix A, from mass conservation of 
the fluid and solid. The rheology of porosity rebound from unloaded sediments is presented in 
Appendix B, the pressure equation of the compartment model is derived in Appendix C and the 
condition for stationary underpressure is presented in Appendix D. 

 

2 Geological observations 
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2.1 Underpressure in DeGeerdalen formation 

The well DH4 was drilled in Adventdalen down to 970 m to test if the Triassic reservoir 
formations in DeGeerdalen (fm) could be a suitable reservoir for CO2 storage. Figure 2 gives the 
lithostratigraphy of DH4, where DeGeerdalen appears as sandstones interbedded with 
siltstones. [Braathen et al. , 2012] give a comprehensive review of the data collected for well 
DH4. Well testing by water injection showed a water level that was substantially below the 
hydrostatic pressure relative to the valley surface. [Braathen et al. , 2012] report that well DH4 
has a 40:  bar pressure at 870 m depth in the DeGeerdalen formation (fm), a fluid pressure that 
is 47 bar below the 87 bar hydrostatic pressure. The interbedding of sandstones with siltstone 
divides DeGeerdalen into subunits with possibly different underpressures. 

Sandstone porosities were measured in the range from 5% and 20% in well DH4, and laboratory 
measurements on core-plugs indicate that the majority of analysed sandstone units have 
permeabilities in the range from 0.01 mD to 1 mD [Braathen et al. , 2012]. The well testing was 
carried out for reservoir units in the depth interval of 870 m to 970 m. The average permeability 
of the reservoir rock was estimated to 45 mD over the sandstone intervals, based on the well 
testing. This permeability is between one and two orders of magnitude above the largest values 
measured for the core permeabilities. The discrepancy is explained as fracture permeability 
resulting from the well testing. The well pressure indicated that hydraulic fracturing took place 
during fluid injection. 

Some of the rock units in the depth interval 440 m to 705 m appear to be highly fractured 
[Ogata et al. , 2012]. A least 284 fractures were observed in this interval with acoustic 
televiewer and 97% of the fractures were subhorizontal. The siltstones in the caprock appear to 
be fractured, too. The presence of fractures in DH4 is most likely important for rock properties 
like porosity, permeability and the decompaction coefficient. The fracture porosity may create 
the void space responsible for underpressure. A fractured rock may also more easily decompact 
during unloading, which implies a larger decompaction coefficient for fractured rock than for 
intack rock. Although the rocks in the DH4 are fractured the difference in pressure indicates 
isolated pressure compartments in the rock succession. 

The permafrost in DH4 is measured to be in the range from 120 m to 160 m [Braathen et al. , 
2012], and below the permafrost there is a slightly overpressured aquifer. The reservoir 
intervals of the DeGeerdalen formation are separated from the shallow aquifer by a seal of 
approximately 500 m of siltstone (see figure 2). Janusfjellet Subgroup is a low permeable seal 
even though it is a highly fractured cap rock. The fractures must be closed in the seal, because 
the seal is clearly separating the underpressured reservoir rocks from the near hydrostatic 
aquifer underneath the permafrost [Ogata et al. , 2012]. 

 

2.2 Glaciations in Adventdalen 
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Adventdalen has gone through a long period of slow unloading from glacial erosion during the 
Pliocene and Pleistocene. The valley, which is approximately 1000 m deep, was carved out 
during this period. In the same period there were several tens of episodes of glaciation 
interrupted by shorter and warm interglacial periods. The periods of glaciations and 
deglaciations produce fluctuations in the decreasing load from the erosion of the valley. 
Mapping of glacial deposits found within the basaltic lava flows of Iceland has revealed at least 
22 glacial-interglacial cycles during the last 3.5 Ma [Geirsd_ttir, 2011]. The last deglaciation was 
rapid compared with the build-up of the ice [Starkel, 2003]. The rapid climatic change at the 
Younger Dryas-Preboreal transition is well documented in a variety of settings as for instance 
the fluvial environment of Polish rivers [Starkel, 2003]. [Paus, 1989] reports that the first 
vegetational responses of the warmer climate in the Holocene in SW Norway is around 10.5 ka 
and that dense forests develop around 10 ka. At Svalbard during the period 11.5 - 10.6 ka BP 
the fauna indicates increased influence of Atlantic Water and the final deglaciation of the fjord 
after the Younger Dryas period [Skirbekk et al. , 2010]. 

 

2.3 The sediment surface temperature under the ice 

The underpressure compartment becomes colder during an erosion process, as it moves 
upwards towards the sediment surface. The cooling can be approximated assuming a stationary 
geotherm, which is a reasonable assumption as long as the temperature at the sediment 
surface does not vary much. This is the case for wet based glaciers and also for parts of 
polythermal glacier, where the temperature at the base is close to the pressure-melting point. 
A wet-based glacier is close to the pressure-melting point everywhere in its interior, as opposed 
to a cold-based (polar) glacier, where the temperature is everywhere below the pressure-
melting point. Cold-based glaciers are frozen to their beds and move slowly by internal 
deformation. An intermediate polythermal glacier is at the pressure-melting point at the base, 
but not necessarily throughout the entire glacier [Sharp, 1988, Hambrey Glasser, 2012, L uthi 

Funk, 2013]. The temperature is slightly below 0 o C at the pressure-melting point for a large 
range of glacier thicknesses [L uthi Funk, 2013]. In the following we assume that the base of ice 

in the valley has the temperature 0 o C. 

 

3 A compartment model of underpressure generation 

 The basic behaviour of the underpressure development in the DeGeerdalen (fm) can be 
addressed by means of a model for just the pressure in the reservoir compartment. A sketch of 
the model is shown in figure 3. Conservation of fluid mass for the compartment can be 
expressed by the pressure equation 
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 ,=0 spp
dt

dp
t +  (1) 

as shown in Appendix C, where p  is the unknown compartment underpressure, 0t  is the 

characteristic time for pressure transients and sp  is the stationary underpressure. The 

underpressure is defined as fluid pressure minus the hydrostatic pressure. The characteristic 
time is 

 
as NN

t
+
µφαeff

0 =  (2) 

where φ  is the porosity, effα  is the effective compressibility of the system and µ  is the fluid 

viscosity. The two dimensionless numbers in the denominator are 

 
2121

=,=
hh

k
Nand

ll

k
N s

s
a

a  (3) 

where ak  and sk  are the aquifer permeability and seal permeability, respectively. The model 

does not account for lateral variations in the permeability fields. The main permeability 
variation is the strong contrast between the seal and the aquifer permeabilities. The thickness 

of the sealing layer is 1h  and the thickness of the reservoir compartment is 2h . The aquifer 

extends a distance 1l  to the left and the width of the compartment is 2l . The two dimensionless 

numbers aN  and sN  control the flow properties of the aquifer and the seal, respectively. We 

will see that the permeabilities always appear together with distance or thickness as expressed 

by these numbers. There is a characteristic time ss Nt /= effµφα  for the vertical version of the 

model, when 0=aN , and lateral flow in the aquifer is unimportant. Correspondingly, there is a 

characteristic time aa Nt /= effµφα  for the lateral version of the model, when 0=sN , and flow 

vertically through the seal is unimportant. We also notice that the characteristic time of the 

system is half the harmonic average of the two subsystems, )/(=0 sasa ttttt + . Appendix C shows 

how the characteristic time 0t  controls the decay of the initial pressure and how it controls the 

transient towards a new stationary state. 

The stationary underpressure can be split into the sum of two contributions as 

 ms ppp +ω=  (4) 

where 

 








−
−−

+ )(1
= eff φ

ωρα
ωβωρα

φµ
ω

g

dz

dT
g

NN
p br

uf

as

 (5) 
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is the stationary underpressure from unloading, while 

 1)(= p
NN

N
p

as

a
m +

 (6) 

is the stationary overpressure contribution from the topographic potential 1p . The stationary 

pressure introduses the following parameters: bρ  is the bulk density, fρ  is the brine density, 

β  is the thermal expansibility, dzdT/  is the thermal gradient, ω  is the erosion rate, uω  is the 

uplift rate and g  is the constant of gravity (see Appendix B). The overpressure contribution 

from topographic driven flow becomes negligible in the regime where as NN >>  and the 

contribution is at maximum for the opposite regime as NN << . The potential 1p  and the 

number aN  may be viewed in a broader sense than in the figure 3. The potential mp  can 

represent any topographic flow that affects the compartment. For example, the parameters 

that make mp  can be calibrated to represent the recharge of the aquifer from both sides of a 

system that is symmetric around the center of the valley, or to represent the topographic flow 
from one or both mountains surrounding the valley. 

The stationary underpressure (5) is the sum of three terms, the first term is the contribution 
from decompaction, the second term is underpressure generation from thermal contraction of 
the fluid as the compartment moves upwards along the geotherm )(zT  during erosion, and the 

third term is overpressure generation due to the decompression of the fluid. These three 
contributions to the underpressure are compared in section 3.2. 

The stationary pressure (5), which is a part of the sink term in the compartment model, has a 
similar form as the sink term in the full pressure equation (17) (see Appendix A). The main 
difference between the sink terms is that the compartment model has an explicit 

representation of the geometry through the numbers aN  and sN , and the overpressure from 

topographic driven flow. 

 

3.1 The transient state and the stationary state 

The case of short unloading compared to the characteristic time 0t  is of special interest. 

Assuming that duration of the unloading is short, 0tt = , yields 

 
0

)(
t

t
ptp s≈  (7) 

when the initial pressure is zero. In this regime underpressure generation is proportional to the 
duration of the unloading and the final stationary underpressure. We will later recognize this 
linear pressure response when unloading is rapid, for instance deglaciation. The underpressure 
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increment becomes 

 ghp b
r ρ

α
α

eff

≈∆  (8) 

where the h  is the thickness of the eroded section and rα  is the decompaction coefficient, 

when decompaction dominates thermal expansion and fluid decompression. An important 

observation is that a time span much shorter than the characteristic time ( 0tt << ) generates 

underpressure that does not depend on permeabilities, only on the compressibilities and the 
load that is removed. If the decompaction coefficient is much larger than the fluid 

compressibility ( fαα >>r ) the estimate (8) simplifies to ghp bρ≈∆ . 

It is instructive to see what the porosity rebound is for the initial transient regime and for the 
stationary regime. The porosity rebound is given by (30), and inserting the transient 
underpressure (7) yields 

 0

eff

,)(1= tttgb
r

r <<−∆ ωρ
α
α

φαφ  (9) 

It is assumed that erosion takes place without uplift ( 0=uω ) and that there is no topographic 

driven fluid flow. The rebound during the stationary state under the same conditions yields 

 00

eff

,)(= ttgtt b
r

r >>−∆ ωρ
α
α

φαφ  (10) 

The porosity rebound is in both cases, 0tt <<  and 0tt >> , linear in time. The rebound 

compressibility is less than the effective compressibility, 1</ effαα r , which produces a positive 

porosity increment for both cases. An observation is that the porosity rebound becomes 

independent of the seal permeability in the limit 0tt <<  and weakly dependent on the seal 

permeability in the opposite regime, 0tt >> . 

 

3.2 Thermal contraction and decompaction compared with fluid decompression 

  

The stationary underpressure from unloading, expression (5), has three terms that represents 
three different processes. The first term is underpressure from porosity rebound, the second is 
underpressure from thermal contraction of the fluid as it moves upwards along a geotherm, 
and the third term is an overpressure contribution from decompression of the fluid. We will 
now compare these terms. First we compare thermal expansion against decompression of the 
fluid when uplift and erosion take place at the same rate, and we get 
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 0.9=
/

=
eff g

dzdT

iondecompress

expansionthermal

fρα
β

 (11) 

using that 4102= −⋅β  [1/K], 0.045=/dzdT  [C/m], 10

f 105== −⋅rαα  1−Pa , 1000=fρ  3−mkg  

and 10=g  m/s 2 . The thermal gradient is an average for the well DH4 [Elvebakk, 2010], the 

thermal expansion coefficient is for water at 20 o C [Liley Gambill, 1973] and the compressibility 

is for water at 20 o C and 13 MPa [Liley Gambill, 1973]. The effect of the thermal contraction of 
the water for the thermal gradient of Adventdalen is seen to be almost equally important as 
decompression, when the decompression coefficient is equal to the compressibility of water. 

The overpressure generation from decompression of water can also be compared with 

underpressure created by porosity rebound (decompaction), as expressed by the coefficient rα  

in equation (5). We get that 

 1.25=
)()(1

=
feff fr

br

f

br

iondecompress

ondecompacti

ραα
ρα

ραφ
ρα

+
≈

−
 (12) 

when 10

f 105== −⋅αα r  1−Pa , 2500=fρ  3−mkg , 1000=fρ  3−mkg  and 0.1=φ . The two 

ratios (11) and (12) show that thermal contraction along the geotherm at Adventdalen has 

roughly the same effect as porosity expansion when f=αα r . 

 

3.3 Repeated cycles of glaciation and deglaciation 

There have been several tens of glacial periods with short interglacials [Geirsdottir, 2011]. The 
glacials last typically 100 ka while the interglacials are much shorter, a few thousand years 
[Petit et al. , 1999]. The glacier-interglacier cycles may be modelled with equation (33) where 

one cycle consists of glaciation over 100=at∆  ka and then deglaciation over 1=bt∆  ka. The 

glacier grows steadily in thickness until its maximum at the end of glaciation, and then melts 
down steadily during the interval of deglaciation. The pressure at the end of one time-interval 
becomes the initial condition for the next interval in the expression for compartment pressure, 
see equations (35) and (36) in Appendix C. 

The stationary pressure values that enter the solution are based on the rates of loading and 

unloading aa th ∆∆− /=ω  and bb th ∆∆ /=ω , respectively, where h∆  is the thickness of the ice. 

The minus sign is explicitly added to aω  to assure that it is loading and therefore generates 

overpressure. The loading/unloading rates go into into the stationary pressure sp given by 

equation (5), which again is used in the transient pressure solutions (35) and (36). 

The pressure fluctuations during several cycles of glaciation-deglaciation are shown in figure 4. 
The time of each interval is scaled to the unit interval, which means that each cycle covers two 

Page 9 of 54

FOR REVIEW PURPOSES ONLY

Basin Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



units on the x-axis. The case of figure 4a has a aquifer permeability 18105= −⋅ak  2m , a seal 

permeability 20101= −⋅sk  2m  and the decompaction/compaction coefficient 9101= −⋅rα  1−Pa . 

The same coefficient rα  is used for compaction during glacial loading as for deglacial unloading. 

The dimensionless time-intervals are 5.2=aτ  and 0.05=bτ . Glaciation spans a time interval 

that is much longer than the characteristic time of the system ( 0t ). We can see that from figure 

4a, because the pressure build-up approaches the stationary value aas pp ,, = ω . The stationary 

value aas pp ,, = ω will be researched when the curve becomes flat. The time interval of 

deglaciation is much shorter than 0t , because the pressure decrease is linear during 

deglaciation, which is clearly a transient phase. The transient is also far from reaching its 

stationary value bbs pp ,, = ω , because the curve is far away from flattening out. 

Figure 4b shows the case with the reduced permeabilities, 19101= −⋅ak  2m  and 21101= −⋅sk  
2m . The seal permeability is reduced by one order of magnitude, which makes the 

characteristic time of the system nearly one order of magnitude larger. The dimensionless 

interval lengths become 0.26=aτ  and 0.0026=bτ , and both phases become transient with 

linear pressure response. 

The initial pressure before the cycles start is 0 bar and after a few cycles the pressure oscillates 
between two fixed values. The upper and lower pressure values for the oscillations can be 
obtained as stationary initial conditions as shown in Appendix C. The case where both time 

intervals are much longer than the characteristic time ( 1>>aτ  and 1>>bτ ) produces aspp ,1 ≈  

and bspp ,2 ≈ , which are the stationary values for the two intervals, respectively. The more 

likely case where 1>>aτ  and 1<<bτ  (see figure 4a) produces aspp ,1 ≈  which is the stationary 

pressure for the interval, and )(exp)( ,,,2 bbsasbs pppp τ−−+≈  which is the pressure predicted 

by the equation (33). 

The pressure evolution in figure 4a, where 1>>aτ  and 1<<bτ , is reasonable for Adventdalen. 

A period of 100 ka of glacial loading therefore leads to a small stationary overpressure, and the 
short interval of deglaciation leads to a noticeable underpressure. Therefore, we ignore the 
oscillations in glacial loading before the last glaciation. It should be noted that the glacial 
periods are far from regular and that they are superposed by large fluctuations of warmer and 
colder climate [Petit et al. , 1999]. 

 

 

4 The compartment model applied to Adventdalen 
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4.1 Three stages of underpressure generation 

We simplify the glacial past (see section 2.2) by dividing it into three intervals of unloading - 

first is the long and slow glacial erosion over a time span of 3.5=1t∆  Ma, then a short and rapid 

deglaciation over a period of 1=2t∆  ka and finally a period of rest 10=3t∆  ka, from the end of 

last deglaciation until today. The cyclic fluctuations in the ice thickness and thereby the ice load 
is ignored during the first interval of glacial erosion. 

An important parameter in the stationary pressure for each time interval it∆  ( 1,2,3=i ) is the 

erosion (or deglaciation) rate iω . The altitude of the mountains surrounding Adventdalen is 

roughly 1000 m, which indicates that the present day U-valleys were eroded by the main 

glaciers from a plateau that was at least 1000=1h∆  m above sea level. The erosion rate during 

period 1t∆  is therefore taken to be 286=/= 111 th ∆∆ω  m/Ma. For simplicity, we take the uplift 

rate to be zero. 

The ice filled the valley with roughly 400=2h∆  m, which makes the rate of deglaciation 

222 /= th ∆∆ω  m/a = 0.4  m/a. The assumption of a temperature close to 0 o C at the base of the 

ice during the period deglaciation implies that there is no temperature change in the 
underpressure compartment during this time interval. There is no permafrost underneath those 

parts of the glaciers that have a temperature close to 0 o C [Sharp, 1988]. Therefore, it is no 
thermal contraction of the fluid during the unloading, only decompaction and porosity 
rebound. 

Once the glacier has melted the surface becomes exposed to a climate with an annual mean 

temperature below 0 o C and permafrost starts to grow from the surface. The annual mean 

temperature in Adventdalen is today 5−  o C. Temperature measurements in well DH4 suggest 

that the mean could have been even lower, may be down to 8−  o C in the recent past 
[Elvebakk, 2010]. The growth of the permafrost was a transient thermal effect that took place 
after the deglaciation. Today, the permafrost in Adventdalen is in the range from 120 m to 160 
m in DH4 [Braathen et al. , 2012]. Therefore, the recent cooling of the pressure compartment 
might be important for underpressure generation. There is no pressure generation from 
unloading during this last time interval, only form thermal contraction. The thermal contraction 
can be handled with the compartment model by letting the reduction of the temperature T∆  

take place at the rate ω)/(=/ 3 dzdTtT ∆∆ . The three different stages of the compartment is 

summarized in table 1. 

 

4.2 The present day underpressure after three stages of unloading 

 The underpressure after three stages of unloading can be computed with the expression (34) 
from Appendix C, which includes the potential from topographic driven fluid. Figure 5 
demonstrates the computation of the present day underpressure using equation (34). The 
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parameters for the underpressure compartment at Adventdalen are collected in table 2. The 

aquifer permeability is varied from over 5 orders of magnitude from 20101= −⋅ak  2m  to 
15101= −⋅ak  2m  and the seal permeability is also varied over 5 orders of magnitude from 
23101= −⋅sk  2m  to 18101= −⋅sk  2m . Figure 5a has the decompaction coefficient 10101= −⋅rα  

1−Pa , which is 1/5  of the compressibility of water. The water compressibility therefore 

dominates this case. Present day underpressure in the range of 40  bar is not possible unless 

the aquifer permeability is less than 19101 −⋅  2m and the seal permeability is less than 21101 −⋅  
2m , which is a low permeable system. Increasing the decompaction coefficient with one order 

of magnitude to 9101= −⋅rα  1−Pa makes it twice as large as the water compressibility. But the 

upper limits of the permeabilities increase less than a factor 10, as seen from figure 5b. The 
system still has to have low permeability to allow for the present day underpressure. Increasing 
the decompaction coefficient to 20 times the water compressibility allows for an aquifer 

permeability larger than 18101 −⋅  2m  and a seal permeability larger than 20101 −⋅  2m . 

The decompaction coefficient, 9101= −⋅rα  1−Pa  gives an effective compressibility that is 2 

times the water compressibility. The porosity rebound from this decompaction coefficient is 

0.26== ghbrρφαφ∆ % when 1000=h  m of rock with porosity 0.1=φ  is eroded under 

hydrostatic conditions using that 2600=bρ  3−mkg  and zero uplift. Deglaciation of 400  m ice 

under hydrostatic conditions gives a porosity rebound that is factor 0.16  less, with other words 
0.04=φ∆ % . A larger decompaction coefficient gives a larger porosity rebound, but a larger 

porosity rebound may be difficult to reconcile with the sealing nature of the fractured 
overburden. The use of equation (34) to compute the present day underpressure indicates that 
the system must have low permeabilities for both the aquifer and the seal, and that the 
decompaction coefficient has to be larger than the water compressibility. 

 

4.3 Compartment pressure through time 

In order to see which period is the most important with respect to underpressure generation, 
we study the transient behaviour of the compartment model with the three stages of table 1, 

and with different scenarios of the aquifer permeability ( ak ), seal permeability ( sk ) and 

decompaction coefficient ( rα ). The solution (33) is used for time-stepping the pressure through 

the three time intervals: “œslow”  erosion and unloading of 3.5 Ma, “rapid”  deglaciaMon over 
1 ka and then thermal cooling until today over 10 ka. The three intervals are summarized in 
table 1. 

The study looks in turn at the two different seal permeabilities 19101 −⋅  2m  and 21101 −⋅  2m , 

where the lowest permeability is for a nearly impermeable seal [Neuzil, 1994]. For each seal 

permeability we compare the two decompaction coefficients 9101= −⋅rα  1−Pa  and 8101= −⋅rα  
1−Pa  in combination with aquifer permeabilities over 5 orders of magnitude, from 20101 −⋅  2m  
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to 15101 −⋅ . 

It is difficult to compare the transient behaviour of the three stages, because the time intervals 
are of different lengths (see table 1). Therefore, each of the three intervals is scaled to the unit 
interval, as shown in figures 6a-6d. The pressure during the first time interval is plotted in the 
left gray band from unit time 0 to 1. The pressure of the second and third time intervals are 
plotted in the center- and right bands, from unit time 1 to 2 and from unit time 2 to 3, 
respectively. 

Before interpreting the transient results, it is worth recalling that a horizontal pressure curve is 
a stationary value. It is the case when the time interval is much longer than the characteristic 

time ( 0t ). A stationary pressure is more common during the first interval, because it is much 

longer than the two other time intervals. The value of the stationary pressure may be 
dominated by topographic driven flow, when the aquifer permeability is “large” compared to 

the seal permeability, as expressed by the condition sa NN >> . Next we have from 

approximation (7) that a linear decrease in the pressure means that the interval is short 
compared with the characteristic time. This takes place for the second and the third intervals, 

when we have that 02 tt =∆  or 03 tt =∆ . 

Figures 6a-6b show that the first interval of glacial erosion has stationary underpressure, which 
is seen as the flat pressure curves.  Glacial erosion can create substantial underpressure that 
lasts until present time, when both the seal permeability and the aquifer permeability are 
towards their lower end values (see figures 6c-6d). 

The second interval of deglaciation in figures 6a-6d is in a transient phase for all parameter 
choices (except for the largest aquifer permeability). This interval makes an important 
contribution to the present day underpressure. We notice that the pressure decrease during 
the interval does not seem to depend directly on the permeability. This follows from the 

estimate (8), which gives 27≈∆p  bar when f2= αα r , 1000=fρ  3−mkg and 400=h  m, as in 

figures 6a and 6c. In the case when fαα >>r  we get that 40≈∆p  bar, as seen from figures 6b 

and 6d. 

The third interval gives underpressure generation from thermal contraction. It contributes 
slightly to the underpressure for a low seal permeability as seen in figures 6c and 6d. The 
stationary pressure for thermal contraction is then lower than the underpressure generated 
during the interval of deglaciation. 

The porosity rebound corresponding to the plots in figures 6a-c is shown in figures 7a-c, and it 
is computed using relation (30). Figures 7a-c show that porosity rebound in the initial transient 
regime and the stationary regime are weakly dependent on aquifer permeabilities. The total 

porosity rebound for the decompaction coefficient 8101= −⋅rα  1−Pa  is in the range from 0.02  

to 0.05 , which may by too much for fracture rock to remain sealing. The decompaction 
9101= −⋅rα  1−Pa  gives an order of magnitude less porosity rebound, which seems more likely. 
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Appendix D shows how a stationary state of underpressure can be characterized by means of a 

gravity number, denoted gN . A gravity number gN  less than the porosity rebound φ∆  tells 

that the stationary underpressure will be noticeable compared to the hydrostatic pressure 
difference over the aquifer, when the there is no topographic driven flow. The aquifer is 200 m 
thick, which gives a reference hydrostatic pressure of 20 bar. The gravity number for the first 

interval is 0.1=gN  when 19101= −⋅sk  2m , which is too large for noticeable underpressure, 

when φ∆  in the range from 0.003  to 0.03 . A reduction of the seal permeability with two 

orders of magnitude gives the gravity number 0.001=gN , which is sufficient to expect 

underpressure to develop. This interpretation is in agreement with underpressure shown in 
figures 6a and 6c. 

 

5 A 2D basin model of Adventdalen 

The compartment model assumes strata-bound fluid flow in the aquifers and vertical fluid flow 
in the subsurface of the valley. In order to better represent the geometry of the valley and the 
fluid flow in the subsurface we made a 2D basin model of the Adventdalen area. The 2D vertical 
cross section that follows the line shown in figure 1 was modelled. This line was selected 
because it contains well DH4 and it traverses the mountain to the neighbouring valley where 
the DeGeerdalen sandstone is exhumed. 

It is difficult to find software that models glacial erosion coupled with fluid flow. We used the 
basin simulator BAS [Wangen, 2006], because it allows one to model erosion of the surface, and 
at the same time solves for pressure, when accounting for decompaction during unloading. This 
pressure equation is derived in Appendix A from conservation of solid and fluid, and it is solved 
with the potential along the dynamic topography as a Dirichlet boundary condition. The vertical 
boundaries and the base of the model were closed for fluid flow. The potential along the 
surface topography has a value produced by the height of the surface reduced with 100 m. This 
reduction in the potential represents a water table that is roughly 100 m below the surface due 
to permaforst.  

A full basin model was build that deposited all layers since the end of Paleozoic. The present 
day geometry of the layers are shown in figure 8b. The layers were initially flat until the basin 
was uplifted, tilted and eroded flat between 36 Ma and 10 Ma. The Advendalen valley was 
eroded during the interval from 3.5 Ma until 100 ka. The basin simulator does not have any 
special features to handle glacial erosion by removing mass from the sediment surface 
underneath the ice. Therefore, the erosion and the growth of the last glacier were treated 
sequentially. The last glacial episode was modelled with the present day shape of the valley, by 
treating the growth of the last glacier as deposition of a sedimentary layer with the properties 
of ice. The ice builds up a constant rate until deglaciation starts at 11 ka, and deglaciation then 
last until 10 ka. The profile was at rest from 10 ka until present. 
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The main parameters in the modelling are a constant sandstone aquifer permeability 
18101= −⋅ak  2m , a constant siltstone seal permeability 20101= −⋅sk  2m  and the decompaction 

coefficient 9102= −⋅rα  1−Pa . The distribution of underpressure (as potential) at present time 

is shown in figure 8a. Underpressure is located underneath the base of the valley, where most 
of the unloading has taken place. Figure 8a shows the positive potential for topographic driven 
flow in the mountains and figure 8b also shows the layered lithologies and the present day 
Darcy flow field. The fluid flow is clearly strata bound in the aquifers and vertical in the low 
permeable siltstone underneath the base of the valley. The direction of the flow is clearly 
towards the point of lowest underpressure (or potential) as seen from figure 8b. 

The last glaciation is modelled with growth of the ice from 100 ka to 11 ka, where the ice 
reaches a thickness of 400 m. This loading gives an overpressure of approximately 10  bar. The 
period of deglaciation over the next 1 ka generates 40 bar underpressure, which is slightly 
reduced at present time. The deglaciation and the cooling until today are two stages where the 
pressure is in a transient state. Therefore, the present time underpressure is still in a transient 
state. 

The pressure in the middle of the three sandstones in the DeGeerdalen (fm) at lateral position 
519300 m is plotted in figure 9 as a function of time during the last 100 ka. The plot covers 
these three time intervals: (1) growth of the ice from 100 ka to 11 ka, (2) deglaciation from 11 
ka to 10 ka and (3) cooling the subsurface from 10 ka until today. The slow erosion of the valley 
from 3.5 Ma to 100 ka is dominated by a slight overpressure from topographic driven flow, and 
this interval is not shown in figure 9. The pressure in the DeGeerdalen sandstone, plotted as a 
function of time in figure 9, has the basic behaviour as the three stage compartment model. 

The basin modelling has a topographic driven flow from the mountain that is not captured by 

the compartment model by the height mh  of the aquifer recharge area. The compartment 

model assumes that the aquifer is only charged where it is exhumed, and that the siltstone 
above the aquifer is completely sealing the aquifer from a topograpic driven flow from 
mountains above it. Figure 8b shows that there is a topographic driven flow from highest part 
of the mountain towards the base of the valley Adventdalen. The potential from the mountains 
above the aquifer is therefore more important than the potential where the aquifer is 

exhumed. A siltstone permeability equal to 20101= −⋅sk  2m  is not sufficient to seal the aquifer 

from topographic driven flow from the mountain. The compartment model reproduces the 
dynamics of the underpressured aquifer underneath the valley, but care has to be taken adjust 
the potential where the aquifer is exhumed. 

 

6 Conclusions 

Underpressure was discovered during drilling of a test well in the glacial valley Adventdalen at 
Svalbard. The cause for this underpressure is studied numerically with a basin model and 
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analytically with a compartment model. The 2D basin model simulates the geohistory of 
Adventdalen, and it accounts for underpressure generation underneath the valley and for the 
Darcy flow driven by the mountain topography surrounding the valley. 

The pressure equation used in the basin model is derived from conservation of pore fluid and 
solid, in addition to constitutive relations for the fluid and the pore space. The compartment 
model is a pressure equation based on a simplified representation of the basin geometry. It 
allows one to analytically express under- and overpressure from a series of different unloading 
and loading intervals, when each interval is approximated with a constant erosion- and uplift 
rate. Our modelling takes into account the following three intervals: glacial erosion during 
Pliocene and Pleistocene, rapid deglaciation, and cooling of the subsurface during the Holocene 
until present time. The compartment model also gives expressions for the minimum and 
maximum pressure from cycles of glaciations. 

Although the compartment model is a simple representation of the basin geometry, it has the 
same sink term for underpressure generation as the basin model. The different parts of the sink 
term that produce underpressure are identified as pore space rebound from unloading, fluid 
decompression from uplift and thermal expansion from cooling of the subsurface from erosion. 
These contributions are compared and our modelling suggests that pore space rebound 
dominates the two other contributions. 

The compartment model gives the characteristic time for periods of underpressure generation 
that are represented by a constant erosion- and uplift-rate. The characteristic time tells 
whether the underpressured formation is in a transient state or a stationary state. Application 
of the compartment model to Adventdalen indicates that the valley had a stationary pressure 
close to the hydrostatic during the glacial erosion of the valley, when rapid fluctuations in the 
glacier thickness are ignored. The modelling suggests that the last deglaciation created a 
transient, which is the cause for the present day underpressure. 

The compartment model also accounts for the topographic driven flow in terms of a recharge 
potential at a higher position in the aquifer. This position could be where the aquifer is 
exhumed in the neighbour valley, but the basin modelling results suggests that topographic 
driven flow from the neighbouring mountains is more important. 

The stationary underpressure from the compartment model can be compared with the 
hydrostatic pressure difference over the aquifer, which leads to a dimensionless condition for 
underpressure. The condition is expressed in terms of the gravity number, and it is similar to a 
condition for overpressure build-up in sedimentary basins during deposition of sediments. The 
development of a noticeable underpressure requires that the gravity number is less than the 
porosity increment, which results from eroding a weight corresponding to the thickness of the 
seal. 

We found that the current underpressure can be explained as a result of rebound of fracture 
porosity from the last deglaciation. Fracture porosity from deglaciation produces an order of 
magnitude stronger contribution to the sink term than thermal contraction. This conclusion is 
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also supported by the large number of fractures observed in the core samples of the 
DeGeerdalen formation [Ogata et al. , 2012]. The porosity rebound from deglaciation is 

estimated to be less than 0.1% for a decompaction coefficient 9101= −⋅rα  1−Pa . The 

maximum aquifer permeability is estimated to be 18101= −⋅ak  2m  and a maximum 

permeability for the seal is estimated to be 20101= −⋅sk  2m . 

 

7 Appendix A: Pressure equation and fluid flow 

The pressure equation is derived from mass conservation of fluid and solid in a porous medium, 
which gives that [Huyakorn Pinder, 1983, Wangen, 2010] 
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where dtD/  is the material derivative, φ  is the porosity, fρ  is the fluid density, sρ  is the solid 

(matrix) density and Dv  is the Darcy flux 
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To simplify the computation of a pressure that is different from the hydrostatic pressure we 
introduce the potential 

 dzgpandpp f

z
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0

,0,0 ==  (15) 

where ,0hp  is the hydrostatic pressure for a water table at sea level. The usefulness of the 

potential Φ  as the unknown is that it gives the underpressure directly, since the base of the 
valley Adventdalen is almost at sea level. In addition, the Darcy flux becomes potential flow, 

Φ∇− )/(= µkDv , which is also a simplification. Writing the Darcy flux as potential flow assumes 

that the fluid density does not have any lateral variations, which could give rise to convective 
currents. 

Conservation of the mass of fluid, as expressed by equation (13), needs expressions for 

dtD f /ρ , dtD s /ρ  and dtD /φ  in order to become a complete pressure equation for a basin 

during uplift and erosion. The time-rate of change of fluid density is written 
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where fα  is the fluid compressibility, β  is the fluid thermal expansion coefficient. 

The thermal expansion coefficient for water is 4102 −⋅≈β  1−K  [Liley Gambill, 1973], and for 

common rocks it is 5102 −⋅:  1−K  [Gilliam Morgan, 1988, Robertsen, 1988]. The thermal 

expansion of the rock matrix is an order of magnitude less than for water in the temperature 

interval from 20 o C to 80 o C and it is left out. The compressibility of water is often an order of 
magnitude larger than the compressibility of common minerals like quartz and calcite. 
Therefore, we assume that the density changes of the solid is less important than density 

changes of the fluid, and the term dtD s /ρ  is ignored. 

The rate of change of the porosity during unloading is treated in Appendix B. When expression 
(16) for the rate of change of density and equation (22) for the rate of change of porosity are 
inserted into the expression (13) for mass conservation, it gives the pressure equation 
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where the effective compressibility is 
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The material derivative of the potential is replaced by partial derivatives in the pressure 
equation (17), because small porosity changes imply negligible relative movements of the 
sediments in a vertical column [Wangen, 2010]. The pressure equation (17) is derived for 
underpressure generation during uplift and erosion. Underpressure is generated when the 
right-hand-side of equation (17) is a sink term (when it is less than zero). A similar pressure 
equation applies for pressure build-up during sediment deposition and compaction, but with 
the right-hand-side as a source term [Wangen, 2010]. 

 

8 Appendix B: Porosity rebound 

The porosity rebound during unloading is taken to depend linearly on the reduction of effective 
vertical stress, as assumed by [Luo Vasseur, 1995]. The porosity increases with a small value 

 )  ''(= maxmin σσαφφ −∆ r  (19) 

as the vertical effective stress 'σ  decreases from its maximum value max'σ , where rα  is the 

mechanical decompaction coefficient. The mechanical decompaction coefficient is defined as 
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for effective stress ''=' max σσσ −r , when  'σ  is decreasing from its maximum value max'σ . The 

rebound (19) can be viewed as an approximation to first order in the reduction of the vertical 

effective stress ''max σσ − , which applies for small rebounds in the porosity. The vertical 

effective stress is the difference between lithostatic pressure bp  and the fluid pressure fp  

 Φ−−− ,0==' hbfb ppppσ  (21) 

The time-derivative of the porosity becomes 
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The rate of change of the reference hydrostatic pressure can be expressed as 

 uf

h
g

dt

Dp
ωρ−=

,0  (23) 

where uω  is the uplift rate. The rate of change of the the overburden (the lithostatic pressure) 

can be written in the similar way as 

 ωρ g
dt

Dp
f

b −=  (24) 

where ω  is the erosion rate. The uplift rate uω  measures the velocity of the rock relative to the 

sea level, and the erosion rate ω  measures how fast the rock surface retreats along a vertical 
relative to the rock. When the uplift rate and the erosion rates are equal the rock surface 
remains at the same height relative to sea level. 

It is useful to consider the situations where uplift and erosion take place at near hydrostatic 
conditions. The rate of the porosity change can then be written 

 )(= ufbr g
dt

D
ωρωραφ

φ
−  (25) 

In the case that the uplift rate is equal to the erosion rate, we have that 

 ωρραφ
φ

)(= fbr g
dt

D
−  (26) 

A similar expression for the rate change of porosity appears when erosion takes place without 
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any uplift ( 0=uω ) 

 ωραφ
φ

br g
dt

D
=  (27) 

Another observation is that the expressions (25) to (27) also hold for a stationary pressure state 
(where 0=/ t∂Φ∂ ). In either case, we have that the increase in porosity with time is 
proportional to the erosion rate. 

Equation (19) is an expression for the porosity rebound since maximal burial. Maximum burial 
may have been around 36 Ma, when the Adventdalen area was uplifted and erosion started. 
The early uplift of Adventdalen which started after maximum burial was most likely a slow 
process. Assuming that the erosion kept pace with the uplift implies that the uplift rate and the 
erosion rate were about the same. The glacial loading and unloading produces an isostatic 
response, which considerably less than the thickness of the ice that filled the valley. The rate of 
unloading from deglaciation is considered more important the uplift from isostatic 
compensation that follows. 

We are mainly interested in the rebound that are linked to glacial erosion and deglaciation, 
which took place during the last 3.5 Ma. The rebound at the beginning of glacial erosion can be 
written 

 )'(= 1,0,1max1 Φ++−⋅∆ hbr ppσφαφ  (28) 

where ,1bp  and 1Φ  are the lithostatic pressure and potential at this time, respectively. The 

present day rebound is written in the same way 

 )'(= 2,0,2max2 Φ++−⋅∆ hbr ppσφαφ  (29) 

where ,2bp  and 2Φ  are the present day lithostatic pressure and potential, respectively. We are 

interested in the rebound since the beginning of the glacial erosion, which becomes 

 )(== 12 ∆Φ+∆−⋅∆−∆∆ br pφαφφφ  (30) 

where the ,1,2= bbb ppp −∆  is the reduction in the lithostatic pressure, and 12= Φ−Φ∆Φ  is the 

change in the potential, and where both differences are with respect to the beginning of glacial 
erosion. The reference level for hydrostatic pressure is for simplicity assumed constant. 

Unloading gives reduction in the lithostatic pressure 0<bp∆ , which acts to increase the 

porosity rebound, while underpressure generation 0<∆Φ  acts against porosity rebound. With 
respect increasing underpressure (decreasing potential) we assume that we are far away from 
reaching maximum effective vertical stress. 
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9 Appendix C: The pressure equation for the compartment model 

 Conservation of fluid mass for the underpressure compartment shown in figure 3 can be 
expressed as 

 
1

1
2

1

222

)(
=)(

l

ppk
h

h

pk
lhl

dt

d a
f

s
ff

−
+−

µ
ρ

µ
ρρφ  (31) 

where the left-hand-side represents the increase in fluid mass in the compartment, while the 
right-hand-side represents the net mass flow of fluid into the compartment. This can be seen by 
multiplying the equation (31) by a small time step. The net flow into the compartment is the 
sum of the flow through the seal and the topographic driven flow from the aquifer. The 
compartment underpressure is denoted p , and the fluid potential where the aquifer is 

exhumed is denoted 1p . A contribution from the left hand side is neglected, because it is 

assumed to be less important than flow in the upward dipping aquifer at the right, because it is 
connected to the surface. A geometry of the model is shown in figure 3. The thickness of the 

sealing layer is 1h  and it has the permeability sk . The aquifer, which holds the compartment, 

has the thickness 2h  and the aquifer permeability ak . The aquifer extends a distance 1l  to the 

left, where it is exhumed in the neighbouring valley, and the length of the compartment is 2l . 

The height 2h  depends on the porosity, and it is )/(1= 22 φζ −h , where 2ζ  is the net (porosity 

free) thickness of the aquifer. The time-derivation can the be carried out, and dtd f /ρ  and 

dtd /φ  can be replaced by expressions (16) and (22), respectively, and the result becomes 

equation (1). 

Equation (1) for the underpressure has the general solution 

 ')'())/'((exp)/(exp=)( 0
0

00 dttptttttptp s

t

−+−⋅ ∫  (32) 

where 0p  is the (initial) underpressure at time 0=t . The pressure solution (32) applies for any 

time-dependent erosion rate )(tω  and uplift rate )(tuω . In the case )(tps  is constant the 

solution simplifies to 

 ))/(exp(1)/(exp=)( 000 ttpttptp s −−⋅+−⋅  (33) 

The solution (33) shows how the characteristic time controls the decay of the initial pressure, 

and the transient towards a new stationary state with underpressure sp . The general solution 

(32) is useful when )(tps  is known, as for instance when )(tps  is piecewise constant, where 

each time interval has its own sp -value. 

The present day underpressure in the compartment, for three intervals of unloading, can be 
computed by adding together the contributions from all three intervals. By treating the 
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intervals sequentially in time with solution (33), where the pressure at the end of one interval 
becomes the initial pressure in the following interval, gives the present day underpressure. 
Alternatively, the present day pressure can be obtained from solution (32), using piecewise 
constant stationary pressures for each interval. In any case, the present day underpressure 
becomes 

 ))/((exp))/(exp(1= 03201,13 tttttpp ∆+∆−⋅∆−−⋅ω  

 )/(exp))/(exp(1 0302,2 ttttp ∆−⋅∆−−⋅+ ω  

 ))/(exp(1 03,3 ttp ∆−−⋅+ ω  

 )))/((exp(1 0321 ttttpm ∆+∆+∆−−⋅+  (34) 

The pressure ,1ωp , ,2ωp  and ,3ωp  are the three stationary underpressures for each of the three 

time intervals, and mp  is the stationary potential from topographic driven fluid flow. 

The pressure solution (33) can also handle the pressure build-up and pressure decrease during 
cycles of loading and unloading, respectively. If the same cycle repeats itself again and again the 
pressure will oscillate between an upper and a lower pressure limits. These limits can be found 
as initial conditions of two pressure solution (33), where one initial condition is for the pressure 

build-up towards a stationary pressure asp , , and the other is the initial condition 2p  for 

pressure decline towards a stationary solution bsp , . We then have that 

 )(exp)(= ,2,1 aasas pppp τ−−+  (35) 

 )(exp)(= ,1,2 bbsbs pppp τ−−+  (36) 

where 1p  is the initial pressure for the second interval, while final pressure of second interval 

2p  is the initial value for the first interval. The time spans of the two intervals of a cycle are aτ  

and bτ , respectively, and a full cycle has the period ba ττ + . The stationary pressure for the first 

interval is asp ,  and the second it is bsp , . Solving for the end-values 1p  and 2p  gives 

 
)(exp1

)(exp)(exp)(
=

2,,,,

1

ba

absaasbsas pppp
p

ττ

τττ

−−−

−−−−−+
 (37) 

 
)(exp1

)(exp)(exp)(
=

,,,,

2

ba

baasbbsasbs pppp
p

ττ

τττ

−−−

−−−−−+
 (38) 

The case where the intervals last much longer than the characteristic time ( 1>>aτ  and 

1>>bτ ) implies that the pressure oscillates between the two stationary values, because 
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aspp ,1 ≈  and bspp ,2 ≈ . 

 

10 Appendix D: Condition for underpressure 

It is possible to formulate a condition for underpressure generation, which is similar to a 
condition for overpressure build-up in sedimentary basins during burial and deposition of 
sediments. Overpressure build-up from porosity reduction during burial is the opposite process 
of underpressure generation during uplift, erosion and decompaction. The condition for 
underpressure assumes that the overburden is eroded at a constant rate, with a stationary 
compartment underpressure caused by decompaction. It is also assumed that the 
underpressure is controlled by the seal and that topographic driven fluid flow is negligible 

( 0=aN ). The stationary underpressure in the compartment, equation (5), can then be 

compared with the hydrostatic pressure difference across the compartment, 2ghfρ , which is 

taken as the reference pressure. The condition for underpressure is stated as 2|>| ghp ff ρ , 

which is 

 2>
)(1

gh
N

g
f

s

br ρ
φ

ωρφµα
−

 (39) 

for zero uplift ( 0=uω ), isothermal conditions ( 0=/ tT ∂∂ ) and no topographic driven fluid flow 

( 0=aN ). The condition (39) can be expressed on a dimensionless form in terms of the gravity 

number gN  as 

 φ
φ
φ

φ
ρφα

µω

ρ
∆≈

−
∆

− 1
=

1
<= 1hggk

N brsf

g  (40) 

for porosities in the range 0  to 0.2 . The porosity rebound 1= hg br ραφφ∆  is the expansion that 

follows from the erosion of a thickness equal to the seal under hydrostatic pressure. The 

condition for underpressure (40) is stated as φ∆<gN  by use of the gravity number 

)/(= µωρ sfg gkN . This condition is similar to the condition for overpressure build-up during 

deposition of sediments, which is 1=gN , [Audet Fowler, 1992, Audet, 1995, Wangen, 1992, 

Wangen, 1997, Wangen, 2001]. The latter condition is derived for 1D models in the vertical 
direction with just one (average) lithology. In these 1D models, the overpressure is measured at 
the base of the sedimentary column, where it is at maximum. Generation and dissipation of 
overpressure may take place over time spans of 100 million years or more, and the porosity is 
reduced from its initial surface porosity ( 0.5: ) to the low porosity of fully compacted rock 
( 0.05: ) at the base of the basin. The similarity between the two conditions is that both require 
the gravity number to be less than a threshold. The difference is that the expansion of the 
porosity during periods of erosion and unloading is small compared to the porosity reduction 
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from the basin surface to the base. The threshold )/(1 φφ −∆  is of order 1 for the case of 

overpressure build-up. Another difference is that overpressure is measured against the 
difference between the lithostatic pressure and the hydrostatic pressure, while absolute value 
of the underpressure is measured against hydrostatic pressure. 
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 Tables 

 

 

Interval: 1 2 3 

Process: Glacial erosion Deglaciation Rest 

Time [ka]: from 3500 to 11 from 11 to 10 from 10 to 0 

Unloading: yes yes no 

Cooling:  yes no yes 

 

 

Table 1: The three intervals in the three-stage model. 
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Parameter Value Units 

initial res. pres. (p0) 0  [Pa] 

height aquifer recharge (hm) 300 [m] 

thickness seal (h1) 500 [m] 

thickness reservoir (h2) 200 [m] 

length aquifer (l1) 15000 [m] 

length compartment (l2) 2000 [m] 

uplift rate (ωu) 0 [m/Ma] 

burial rate (ω1) 285.714 [m/Ma] 

burial rate (ω2) 800000 [m/Ma] 

burial rate (ω3) 11111.1 [m/Ma] 

porosity (φ) 0.1 [-] 

viscosity (µ) 0.001 [Pa s] 

density fluid (̺ρf )  1000 [kg/m3] 

density bulk matrix (̺ρb) 2600 [kg/m3] 

compress. fluid (α) 5e-10 [1/Pa] 

thermal exp. fluid (β) 0.0002 [1/K] 

thermal gradient. (dT/dz) 0.045 [C/m] 

gravity (g)  10 [m/s2] 
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Table 2: The decompaction coefficient, the aquifer permeability and the seal permeability are 

not well constrained parameters. The burial rate 2ω  is corrected with respect to the weight of 

the ice and the rate 3ω  is used to provide cooling of the compartment after the ice melted. 
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Figure 1: The topography of Adventdalen at Svalbard [USGS, 2014]. The white dot marks well 
DH4 and the line shows the vertical cross section that is simulated with the basin model. 

 

Figure 2: The lithostratigraphy of well DH4. The fluid pressure is compared with hydrostatic 
pressure that is zero at the surface, even though the actual hydrostatic pressure is reduced by 
roughly 15 bar because of permafrost.  

 

Figure 3: A sketch of the compartment model for underpressure generation. There are two 
fluxes that tries to balance the underpressure generation: vertical flow from the hydrostatic 
aquifer downwards through the seal and topographic driven flow in the aquifer. The length of 
the aquifer is l1 and the width of the underpressure compartment is l2. 

 

Figure 4: Pressure transients during cycles of loading and unloading. The time intervals of 
loading and unloading are scaled to the unit interval. (a) Time for loading is longer than the 
characteristic time of the system and the stationary state is nearly reached. The time for 
unloading is shorter than the characteristic time. (b) Both the time for loading and unloading 
are shorter than the characteristic time. 

 

Figure 5: The compartment pressure after the three time intervals in table 1 for different 

choices of the aquifer pressure ak  and seal pressure sk . The figures (a), (b) and (c) have 

decompaction coefficients 10101= −⋅rα  1−Pa , 9101 −⋅  1−Pa  and 8101 −⋅  1−Pa , respectively. 

 

Figure 6: The transients of the underpressure during three stages of unloading for different 
aquifer permeabilities, seal permeabilities and decompaction coefficients. The time span of the 
stages is of very different length. In order to plot the pressure evolution during the three stages 
in the same plot each stage has the time scaled to the unit interval. (The x-axis is therefore from 

0 to 3.) The seal permeability and decompaction coefficient differ as follows: (a) 19101= −⋅sk  
2m  and 9101= −⋅rα  1−Pa . (b) 19101= −⋅sk  2m  and 8101= −⋅rα  1−Pa . (c) 21101= −⋅sk  2m  and 

9101= −⋅rα  1−Pa . (d) 21101= −⋅sk  2m  and 8101= −⋅rα  1−Pa . Additional parameters are 

collected in table 1. 
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Figure 7: The porosity evolution for the same cases of unloading through three stages as shown 
in figure 6. The time span of the stages is of very different length. In order to plot the pressure 
evolution during the three stages in the same plot each stage has the time scaled to the unity 
interval. (The x-axis is therefore from 0 to 3.) The seal permeability and decompaction 

coefficient differ as follows: (a) 19101= −⋅sk  2m  and 9101= −⋅rα  1−Pa . (b) 19101= −⋅sk  2m  and 
8101= −⋅rα  1−Pa . (c) 21101= −⋅sk  2m  and 9101= −⋅rα  1−Pa . (d) 21101= −⋅sk  2m  and 
8101= −⋅rα  1−Pa . Addition parameters are collected in table 1. 

 

Figure 8: (a) The plot shows the present day potential, where the potential underneath the base 
of the valley is close to the difference between fluid pressure and hydrostatic pressure. The 

potential gets units meter by diving its value in Pa by 410 . (b) The plot shows the vertical 
crossection with lithologies and the fluid flow field at present time. 

 

Figure 9: A comparison of the pressure evolution in DeGeerdalen fm when it is modelled with 
basin model and the compartment model. The three unit intervals are (1) growth of the ice 
since 100 ka, (2) deglaciation over 1 ka (3) cooling of the subsurface until today. 
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